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I) Introduction

1. Objective

The objective of this project is to develop, verify, and test procedures that can be used
during the in-line instrumentation of pipelines to characterize their reliability {probability
of not loosing containment). This project is sponsored by the U.S. Minerals Management
Service (MMS) and ROSEN Engineering.

2. Scope

The Real-Time RAM (Risk Assessment & Management) of Pipelines project is
addressing the following key aspects of criteria for in-line instrumentation of the
characteristics of defects and damage in a pipeline.

1) Development of assessment methods to help manage pipeline integrity to provide
acceptable serviceability and safety,

2) Definition of reliabilities based on data from in-line instrumentation of pipelines to
provide acceptable safety and serviceability,

3) Development of assessment processes to evaluate characteristics of in-line
instrumented pipelines,

4) Evaluation of the effects of uncertainties associated with in-line instrumentation data,
pipeline capacity, and operating conditions,

5) Formulation of analysis of pipeline reliability characteristics in current and future
conditions,

6) Validation of the formulations with data from hydrotesting of pipelines and risers
provided by the POP (Performance of Offshore Pipelines) project.

7} Definition of database software to collect in-line inspection data and evaluate the
reliability of the pipeline.

Important additional parts of this project provided by ROSEN engineering and MMS will
be:

1) Provision of in-line instrumentation data and field operations data to test the real-
time RAM formulations,



2) Conduct of workshops and meetings in Lingen, Germany and UCB to review
progress and developments from this project and to share technologies,

3) Provision of a scholarships to fund the work of graduate student researchers that
assist in performing this project, and

4) Provision of technical support and background to advance the objectives of the
project.

3. Approaches

The fundamental approach used in this project is a Risk Assessment and Management
(RAM) approach. This approach is founded on two fundamental strategies:

- Assess the risks (likelihood and consequence) associated with existing pipelines, and

- Management the risks so as to produce acceptable and desirable quality in the
pipeline operations.

It is recognized that some risks are knowable (can be foreseen) and can be managed to
produce acceptable performance. Also, it is recognized that some risks are not knowable
(cannot be foreseen), and that management processes must be put in place to help manage
such risks.

Applied to development of criteria for the requalification of pipelines, a RAM approach
proceeds through the following steps (Bea, 1998):

1) Based on an assessment of costs and benefits associated with a particular
development and generic type of system, and regulatory — legal requirements,
national requirements, define the target reliabilities for the system. These target
reliabilities should address the four quality attributes of the system including
serviceability, safety, durability, and compatibility,

2) Characterize the physical conditions (e.g. corrosion, dents, gouges, and cracks),
the internal conditions (e.g. pressures, temperatures), and the operational
conditions (e.g. installation, production, and compatibility) that can affect the
pipeline during its life,

3) Based on the unique characteristics of the pipeline system characterize the
‘demands’ (imposed loads, induced forces, displacements) associated with the
environmental and operating conditions. These demands and the associated
conditions should address each of the four quality attributes of interest
(serviceability, safety, durability, and compatibility),



4) Evaluate the variability’s, uncertainties, and Biases (different between nominal
and true value) associated with the demands. This evaluation must be consistent
with the variability’s and uncertainties that were included in the decision process
that determined the desirable and acceptable target reliabilities for the system,

5) For the pipeline system define how the elements will be designed according to a
proposed engmeering process (procedures, analyses, strategies used to determine
the structure element sizes), how these elements will be configured into a system,
how the system will be constructed, operated, maintained, and decommissioned
(including Quality Assurance - QA, and Quality Control —~ QC process),

6) Evaluate the varability’s, uncertainties, and Biases (ratio of true or actual values
to the predicted or nominal values) associated with the capacities of the pipeline
clements and the pipeline system for the anticipated environmental and operating
conditions, construction, operations, and maintenance activities, and specified QA
— QC programs. This evaluation must be consistent with the variability’s and
uncertainties that were included in the decision process that determined the
desirable and acceptable target reliabilities for the system.

It is important to note that several of these steps are highly interactive. For some systems,
the loadings induced in the system are strongly dependent on the details of the design of
the system. Thus, there is a potential coupling or interaction between Steps 3, 4, and 5.
The assessment of variability’s and uncertainties in Step 3 and 5 must be closely
coordinated with the variability’s and uncertainties that are included in Step 1. The QA —
QC processes that are to be used throughout the life-cycle of the system influence the
characterizations of variability’s, uncertainties, and Biases in the capacities of the system
elements and the system itself.

4. The Project Premises

The design criteria and formulation developed during this project are conditional on the
following key premises:

1) The design and analytical models used in this project will be based on analytical
procedures that are derived from fundamental physics, mathematics, materials,
and mechanics theories.

2) The design and analytical models used in this project will be found on analytical
procedures that result in un-biased assessment of the pipeline demands and
capacities.

3) Physical test data and verified and calibrated analytical model data will be used to
characterize the uncertainties and variability’s associated with the pipeline
demands and capacitics.



4) The uncertainties and variability’s associated with the pipelines demands and
capacities will be concordant with the uncertainties and variability’s associated
with the background used to define the pipeline reliability goals,

3. Project Tasks

The principal tasks defined for the conduct of this project are:

D

3)

4)

0)

7

8)

Develop, veniy, and test procedures that can characterize the reliability upon the
results from in-line instrumentation with various features including corrosion, cracks,
gouges, dents, etc,

Evaluate available data from in-line instrumentation including the uncertainties
associated with pigging tool itself and its specification.

Evaluate the uncertainties associated with in-line inspection data, pipeline demands
(operating conditions), and capacities using simplified reliability based method.

Develop formulations to analyze reliability of pipeline in current condition. The
consequence of pipeline failure will be included.

A parallel project will be utilized to verify the analytical procedures developed during
this project.

Summarize comprehensively how to utilize this project into practical operations and
service in the industry,

Document the forgoing results in four project phase reports

Transfer the forgoing results to project sponsors in five project meetings

6. Current research phase tasks.

1) Literature review on inspection techniques, associated uncertainties of
detection/non detection, reliability methods, and prediction models for evaluation
of burst pressures.

2) Evaluate in line inspection uncertainties and develop required calculations and
Excel spreadsheets for this evaluation.

3) Develop Excel spreadsheets to integrate these uncertainties for the caiculation of
the probability of failure.



4)

6)
7)

8)

9)

Modify predictive models to account for inspection uncertainties.

Develop guidelines for the use of all developed spreadsheet during this project.
Test the developed models with the use of a numerical example.

Analyze results.

Recommendation for proper understanding of inspection uncertainties for
engineers,

Appendixes including spreadsheets calculations.



IT) Literature review

A) Previous reports

1.1 Introduction

As the pipeline infrastructure system ages, it is important that pipeline operators have the
technology to inspect and assess the state of their pipelines. Information on inspection
techniques can be found in literature,

1.2 Fundamentals of In-Line Instrumentation

An intelligent pig, or a ‘smart pig,” or in-line inspection tool, is a self-contained
inspection tool that flows through a pipeline with the product. Pipeline operators use
smart pigs to evaluate the integrity of transmission pipelines. Smart pigs, or in-line
inspection tools, inspect the full thickness of the pipe wall. These tools are designed to
look for conditions such as metal-loss corrosion, cracks, gouges, and other anomalies.
The two main objectives of smart pigs are to detect potential defects, and then determine
the size of the detected defect.

It should be noted that detection requirements depend upon the overall goal of the
pipeline inspection. One operator may be interested in using inspections to uncover
problem areas in a pipeline; hence the objective of the inspection is to locate defects in
the initial stages of their growth life. Another operator may want to ensure that their lines
have no defects, which threaten pipeline integrity; therefore, they are interested in larger
{d/1>50%) defects only (Bubenik, 2001).

According to Batelle, magnetic flux leakage (MFL) is the oldest and most commonly
used in-line inspection method for pipelines. The magnetic flux leakage technique
provides an indication of the general condition of a pipeline section. MFL is a mature
technique, extensively used in self-contained smart pigs. A permanent magnet generates
a magnetic field in the pipe wall, so that a reduction in material will cause flux to leak.
Most of the magnetic flux field lines pass through the pipe wall. The pipe wall is the
preferred path for the flux. In the region of metal-loss region, the sensor records a higher
flux density or magnetic field, thus indicating the presence of an anomaly. Furthermore,
defects distort the applied magnetic field, producing flux leakage. The amount of flux
leakage depends on the size and shape of the defect, as well as the magnetic properties of
the pipeline steel. Sensors measure flux leakage, and record the measurements inside the
pig. The measurements taken by the pig are analyzed after the inspection is completed to
estimate the defect geometry depth.
An MFL pipeline inspection teol is a self-contained unit, containing magnets, sensors,
data recording systems, and a power system. The systems used in most MFL tools
include:

«  Adrive system, which uses the pressure differential in the pipeline to propel the

tool.
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+ A power system, which provides battery power for the sensors, and data recording
system.
» A magnetization system for magnetizing the pipe.
« A sensor system to measure the flux-leakage signal.
+ A datarecording system, which amplifies, filters, and stores the measured signals
{Bubenik, 2001).
Figure 1.2.1: Layout of Components of MFL Pipeline Pig (www.phy.queensu.ca)

. PIPE WALL _ PRESSURE VESSEL
. BATTERYPACK zsmz:-;g FLL}}{ DETECTCR .- ODOMETER WHEEL

_ llﬂlllﬂl H1 il
>

,’ i Y I 3 N
‘ “ELECTRONICS UNIT MAG%ETICTAPE RECORDER
o  RUBBER CUPS

1.3 Performance Specifications for In-Line Instrumentation

1.3.1

Manual Analysis:
(Applicable for detailed analyzed features)

POD = Probability of Detection

General | Pitting Axial Circumferential
Defect Detect Grooving | Grooving
Depth at POD = 90% (in fraction of | 0.1 0.2 0.15 0.15
t)
Depth sizing accuracy at 80% +0.1 +0.15 +0.13 +0.11
Confidence in -/+ fractions of't
Width sizing accuracy at 80% +15 *+15 +10 +10
confidence in -~/+ X mm
Length sizing accuracy at 80% +15 15 +10 +10
confidence in -~/+ X mm
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Automatic Analysis:

General | Pitting Axial Circumferential
Defect Detect Grooving | Grooving
Depth at POD = 90% (in fraction of ' 0.2 0.2 0.3 0.2
t)
Depth sizing accuracy at 80% +0.15 +0.15 +0.23 +0.15
Confidence in -/+ fractions of t
Width sizing accuracy at 80% +25 +23 15 +15
confidence in -/+ X mm
Length sizing accuracy at 80% +25 +25 +15 15
confidence in -/+ X mm

Wall Thickness Detection:
= Imm or + 0.1t, whichever value is greater at 80% confidence.
1.3.2 Location and Orientation Capabilities
a. Axial position accuracy from reference marker: = Im
b. Axial position from closest weld: + 0.1m

¢. Circumferential position accuracy: % 10°

1.3.3 Defect Dimension Definition

Circumferential slotting

=
":3'
Defect ’5,,:
Width (A) 3
¢ | g
. ] General
[ =
(3 _ =]
3 —
F: Qu—
—
Piting
2 e Axial Grooving
1
«
/ ' D R B
I 2 3 4 5 6 7 g Defect
Pinhole Length (A}

Note: t = wall thickness or 10mm, whichever value is greate
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1.3.4 Identification of Features

POL: Probability of Identification

Feature Yes No May be
POI > 90% POI < 50% 50%<PO1<90%

Internal/External discrimination X

Metal loss corrosion defect X

Metal loss pipe mill defect X

Midwall defect X

Grinding X

Gouge X

Dent X

Spalling X

Axial crack X

Circumferential crack X

Eccentric pipeline casing X

Sleeve repair X

Fitting X

Valve X

Tee X

From above table, 1t can be that the probability of longitudinal cracks is less than 50%.

2. Probability of Detection

2.1 Factors

There are four contributing factors, which directly influence the probability of detection
of an MFL inspection tool (Beuker, 2001):

1. Inspection Tool Capability: mechanical parameters, such as magnetization

level and configuration.

2. Calibration of Inspection Too!: defect population should be taken into account

in calibration.

3. Interpretation of Results: interpreting the data printouts provided by the

intelligent pig.

4. Defect Population: Adjacent defects make signal analysis difficult because the

leakage fields overlap and affect each other.

a. Distribution of depth.

b. Noise Level

¢. Noise Parameter
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2.2 Inspection Tool Capability: Mechanical Limitations

The characterization accuracy, including the probability that the pig will simply detect a
metal-loss defect (POD), is related to the mechanical properties of the pig. For example,
applied magnetic field strength produce stronger leakage fields, which improve the
performance of the pig’s detection and characterization abilities. The applied flux
density in a pipe also depends upon the coupling efficiency between the magnet, the pipe,
and on the local wall thickness. For the same applied magnetic field, an increase in wall
thickness decreases the flux density in the pipe. Therefore, the strength of the
magnetization system must be tailored to the wall thickness of the pipe to be inspected.
Thick-walled pipe requires a larger magnetization (magnet) level in order to achieve
saturation. Furthermore, variations in the wall thickness will change the applied field
strength. Flux density is also a function of the local permeability of the pipe. Small
changes in carbon content, alloying elements, and impurities create variations in
permeability. The magnetization level strongly affects both detection and
characterization accuracy. Magnet strength and magnetic coupling have the strongest
affect on the applied field. Velocity, stress, repeated magnetizations of the line-pipe, and
changes in the material properties of the pipe along the length of the pig run also affect
the applied magnetic field. Ideally, the magnetization system in an MFL too! should
produce a magnetic field that is strong enough to cause a measurable amount of flux
leakage at defects; uniform from the inside surface to the outside surface of the pipeline
wall thickness, and consistent in magnitude along the length of a pipe, so that
measurements can be compared at different locations during an inspection run.

Sensors located on-board the pig convert the magnetic flux leakage field measurements
into electrical signals that can be stored, analyzed, and reviewed. The sensor must
optumize the information that it collects, as it balances the quantity and quality of the data
that it collects. Sensors are spring-loaded against the pipe surface, allowing the sensors
to ride over weld beads, dents, and debris. The stiffness of the mounting system and the
mass of the sensors affect how closely the sensors ride the internal pipeline wall. A
sensor wear plate protects the sensor from damage but provide a built-in stand-off
between the sensor and the pipe wall, which affects POD. Furthermore, sensors filter the
incoming data, and the size of the sensor affects the resolution of the system. Important
sensor parameters include circumferential width of the sensor, sensor type, its axial
position between magnet poles, and the ability of the sensor to reduce background noise
levels (Bubenik, 2001).

Data storage devices located on-board the pig require battery power to operate.
Therefore, the available battery power limits the mileage that can be inspected at any
time. The power system is constrained by the size and shape of the interior of the
inspection tool.

2.3 False Pig Calls
False pig calls are indications of defects in the collected data, where no defect actually

exists, Two common causes of false calls are metal objects near the pipeline, and
pipeline repair sleeves (Bubenik, 2001). False pig calls can lead to costly excavations,
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and repair work being performed, without it being needed. The rate of false calls is
related to the interpretation and use of the inspection results. If all indications of defects
are to be excavated, the number of false calls should be minimized.

2.4 Definitions:

Actual Decision Tree:

I.

2.

Pig call: a pipeline anomaly detected and recorded in the data of the
instrumented pipeline, which may or may not actually exist.
Defect: an undesirable property of a pipeline, capable of being identified and
measured by an intelligent pig.
Defect Classes*:

a. Class I corrosion pit

b. Class II: pipeline dent

¢. Class III: pipeline gouge

d. Class IV: combination of any of the above classes of defects
POD: Probability of detection
POLX: Probability of identification of a given class of defect.

* Class I defects (corrosion) are the only defect types capable of being predicted, given
that the defect is not detected by the pig.

Ideal Decision Tree**:

I.
2.

POF: Probability that the detected defect actually exists.
POM: Probability of missing an existing defect

** The ideal decision tree will not be used at this time for the real-time
probability of failure calculation. The ideal decision tree requires data that does
not yet exist.

15



Yes -
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Pig C;II‘? e

Figure 2.4.1:
Ideal Decision [-POD

Tree

Call 1s a Defect.

POD

Pig Call?

No Defect Detected

Defect Detected
POF

 False Positive(no defect) .

I-POF
No Defect Exists

i-POM
Defect Missed
(false negative)

POM

Class |

: Class il

Q_}ass I
POLY

POLI

© . Class ITI

POLIH

POLIV

Class [ (predicted).-

POLI
Class 11
| POLII
Class 11T
| POLIIN
Class TV
POLIV

Class T (predicted-See Appendix D)

1-POD

Figure 2.4.2: Actual Decision Tree
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3. Summary of Current Pipeline Requalification Practice

3.1 ASME B31-G, 1991

The ASME B31-G manual is to be used for the purpose of providing guideline information
to the pipeline designer/owner/ operator with regard to the remaining steength of corroded
pipehnes. As stated in the ASME B31-G operating manual, there are several limitations to
ASME B31-G, including:

»  The pipeline steels must be classified as carbon steels or high strength low alloy
steels;

» The manual applies only to defects in the body of the pipeline which have smooth
contours and cause low stress concentration;

+ The procedure should not be used to evaluate the remaining strength of corroded
girth or longitadinal welds or related heat affected zones, defects caused by
mechanical damage, such as gouges and grooves, and defects introduced during pipe
or plate manufacrure;

» The criteria for corroded pipe to remain m-service are based on the ability of the
pipe to maintain structural integrity under internal pressure; and

»  The manual does not predict leaks or rupture failures. (ASME, 1991}

The ‘safe’” maximum pressure (I7) for the corroded area is defined as:

2(d)
l_g ;i Lm )
P=1.1P / for A=.893{ ==
Lt

-
1_2{ 4
] 3 AT +1

/

Where:

Lm = measured longitudinal extent of the corroded area, inches

D = nomunal outside diameter of the pipe, inches

t = nominal wall thickness of the pipe, inches

d = measured depth of the corroded area

P = the greater of either the established MAQP of P = SMYS*2t*F/D
(F 1s the design factor, usually equal to .72)

3.2 Det Norske Veritas (DNV) RP-F101, Corroded Pipelines, 1999

DNV RP-F101 provides recommended practice for assessing pipelines containing corrosion,
Recommendations are given for assessing corrosion defects subjected to internal pressure
loading and internal pressure loading combining with longitudinal compressive stresses.
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DNV RP-F101 allows for a range of defects to be assessed, including:

. Internal corrosion m the base material;

. External corrosion in the base material;

» Corrosion in seam welds;

. Ceorroston in girth welds;

. Colonies of mnteracting corrosion defects; and
. Metal loss due to grind repairs.

Fuclustons to DNV RP-F101 include:

= Matenals other than carbon linepipe steel;

» Linepipe grades inn excess of X80;

»  Cyclic loading;

e Sharp defects (cracks);

» Combined corrosion and cracking;

+  Combined corrosion and mechanical damage;

+  Metalloss defects due to mechanical damage (gouges);

+ Fabrication defects in welds; and

o Defect depths greater than §5% of the original wall thickness.

DNV RP-F101 has several defect assessment equations. The majority of the equations use
pardal safety factors that are based on code calibration and are defined for three different
rehabilicy levels. The partial safety facrors account for uncertainties in pressure, material
properties, quality, tolerances in the pipe manufacturing process and the sizing accuracy of
the corrosion defect. The three reliability levels are: (1) safety class normal defined as oi}
and gas pipelines isolated from human activity; (2) safety class high defined as risers and
parts of the pipelines close to platforms or in areas with frequent activity; and (3) safety class
low defined as water pipelines.

There are several assessment equations that give an allowable corroded pipe pressure.
Equation 3.2 gives I” for longitudinal corrosion defect, internal pressure only. Equation 3.3
gives P’ for longitudinal corrosion defect, internal pressure and superimposed longitudinal
compressive stresses, Equation 3.4 gives a P’ for citcumferential corrosion defects, internal
pressure and superimposed longitudinal compressive stresses. Section Four of the manual
provides assessments for interacting defects. Section Five assesses defects of complex
shape.

[t is important to note that the DNV RP-F101 guidelines are based on a database of more
than seventy burst tests on pipes containing machined corrosion defects and a database of
linepipe material propertes. (DNV, 1999}

3.3 RAM PIPE Formulation (U.C. Berkeley)

RAM PIPE developed a burst equation for a corroded pipeline as:
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32-¢,,-SMYS 24-¢  -SMTS
Poi =D SCF, D, - SCF,
Where:
{,om = nomumal pipe wall thickness

D, = mean pipeline diameter (ID-t)
SMYS = Specified Minimum Yield Strength of pipeline steel
SCF,. = Stress Concentration Factor for corrosion features, defined by:

SCF, =1+2-(d/R)

The stress concentration factor is the ratio of maximum hoop stress over nominal hoop
stress due to a notch of depth d in the pipeline cross section that has a mean radius
R=(.5*D-.5%t)

(Bea, Xu, 1999)
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4. RAM Background

4.1 Reliability and Quality

Reliability (Ps) is the Iikelihood or probability that the structure system will perform
acceptability. The probability of failure (Pf) is the likelihood that the structure system
will not perform acceptably (Pf= 1 - Ps).

Reliability can be characterized with demands (S) and capacities (R). When the demand
exceeds the capacity, then the structure system fails. The demands and capacities can be
variable and uncertain.

Quality is defined as freedom from unanticipated defects. Quality is fitness for purpose.
Quality 1s meeting the requirements of those who won, operate, design, construct, and
regulate structure systems. These requirements include those of serviceability, safety,
compatibility, and durability.

(1) Serviceability 1s suitability for the proposed purposes, i.e. functionality.
Serviceability is intended to guarantee the use of the structure system for the agreed
purpose and under the agreed conditions of use.

(2} Safety i1s the freedom from excessive danger to human life, the environment, and
property damage. Safety is the state of being free of undesirable and hazardous
sifuations.

(3) Compatibility is also the ability of the structure system to meet economic, time, and
aesthetic requirements.

(4} Durability assures that serviceability, safety, and environmental compatibility are

maintained during the intended life of the structure system. Durability is freedom
from unanticipated maintenance problems and costs.

4.2 Probability of Success and Failure

The probability or likelihood that the structure system will survive the demand is defined
as the reliability:

Ps=P{R>8)
where P is read as the probability that the capacity (R) exceeds the demand (S). Ps is the

probability of success, or reliability.
The probability of failure (Pf) is the compliment of the reliability:
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Pf=1-PsorPf=P(R<S)

The probability of failure can be occurred in any four-quality attributes of the system to
lead the system to fail.

The cumulative probability distribution function for the resistance can be expressed as:
Fr(s)=P (R <)

where Fg (s) 1s read as the probability that the resistance, R, is equal to or less than a
given value of the demand, s.
The probability density function for the loading can be expressed as:

5(S)=p(s<S<s+As)

where p (S) 1s read as the probability that the loading is a particular value, S, in the
nterval from s to s + As.
Then, assuming independent demands and capacities:

Pf =% Fr{s] f5[S] As
In analytical terms, the reliability can be computed from:
Ps=@ (B)

where @ () 1s the standard Normal distribution cumulative probability of the variants, {.
B is commonly termed the Safety Index.

Given Lognormally distributed {these terms refer to the analytical model that describe the
probability distribution of the parameter) independent demands (S) and capacities (R), &
is computed as follows:

po BRID RIS

- 2 2 i 2
\/G-hh? + T A Thrs

Given Normally distributed independent demands and capacities, B is computed as
follows:

in(R~9)
A
VO Oy

4.3 Central Tendency and Variability Measures

R and R are the median and mean capacities of the structure system, respectively, S and §
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are the median and mean demands in the structure system, respectively.
The mean of a variable, X, can be computed from n values of the variable, X, as follows:

x=3x%

I3

For Normally distributed variables, the mean, mode, and median are all the same values
(symmetrical distribution). For Lognormally, distributed variables, the mean, mode, and
median generally are all different values. A Lognormal distribution is a Normal
distribution of the logarithms of a variable.
A Normal distribution will result from the addition of a large number of random
variables. A Lognormal distribution will result from the multiplication of a large number
of random variables,
In the case of Lognormally distributed variables, the mean, X, is related to the median, X,
by:

X =X exp (0.5 oix’)

where G, is the standard deviation of the logarithm of the capacities. oy, is the standard
deviation of the logarithm of the demands. o.rs is the standard deviation of the
logarithms of the demands and capacities.

Coefficient of variation for Lognormal distribution, Vx, can be expressed as follows:
Ty = \/iﬁ(l +Vx") or Fx =+exp”™ ~1

For Vx < 0.3, o = VX

4.4 Uncertainties

Uncertainties associated with structure loadings and capacities will be organized in two
categories. The first category of uncertainty is identified as natural or inherent
randomness (Type [ uncertainty). Example of Type I uncertainty associated with loadings
are the annual maximum wave height, earthquake ground acceleration, or ice impact
kinetic energy that will be experienced by a structure at a given location during a given
period of time in the future. Examples of Type I uncertainty associated with capacities
are the yield strengths of steel, tensile strength of copper, and shear strength of any
material.

A second category of uncertainty is identified as unnatural, cognitive, parameter,
measurement, or modeling uncertainty (Type II uncertainty). This type of uncertainty
applies to deterministic, but unknown value of parameters; to modeling uncertainty; and
to the actual state of the system. Example of Type II uncertainty in loadings are the
uncertainties in computed wind, wave and current, earthquake, and ice conditions and
forces that are due to imperfections in analytical models. Examples of Type II uncertainty
in capacities is the difference between the nominal yield strength of steel and the mean or
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median yield strength of the steel, and between the true buckling capacity of a column
and that determined from an Euler buckling column formulation.
In this development, Type [ uncertainty is characterized with two parameters:

(1) Central tendency measures of the parameter of concern, X (median, X, and mean X)
and
(2) Dispersion measure of X, (coefficient of variation, Vx, stendard deviation, &)

Type H uncertainty is characterized with two parameters:

(1) Central tendency measures of the Bias, B (median, B, mean, B) and,
{2} Dispersion measure of the Bias, the coefficient of variation, Vi

Bias is defined as the ratio of the true or actual value of a parameter to the predicted
(design, nominal) value of the parameter:

True or Measured Value

- Predcited or Nominal Value

4.5 Time Considerations

The time period that often is used to define the probability characteristics of the loadings
and capacities is one year. If the capacity were changing as a function of time, for
example, due to fatigue degradation of the strength, then Pf could be determined for
discrete time intervals recognizing the change in the capacity, and the Pfis summed over
the total exposure period (L).

Relating the annual risk, Pf,, to the lifetime risk, P, is simple if each vear is considered
a statistically independent event (no correlation of trials from year to vear). In this case,
for a lifetime of L years:

PfL =1 - (1 - Pf;’i)i
For small Pf,, this gives:

Pfy =L Pf,

However, there is correlation of risk from year to year due to statistical dependence
through several important variables in Pf including the structure resistance, some of its
loadings (e.g. dead loadings), and some of the sources of uncertainty (e.g. methods of
analysis). Many of the variables are independent of the natural randomness associated
with such occurrences as storms or earthquakes, and may be considered constant during
the Tifetime. If one takes the other extreme assumption, and considers perfect dependence
or correlation from vear to year, then:

Pf; =Pf,
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4.6 Evaluation of Variability and Correlations

To evaluate the variabilities of the demands and capacities from the components of the
demands and capacities that contribute uncertairities, one can use the algebra of Normal
Functions. This approach is equivalent to a first order - second moment (FOSM) method
to propagate the central tendencies and uncertainties of multiple parameters. This
approach is based on a first order Taylor Series expansion of the distribution
characteristics and then retention of only the first two terms of the expansion.

For the addition or subtraction of two random variables, (X £ Y) = z, the mean (same as
mode and median) of the resultant distribution can be calculated as follows:

Z=X+Y

The standard deviation of the resultant distribution can be calculated as follows:

[ 2 2
o, =50, +0, tlpc,o,
p is the correlation coefficient between the two variables X and Y.

For the multiphication of two random variables, {XY) = Z, the mean of the resultant
distribution can be calculated as follows:

Z=XY + p oxCy

The standard deviation of the resultant distribution can be calculated as follows:

- aarps 2 2 Iys2
o, = XYL+ p )V, +V, + (V)

When the random vartable X and Y can be considered independent (p = 0), and Vx and
Vy are small (V<<1}, then:

zz Ve + V)

For the division of two random variables, (X/Y) = Z, the mean of the resultant
distribution can be calculated as follows:

Z=X/Y

The standard deviation of the resultant distribution can be calculated as follows:

o, = (X ITWV Vi =2p(0 . F,)
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When the random variable X and Y can be considered independent (p = 0), and Vx and
Vy are small (V<<1), then:

Vzs V3 +V)

To determine the product of two variables when one of the variables is raised to a power
e (Z=XY*:

Z=X(Y)"+poxoy

and

o, = XYY U+ )V, +VE+ (VI

When the random variable X and Y can be considered independent (p = 0}, and Vx and
Vy are small (V<<1), then:

Vo= V! +(&V, )

The correlation coefficient, p, expresses how strongly two variables, X and Y, are related
to each other. It measures the strength of association between the magnitudes of two
variables. The correlation coefficient ranges between positive and negative unity (-1 <p
<1).

If p =1, they are perfectly correlated, so that knowing X allows one to make perfect
predictions of Y. If p = 0, they have no correlation, or are independent, so that the
occurrence of X has no affects on the occurrence of Y and the magnitude of X is not
related to the magnitude of Y.

The correlation coefficient can be computed from data in which the results of n samples
of X and Y are developed:

_ 2 XY - nXY
VEX2-nX2)(EY2-nY¥2)

yo,

There can be correlations between demands and capacities. As the demands changes, the
capacities can change. Increasing loadings resulting in decreasing capacities are an
example of negative correlation in the demand and capacity.

Fro the case of Lognormally distributed correlated demands and capacities, p is
computed as follows:

- In(R/5)

- 2 2
\/UlnR + G-lnS - zpalnRG{nS
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B) POD estimation approaches from twe different industries and
Qualitative description of POD for MLF

1. Modeling POD: Qualitative analysis from the aerospace industry

1.1 Benefits of modeling POD

Aside with the experimental approach for getting POD, modeling is developing to
become a useful approach for POD estimation.

The advantage of using models is that parametric studies of performance can be made
with relative ease and little expense. Typically, work would be performed that varied a
parameter (such as scan rate, defect orientation, threshold setting) fo obtain consistent
estimates of their effect on POD and PFL. This then allows a considered optimization of
the inspection to be performed with regard to costs and benefits. A second very important
advantage of model calculations is that there are very little experimental data on false-
calls PFT and the model is usually the only source of data for them. Modeling also allows
assessment of historical data, optimization at the design stage and allows valuable
experimental data to be extended to new applications. Given the poor statistics and large
scatter in many POD trials it is arguable whether these provide more accurate values than
a modeling or simulation approach.

POD/PFI

 dofaot size msreasing

PF1

ety
i,
e

Defect size =

Fig 1.1: Defect size POD and PIF curves

26



1.2 Approaches to modeling of POD

There are many established models for inspection techniques which can estimate the
signal associated with individual defects in a component, for example AEA Technology's
ultrasonic ray tracing model RAYTRAIM. It is only recently that models have evolved
which include the additional factors (noise, geometry, defect visibility and human
factors) needed to make effective predictions of POD. The approaches presently available
to make predictions of POD take one of several forms and can be summarized as follows:

Physical models for POD and PFI

Signal/Noise models

Image classification models/ Inspection simulators ("Visual' POD, 'Spot
the Ball")

Expert judgment

Statistical models (Curve-fitting)

Human reliability models

o o 0

1.3 Current status

1.3.1Physical POD Models

Physical models for POD and PFI provide data through a physical model of the
inspection process, including background noise and criteria for defect detection. During
the last 5 years a suite of models has been developed within the National NDT Center for
predicting inspection reliability in terms of probability of detection POD and false calls
(PFI). These models use established and well-validated physical models as their basis but
also include variable factors such as noise, geometry, and defect visibility and detection
criteria necessary to make predictions in reliability terms. All models run on a standard
PC in real time and cover a range of inspection methods including ultrasonic (pulse-echo
and time-of-flight), radiography and magnetic techniques. Customized models have been
developed for specific applications including validation of a procedure for detection of
complex weld defects, inspection of steel railway line, composite materials, and
inspection of conerete structures. The models allow analysis of image-based data,
produce simulated images and allow correction for human and environmental effects. The
estimates of POD combine estimates of signals expected from specific defects and
transducers, estimates of background noise and a 'threshold criterion'. The simulation of
defects is being constantly improved based on the analysis of 'real defect’ data from
operating plant.
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Fig 1.3.1: Probabilistic explanations of PFI and POD

1.3.2 Signal/Noise models

These convert signal and noise values to POD and PFI using statistical methods. The
signal and noise values can be derived from models or experiment, for example
measurements on samples with reference defects. The approach in calculating POD is
similar to the physical models above. This method avoids the statistical difficulties
associated with conventional POD trials and allows predictions to be made for new
inspection techniques that may be too complex to physically model. This approach has
been used for many years in the USA acrospace industry. A modular approach can be
adopted, with input data to the POD model derived from a physical model or experiment..

1.3.3 Image classification models/ Inspection

These represent methods for analysis of image-based inspection data such as radiographs,
to give information in terms of POD and PFI. Inspection simulators are a special class of
computer model that simulates the inspection process by presenting simulated inspection
results to the operator. Interpretation of image-based data is more difficult and requires a
more complex detection criteria than analysis of signal/moise data above. The detection
criterion may be simply exceeding a threshold signal level at a number of locations, over
a number of pixels or over a specified area or more closely configured to actual
inspection system operation. There is now a neural-network based approach for detection
of defects in image-based technique. This uses receptive fields to search for and enhance
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specific defect types such as cracks porosity or slag inclusions and more closely
reproduces the human interpretative skills of the mspector.

POD model

Caloulated

POD, PFE

SIMULATED
IMAGE

Simulated POD trial

Pigure 1.3.2 : Schematic iiiﬁé'iﬁ;a"fidg the basis of a POD model and the use of simulated imégés for
POD trials o aid in the validation of model predictions. ('Visual PODY, 'Spot-the-ball contest’).

The production of simulated images and inspection data is an important feature in POD
models. The images give confidence that the simulation and POD estimates are
reasonable. The programmers can present a series of simulated images to the inspector
like a 'spot the ball’ contest, essentially simulating a POD trial (Figure 1.3.3). The POD
and PFI is automatically calculated, we call this "Visual POD'. This provides a second
independent method for the model to estimate POD and comparison can provide
information on human reliability. A similar simulation method was used in the PISC 111
program on human reliability.

1.3.4 Expert Judgment

Expert judgment has been used where input on POD is required for fracture mechanics or
risk-based assessments and is not available from experiment. Provided the judgment
comes from trained inspectors and sensitivity analysis is used this can be an effective
method. The National NDT Center maintains a computer database of POD information
(PODDATA), which can be used to aid such judgments.
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1.3.5 Statistical models

These use methods for statistical analysis or curve fitting to experimental data, with the
aim of making this data accessible for use in other applications (such as fracture
mechanics). These do not model the inspection process as such.

1.3.6 Human reliability models

These take account of the effects of human error in the inspection process, and correct
predicted POD values for these effects. An example is the methodology applied by AEA
Technology to utilize human error data from the PISC Il work discussed later.

1.3.7 POD Models for Aerospace

A major POD modeling contract is underway by AEA Technology, National NDT Center
for the European Space Agency ESA (ESTEC Contract 12228/96). This commenced in
February 1997 and has 20 Month duration. Models are being developed to predict POD
and PF1 for composite aerospace components and validated by experimental trials. Two
specific NDT techniques are included: ultrasonic C-scan and X-radiography. In addition a
'technique-independent’ model, based on the signal/noise approach above, will allow
POD predictions to be made from image-based or signal-noise data for evolving
techniques such as transient thermography. All models will produce simulated images,
which can be used in place of real samples for POD trials and provide an independent
route ('Visual POD) for verification of the model POD predictions. It is anticipated the
models will lead to improvements in the quality and understanding of aerospace NDT
and could be adapted to other materials and structures,

1.3.8 Examples of Model Application: Parametric Studies

The specific application of a POD model to examine the effect of a single parameter is
Hlustrated in Figure 1.4.1. This shows the effect on POD for ultrasonic inspection of
defect orientation; allowing a crack to be mis-orientated by up to +/-15. Such data would
be complex to determine by experiment. Figure 2.5.5 shows the effects of varying
inspection threshold and defect size on the POD for radiographic inspection calculated
using model XPOSE, in this case plotted in terms of an ROC curve. Figure 6 shows an
example-simulated radiograph and corresponding predicted POD and PFI curves. XPOSE
sets up the mspection 1n the same way as a radiographer, and then produces simulated
radiographs as well as POD and PFI predictions. The resulting POD values may be
compared to the visual perception of the defect in the radiograph. Standard defects
include voids, porosity, inclusions, lack of fusion defects and cracks. The simulated
radiograph also shows the series of Image Quality Indicator (IQI) lines used as reference
in the inspection as in routine radiographic work.
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1.4 Examples of Model Application

1.4.1 Parametric Studies

The specific application of a POD model to examine the effect of a single parameter is
illustrated i Figure 1.4.1 .

This shows the effect on POD for ultrasonic inspection of defect orientation; allowing a
crack to be mis-orientated by up to +/-15 (. Such data would be complex to determine by
experiment. Figure 1.4.2. shows the effects of varying inspection threshold and defect
size on the POD for radiographic inspection calculated using a model, in this case plotted
in terms of an ROC curve. Figure 1.4.3 shows an example-simulated radiograph and
corresponding predicted POD and PFI curves. The model sets up the inspection in the
same way as a radiographer, and then produces simulated radiographs as well as POD
and PFI predictions. The resulting POD values may be compared to the visual perception
of the defect in the radiograph. Standard defects include voids, porosity, inclusions, lack
of fusion defects and cracks. The simulated radiograph also shows the series of Image
Quality Indicator (1QI) lines used as reference in the inspection as in routine radiographic
work.

1.4.2 Comparison of Techniques

Figure 1.4.1. consider inspection for a surface crack-like defect in 25mm steel plate mis-
orientated by up to 10 (and compares the use of time-of-flight diffraction (TOFD), pulse-
echo ultrasonic and radiography. As the defect is tilted away from normal radiography
and conventional UT become progressively less suited, whereas TOFD, which is
dependent on diffraction from the defect tips, remains effective. This is illustrated by the
calculated POD's. These model predictions are almost identical to experimental POD.
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Figure 1.4.3: Comparison of technigues: POD model
calculations for inspection for mis-orientated cracks in

“25mm plate,

1.5 Correction for Human Factors

Inspection reliability is clearly quite complex to model and must include consideration of

procedure, material, human and environmental

factors. Human factors have recently been

shown to be very important and dependent on a large number of factors such as fatigue,

environment, stress and complexity of the task.

We distinguish between tasks involving

the 'eye’ and ' hand-eye coordination'. It is unlikely that a theoretical model of this will be
developed in the near future. However, experimental data is being amassed in a number
of fields including NDT. The physical models described above give a 'theoretical' or
'physically achievable' POD, allowing variation in parameters such as defect orientation
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or visibility. In order to give model predictions comparable to those that would be found
in experimental trials we use a human factor curve as a multiplier H for models based on
the physics and engineering of an inspection.

PODactual = POD model * H

The simplest correction uses a constant multiplier (or POD reduction factor), typically
95% or lower for more severe environments. A better correction method uses curves such
as the data for human error expressed in terms of POD in Figure 1.4.3. This recognizes
that the effects of human error are greater for small defects close to threshoid. In this case
the human error POD is used as the multiplier H.

A general equation was suggested in which the theoretical POD was reduced to take
account of environmental effects:

POD actual = POD intrinsic - g(AP)- h(HF)

Where g(AP) and h(HF) are factors relating to the application of the technique
{environment, surface, couplant, geometry etc.) and human error respectively.
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1.6 Validation
Validation of the models is important in gaining increased acceptance for their use. The

validation needs should be considered in the context of the application. For example, in
probabilistic fracture mechanics assessments or economic assessments sensitivity studies
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are often included and therefore upper and lower bound data may be used in place of
absolute values. Second, much scatter can arise in experimental POD trials: therefore
model calculations only need to be similarly accurate to offer a realistic alternative.
To validate existing POD models we have used the following approaches:

o0 o

O

Comparison with experimental POD data.
Parametric studies
Compare simulated images with actual images (e.g radiographs)

Use simulated images in POD trials ("Visual POD').

Where comparison with experiment is possible, reasonable agreement has been found
between model calculations and experiment and parametric variations observed in
experimental data are reproduced by models. One such comparison is given in Figure 1.6
and for the TOFD model similar comparisons have been given. For precisely defined
mput data model POD curves are generally sharper than experiment, but more realistic
curves are obtained if randomizing factors' such as defect orientation, background,
attenuation or defect visibility are allowed to vary between practical limits found in real

components.
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2. Insight on POD of radiographic inspection methods

2.1 The Task

It is the objectives of this study to develop acceptance criteria for the mechanized and
automated ultrasonic pipeline girth weld examination systems (AUK) for use during
pipeline construction to inspect the fabrication girth welds, and to document the adequacy
of these acceptance criteria for the task in question. This is primarily done with respect to
replacing the fabrication quality control radiography, which in this case represents the
accepted concept. Later also the topic of fitness-for-purpose acceptance criteria will be
addressed.

With respect to the replacement of radiography by AUK the following items are crucial

»  AUK must do 'as good a job' as radiography in revealing significant
defects

*  AUK must not produce to many false calls, or lead to increase in repair
rates, rather a lowering, in order to provide for cost-effectiveness

* The documentation of the AUK performance must, in order to be useful,
have sufficient statistical confidence.

Nomenclature
The abbreviations used further below are:

RL: Ultrasonic reference level, corresponding to the echo from a 3 mm diameter side
drifled hole

E: Ultrasonic echo amplitude

L: Measured defect length

h: TOFD measured defect height

t: Material thickness

2.2 Acceptance Criteria

In the examples shown slight modifications of the acceptance criteria of the DNV
pipeline rules were used. In addition, acceptance criteria based on simulated TOFD
measured heights' to replace the echo amplitude criteria of the DNV rules were applied.
The applied rejection criteria, in a simplified version, are;

' Assuming no mean error in measurement and a standard deviation of 1.3 mm based on
other research work,
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» Amplitude

Radiography Ultrasonics” based TOFD based
E>RL- 12dB
and

L>f max.2 Smm L <t/2: E>RL+4dRB h > dmm

L < t: IW degree Red or Brown’ t2<L<t: E>RL-2dB h>2mm

Evaluation as crack L>t: E>RI-6dB h>1mm

® For surface defects, There are slightly other length eriteria for embedded defects and thick plate (> 25 mm
thickness).

; Retlecting also the rejection of spherical cavities or inclusions of 3 mm diameter or more.

2.3 Probability of Detection Curves

To describe the ability of an NDE (non-destructive examination) technique to reveal
defects, POD” curves, or POD values for groups of defects, can be used and compared
utilizing the Elementary Detection Criteria of the Nordtest comparison and replacement
guidelines. The diagrams contain maximum likelihood regression POD curves (thick
lines) with lower one-sided 95% confidence limit (thin lines), and for the reference
radiography curve also the regression values minus 0.1 as used for the Nordtest criteria
(thick chopped lines). All curves give POD as function of defect height, which is

regarded the most predominant defect severity parameter.
* POD is here also used a synonym for Probability of Rejection: The NDE system Including the acceptance
criteria used can be regarded a 'black box' either detecting a defect, or not.

2.4 Comments

Figs. 2.4.1. and 2.4.2. show grouped POD observation data with fitted curves. Fig2.4.1.
Contains all the radiographic data contained in the Nordtest Programme, whereas Fig.
2.4.2. only contains approximately 150 randomly selected observations. In the latter case,
the lower 95% confidence limit is just above the fitted mean curve minus 0.1, and the
NordtestElementary Detection Criteria still fulfilled for the Reference Technique. Fig,
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2.4.2. thus gives an indication of the number of observations required to fulfill the
criteria.

Figs. 2.4.3. And 2.4.4. Give comparative curves for a mixture of all encountered defect
types and, the pipeline girth weld important defect type, lack of fusion. The echo
amplitude criteria can be regarded satisfactory for all defect heights, whereas the TOFD
acceptance criteria are satisfied according to the Nordtest requirements above defect
height 2 mm, corresponding to the radiography 0.5 POD. This must also be regarded
satisfactory. In addition, it can be noted that the TOFD curves are steeper than the echo
amplitude based curves. This is of course due to the better correlation between TOFD
measured defect height and true defect height, than between echo amplitude and height,
and mmplies a better quality examination work with TOFD, as less small and more large
defects are revealed (please keep though in mind that the TOFD POD data are a
simulation). The total (small and large defects) detection / rejection rate for TOFD is 45%
compared to 46% for radiography.

Fig. 2.4.5. Shows the inadequacy of the set acceptance criteria for ultrasonic for porosity.
In order fo reveal pores with ultrasound higher sensitivities than those used must be
applied: At 30 mm distance a spherical cavity of 4 mm 0 gives an echo 11 dB below that
of a 3 mm 0 side drilled hole, etc. One way to handle this problem is to do an evaluation
of the severity of pores (and similar for siag inclusions), and possibly accept relaxed
acceptance criteria compared to those for radiography, or use special ultrasonic pattern
recognition techniques to map porosity.

Figs. 2.4.6. And 2.4.7. Compare POD curves for lack of fusion in different thickness
groups (average wall thickness 13 and 28 mm), and show that the ultrasonic echo
amplitude criteria are not adequate for the thinner material.

Fig. 2.4.8. Shows the failure of the set ultrasonic echo amplitude acceptance criteria for
lack of fusion of less length than wall thickness. Some caution is, however, required,
when making this observation: The used acceptance criteria for radiography allow lack of
fusion of length below wall thickness, and the detections made are due either to
misinterpretation of defect type or length, or the evaluation as IIW degrees Red or Brown
incorporated in the acceptance criteria. There is, however, as further analysis shows, a
POD defect length dependency, and an evaluation of this length dependency is required,
when lengths are not ‘naturally’ distributed, or defect significance is also length
dependent, as when plastic collapse is the most relevant defect mechanism related to the
girth weld defects. Further, a distinction may have to be made between surface and
embedded defects.
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Figure 2.4.1: Different defect types Radiography Minus 0.1 R Curve Number of
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Figure 2.4.2: Different defect types Radiography Minus 0.1 R Curve Number of
Defects: 153 Number of Observations: 3414
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Ultrasonic TOFD: Time of flight diffraction Minus 0.1 R Curve
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2.5 Fitness-for-Purpose Acceptance Criteria

The significance of defects can in general be assessed by fracture mechanics or large
scale / wide plate tests, and is dependent on defect parameters like type, size and location,
and on non-defect related parameters like stress, environmental factors and material
properties. The severity of pipeline girth weld defects is determined from a number of
factors and will be different for different application areas: Internal pressure and
variations, laying forces, recling forces, free spans and vibration, accidental loads,
corrosion and erosion initiation, etc. For pipelines, absolute criteria are often based on
critical defect sizes for plastic collapse, which are defect length, height, and wall
thickness dependent.

Formulating NDE acceptance criteria for a fitness-for-purpose assessment is a much
more difficult task than for quality control. In principle every individual defect, or
combination of defects, which might lead to an unacceptable condition of a construction,
or a high probability for this, should be revealed. In order to formulate acceptance criteria
it will be necessary to take into account defect severity, for instance in the form of
probability of failure as function of defect severity parameters, anticipated defect
distributions, or distribution forms, - and the anticipated number of defects. A
formulation might be based on the reliability updating achieved through NDE results. In
order to compensate for the unreliability inherent in many NDE methods, this might, for a
number of applications, lead to acceptance criteria close to those for traditional quality
control,

Ideally, a fitness-for-purpose approach should not be made by evaluating a single NDE
indication. NDE should first be performed, the defect contents then assessed based on the
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NDE results, and acceptance or rejection of a construction as a whole (or defined part
thereof) made from the combined severity of all defects present. Corrective actions as
required should then be implemented. There is, however cases, for which this approach is
not practical. One such important case is during offshore pipe lying, where time is short
between welding and lowering of the pipe into the sea. A decision on acceptance or not
of each weld has to be made within a short time window. An assessment of a pipeline as
a whole is precluded. To meet this situation a special formulation of (discrete) defect or
single weld based acceptance criteria has to be made reflecting the overall integrity of a
pipeline.

3. Qualitative description of POD for MLF
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3.1 Probability Calculations
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3.2 Probability Calculations (POD)

The probability that o flaew of eiven size v s detectad:
PO Y

aPOD

PRI

ey

b POx s =

X

Fhe probabity of detectne o Mo of size betvaon v and ¥+ iy is

POD Xy piy by

The prabability of hav i s usdetected Qaw of size batween v and v+ oy s

H- POD ] oy

After MU the modified probability density of the reduced ensemble
Zixy = A - PODxi] pixy

a-tormadization

Py =

H

45



3.3 Probability Distributions
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Fig 3.3.1: Probability density distribution of flaw size before and after NDT
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3.4 Noise-Limited POD
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3.5 False Alarms versus Missed Flaws
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III) Derivation of in-line instrumentation uncertainties.

Note: While in this section we were aiming at introducing accurate assessments and
values for uncertainties from a specific vendor (Rosen) and to interpret them, the vendor
could not supply us at the moment with the required data. The presented information
come from published literatures.

1. Location Accuracy

Most MFL vendors report that their tools provide location accuracies to within 3 to
7 feet or within 0.1 to 0.3 percent of the distance from the nearest reference point.
Inspection tools determine the location of an indication by odometer measurements
from known reference points. So, the location accuracy of a tool depends on both
the accuracy of the odometer and the location of the reference points.

One pipeline operator recently reported using magnetic reference markers points
every 1.5 miles along a pipeline route. A 1.5-mile spacing and a 0.1 percent
maccuracy give an expected location accuracy of within 4 feet midway between
the markers. There are few reports of location accuracy for actual MFL tools. An
advanced tool vendor reported that 97 percent of indications were located within 5
feet of the actual condition.

Accurate pipeline drawings with detailed locations of valves, branch connections,
and other pipeline features help improve location accuracy. By setting reference
points (for example, magnetic markers) each mile or less, an inspection vendor can
tailor the location accuracy of its tool to a required value. On lines with many
clearly defined reference points, these accuracies can approach several inches.

No significant theoretical restrictions exist on location accuracy other than
odometer inaccuracy. Odometer inaccuracies result wear and slip of the wheels.

2. Detection Thresholds

In general, the amplitude of a flux leakage field is related to the volume of metal
loss. Therefore, the threshold of detection or minimum detectable metal-loss region
for MFL tools is related to the length, width, and depth of the region,

Several reports have been published giving thresholds of detection for MFL tools.
For conventional tools, vendors state that the smallest detectable corrosion pits
have depths between 15 and 20 percent of the wall thickness. Similarly, the
smallest detectable pits have lengths and widths that are 80 percent of the wall
thickness. For advanced tools, the smallest detectable corrosion pits are reported to
be 20 to 40 percent deep for one vendor and 20 to 70 percent deep for another. The
20 percent depth refers to corrosion patches with a length and width equal to three
times the pipe wall thickness; the 40 to 70 percent depths refer to pits that are one-
third smaller.

49



Theoretically, the detection threshold should be a function of the flux leakage
amplitude compared to the noise and background signal level. Typical pipeline
steels have background noise levels of about 3 gauss, but the noise can be as high
as 15 to 20 gauss.

Detection thresholds depend on the signal-to-noise ratio. A small 10 percent deep
defect produces a signal that is larger than typical noise levels, but a smali 3
percent defect produces a signal that is lost in the noise. So, detection thresholds of
10 percent are attainable for most pipeline steels. Lower thresholds are only
possible in quiet steels, and larger thresholds are likely in noisier steels.

3. Probability of Detection

Most conventional tool vendors do not publicly show information on expected
probabilities of detection levels. These data are considered proprietary. When
published, a single probability of detection value or confidence level is generally
given, rather than both.

One advanced tool vendor reports a confidence level of 80 percent for metal-loss
anomalies with a length or width greater than the wall thickness of the pipe. This
confidence level includes false calls as well as missed defects. So, the actual
confidence level on detection may be higher. Several advanced tool vendors report
confidence levels that depend on the size of the metal-loss region; one vendor
gives a 40 percent confidence level for a region with a length or width equal to the
wall thickness and 95 to 99 percent for a region that is three times larger.

In one published report for an advanced tool, a pipeline operator reported on the
results of a trial where a tool was run through a line with 79 metal-loss defects.
These metal-loss regions consisted of corrosion pits ranging in depth from 14 to 61
percent deep and corrosion patches from 11 to 52 percent deep. All metal-loss
regions were detected, and no false calls were reported. An advanced tool vendor
also reported on a program where 33 indications were investigated. All of the
indications reported by the tool existed, and there were no false indications.

Theoretically, the probability of detection should be set by the magnitude and
spreaci of leakage signals compared to the background signals. If the leakage field
is well above the noise and background level, the probability of detection should
be near 100 percent. At or near the noise and background level, the probability of
detection should drop significantly.

An important consideration in determining the probability of detection during an
actual inspection is the presence of "blind spots" or areas where the pipe is not
inspected. Blind spots can occur due to excessive speed, sensors bumping off the
pipe wall, deposits inside the pipe, sensor failures, electronic failures, and the
capabilities of the inspection log analyst or analysis program. Depending on the
capabilities of a tool, the presence of blind spots can strongly impact the true
probability of detection.
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4 Characterization of Metal-loss Defects

Once a defect is detected, its signal must be analyzed to determine the defect's
potential effect on the operation pipeline. Because there is not a simple and direct
transformation between flux leakage and defect geometry, many methods have
been developed to interpret MFL signals and characterize the geometry of defects.
These methods include template matching, statistical methods, and neural
networks. Each method has had varying degrees of success, and each has its own
strengths and weaknesses.

The development of a characterization method using statistical methods illustrates

the many of issues associated with characterization functions. The most commonly
used method of analyzing MFL signals is to make inferences or calculations based
on features of the signals.

To determine realistic estimates of the capability of such methods, classical
mathematical modeling techniques were used to develop characterization
algorithms. First, features of signal, such as peak amplitude, signal duration and
sensors responding, were extracted from the recorded flux leakage response. Then
statistical methods were used to establish characterization and compensation
algorithms.

5. Depth Accuracy

Some inspection tool vendors report defects by categories or ranges of depth or
severity. Severe or "Class 3" defects often have an estimated depth greater than 50
percent of the wall thickness. Moderate or "Class 2" defects have depths between
25 and 50 percent or 30 to 50 percent. Light or "Class 1" defects have depths up to
25 percent or from 15 to 30 percent. When accuracies on the classes are reported,
they are typically reported to be within 10 percent of the wall thickness.

Other tool vendors report an estimated depth, rather than a broad classification of
severity. The reported accuracies are typically =10 percent of the wall thickness
with a confidence level of 80 percent. For some advanced tools, software is used to
mvert the measured signals, providing a contour map of the signal amplitude.
These contour maps may be calibrated to be proportional to the defect depth. The
mversion process often uses the same basic amplitude-depth relationships used for
conventional-tool analyses.

The statistical analyses performed for the gas institute suggests that depth accuracy of 8
percent of the wall thickness (with 95 percent confidence) is ultimately possible for
elliptical defects less than 50% deep. However, an accuracy this high could not be
obtained. Accurate depth estimation is possible only when the analyses are appropriately
compensated for other geometry variables. The best accuracy obtained in the analyses is
+19 percent (for a 50 percent deep defect and with 95 percent confidence). Most of the
error is likely due to the width estimation procedure used in the analyses, although it is
not clear that better methods exist.
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The statistical analyses suggest that defect parameters, such as the width-to-length ratio,
are particularly important when estimating depth. If depth predictions are made on
amplitude alone - that is, if these other parameters are not taken into account - the
accuracy plummets. The magnitude of depth estimation error increases with increasing
defect depth. Depth estimation can be improved by compensation for inspection
variables, but the impact of inspection variable compensation is small compared to
geometry compensation for the range of variables considered in this study.

Confidence levels are particularly important in defining accuracies. At lower confidence
levels (e.g., 80 percent, a commonly reported confidence level), the accuracy appears
much greater. A 95-percent confidence level implies that 19 out 20 defects (95 percent)
are reported within the tolerance given. An 80-percent confidence level implies that 16
out of 20 defects are correctly reported.
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Fig 1: distribution of predicted depth vs actual depth for different depths
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6. Width Accuracy

Width is not commonly reported by inspection vendors, and when it is, it is typically
based on the width of the recorded MFL si gnal. Most, or all, inspection vendors do not
report accuracy of their width estimates. Because width-to-length ratio significantly
affects the ability to predict depth, accurate width estimates are important.

The statistical analysis performed in this project suggests that width accuracy of £1.5 to 2
inches (with 95 percent confidence) is possible for defects with widths from 1 to 6 inches.
Accuracies as low as =2 to 4 inches are likely with unsophisticated analysis procedures.
As with depth estimation, errors in width estimation are due primarily to defect geometry
(and/or permanent local pipe conditions).
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Fig 2: distribution of predicted width vs actual width for different widths
7. Length Accuracy

The length of individual defects is commonly reported by inspection vendors. Reported
accuracies are typically with 0.25 to 0.3 inch with no claim on confidence level.

The statistical analysis performed in this project suggests that individual defect length can
be estimated quite well without compensation for other features. In fact, an individual
defect's length seems to be the geometry characteristic most accurately estimated, at least
for individual defects. Methods were developed that provided length estimation errors of
approximately +/- 1 inch (25.4 mm) with 95% confidence. Improvements come at the
cost of defect detection capability.
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The errors in length estimation are due primarily to defect geometry (and/or permanent
local pipe conditions) and random error, with the two factors switching relative
importance with increasing length. Almost no unexplained length variability is
attributable to inspection conditions. The defect geometry effects are especially important
when multiple defects are in close proximity to each other. While not explicitly evaluated
in this study, the accuracy with which the length of individual defects in close proximity
to others is expected to be low.
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Fig 3: distribution of predicted length vs actual length for different lengths

8. Comments
8.1 Current Detection Capabilities

MFL can detect metal-loss defects in pipelines with good confidence, but operational
considerations restrict its use in some pipelines. These restrictions are not limitations of
MFL per se. Rather they result from physical constraints such as reduced port valves, or
normal variations in operating conditions such as product flow speed. Most metal-loss
regions produce a measurable flux leakage that is detectable with typical MFL tools, even
for small imperfections that do net threaten the structural integrity of a pipeline.

For very shallow, long, or narrow metal-loss regions, the MFL signal can become hard to

detect. Extremely narrow defects (for example, electric resistance seam weld corrosion or
stress-corrosion cracks) do not produce measurable signals in typical MFL systems. Also,
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background noise levels and variations in tool speed and remaining magnetization impact
the detection threshold. These operational variations occur, for example, after the MFL
tool exits a bend or restriction, at which time the tool speed can be quite high.

8.1 Current Detection Capabilities

Metal-loss defects can generally be detected with MFL tools, but characterization
accuracy is also important. Analyses to determine the maximum safe operating pressure
of a pipeline require information on the depth, length, and shape of metal-loss regions. As
a result, characterization accuracy plays a strong role in an MFL tool's ability to provide
results that can be used to estimate maximum safe operating pressures.

The ability of an MFL tool to characterize the depth, shape, and length of a metal-loss
region depends on the size of the sensors and the sophistication of the data analysis
system. Conventional MFL tools have a limited potential for characterizing defects
because they typically use large sensors and manual (noncomputerized) analysis systems.
Advanced or high-resolution MFL tools, with small sensors and computerized analysis
systems, have the potential for more accurate characterization.

The characterization accuracy of most MFL tools is highly variable. Most vendors report
sufficiently high accuracy on depth and length predictions of individual defects to make
accurate serviceability calculations. However the confidence level of the measurement
can mean a significant number of defects will not be properly characterized. For example,
many vendors state a depth accuracy of + 10 percent of wall thickness and a length
accuracy of = 0.5 inches (12mm) with a confidence of 80 percent. That is one out of
every 5 defects will be characterized incorrectly. This lack of confidence is due to the
inherent problems associated with the prediction of defect geometry.

Complex shapes, long and narrow grooves, multiple pits, and mspection variables present
analysis problems for either the inspector or computer analyzing the log. As aresult, it is
difficult for pipeline operators to estimate the maximum safe operating pressure of a
pipeline on the basis of current MFL inspection reports. For groups of defects or defects
within other defects, it is not likely that an accurate ranking of defect severity can be
made using present technology. Improved characterization accuracy of MFL tools would
allow pipeline operators to better understand the likely severity of reported anomalies.
However, there will be an ultimate limit to characterization accuracy.

High characterization accuracy is not always needed. The required accuracy depends on
the goal of the inspection and on the number of indications found. On lines with few
indications, high characterization accuracy may not be needed if all indications are
independently investigated. Conversely, where access to the line is difficult and on lines
with many indications, characterization accuracy may be far more important, especially
in critical areas. In addition, the required characterization accuracy depends on the depths
of the metal-loss regions found. naccuracies in estimating the remaining wall thickness
directly impact the estimated severity of a metal-loss anomaly. For deep metal-loss
regions, errors in depth strongly affect calculated severity for defects. For shallow
regions, errors in depth are less important.
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1V) Probability of failure calculations

This section i1s mainly covered by the development of the excel program. I will present
some information on how the program works (logical algorithm). Please refer to the
appendix a for the user guidelines and to chapter V1) of the report for an example.

The user will enter information about width and length. The user has to input real values
of width and length given a certain pig measurement. For ex: given a width measurement
of 2t (2*thickness) from the pig, the median real width is 1.9t for example with a 10%
coefticient of variation, and given a width measurement of 2.5t (increments of 0.5t for
width and length), the real median width is 2.6t with 15% coefficient of variation. (the
median real width and coefficient of variations are obtained from statistics done by pig
vendors on their tools. The same thing is asked for Length of the defect. This will allow
the program to correct for uncertainties related with pig measurements. So if the user will
later enter a measured defect width value of 2.2t, the program will corrected by
interpolating it between the “real” interval of 1.9t (associated with a measurement of 2t),
and 2.6t (associated with a measurement of 2.5t). Also interpolation is done for the
coefficient of variation.

Based on values of width and length, a defect is than classified to be a pitting defect,
general pitting, circumferential grooving and axial grooving. For each of these categories,
the user is asked to enter information about the POD (cumulative probability of a
detected defect does exists given a pig call), the median defect depth and its coefficient of
variations for different intervals of defect depth d (same principle of width calibration
explained above). Thus the program will identify a defect (pitting...) and than interpolate
to get the median actual value of the defect depth as well as the coefficient of variation
and the POD.

Having corrected all measurement errors for width, depth and depth, and given that the
user 1is asked to input pipe information (diameter, thickness, SMYS.. .), the program will
use the corrected measurements to calculate the burst pressure for the three models
(RAM, B31G, and DNV). Please refer to Chapter II (literature review), section 3 for
more information about these models. It should be noted that for the B31G model, the
program uses the factor of safety of 0.72 as specified by the model. Some analyst
however might choose to ignore the factor of safety for analysis purposes (not design).

After calculating the burst pressures, and since the user is asked to input demand
information as well as biases on both demand and capacities, the program calculates the
probability of failure of the detected defects assuming a lognormal distribution for all
parameters. The probability of failure for the detected defects will be equal to:
Pf=POD*Pf of detected defect +(1-POD) Pf (statistics).

Pf statistics comes from the following:

In fact in order to assess the probability of failure of sections where no detection occurs,
The program offers to approaches:
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First, it does a statistics on the detected defects and uses the median values of width,
tength and depth and their respective coefficients of variations for burst pressure
calculations. Than the probability of failure is calculated based on lognormal assumptions
for the parameters.(pf statistics)

Second, the user is also asked to enter median expected depth, width and length from
corrosion models. The program than calculate the Pf based on these values and that is
called (Pf prediction)

The user i1s advised to use the most conservative value from: Pf statistics and Pf
prediction.
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V) Testing corrected models with a real example

A) Inputting data

The developed program was tested using data form line 25 inspection. (Appendix c¢)
The program assumes lognormal distribution for all parameters.

The following information’s about demand, capacity. Pipeline characteristics and
material strength were provided for the line 25: (tables 1,2 &3)

Pipeline Characteristics (median values Steel Material _St_:r_gngths (median values)

Median Blas [Type if 1
10% 1 0%

Median Bias V% | Median Bias V% | Median Bias -
1 34% 1.52] 36% 1.48; 57%
Tables 1,2 &3: Pipeline information.

While detailed use of the spreadsheets is explained in the users guidelines (appendix a),
we will go step by step inputting data is this example in order to illustrate the proper use
of this program.

All colored cells represent cells were data need to be inputted. All these cells are present
in “sheet 17" of the excel program, which is the user spreadsheets. The rest are for
calculations.

Since no valuable information regarding pig measurement uncertainties was provided, we
assumed for this example that the pig is accurate (measured defects = real defects and no
variations). This also implies that there is no distinction between the different types of
defects (pitting, grooving) in term of detection accuracy, or POD (cumulative probability
of detection/ pig call), and anyway such information was not provided. So POD was
assumed to be 1, meaning that given a call, the call is right and the defect exists. (Tables
4 &5}, and measured defect depth, width and length are equal to real depth, width and
length.. (tables 4,5, & 6 )

Table 6 also shows where to input field data from pig inspection (pig location, defect size
in term of depth, width and length as a percentage of nominal wall thickness).

59



Measured Real data for Genera!l pitting Real data for Pitting defect
d {(X*t) POD Mediand Vd{fraction) Vic{fraction) POD Mediand Vd(fraction) Vic(fraction)

Real data for Axial Grooving Real data for Circumferential grooving
POD mediand Vd(fraction) Vic(fraction) POD mediand Vd(fraction)  Vtc(fraction)

oo oo s oo oo

Tables 4 and 5: POD and measurements uncertainties information’s.
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Pig data
Feature characteristics
W (X*) median W V(W) L (X*t) i Y Depth(X*t) wi

Table 6: Width and length corrections as well as pig data
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Uncorroded Pipe data provided in tables 1,2 &3 are than inputted in corresponding cells
in tables 7, 8 and 9. Those data are about median initial wall thickness (in) , material
properties(ksi), initial diameter(in) and their respective coefficients of variations.
Pressure data are also to be inputted and the program allows the user to input the median
pressure (ks1) and its coefficient of variation for any location along the pipeline (in the
example, a median pressure of 5.186 ksi was inputted with 10% coefficient of variation
for all locations).

Capacity and demand biases and their variations are to be inputted (tables 8 and 9) for the
three prediction models: RAM, B31G and DNV

Pipe data Pressure data
t nominal(in) SMYS {ksi} SMTS(ksh diameter D(in)
Median V{fracnon) %\dedlan V(frac’aon} Medtan V(fractlen) Medran V(f;‘act:on) Med;i ian {ks;)V(fraction)

Table 7
Capacity bias
RAM B31G DNV
Median vV~ Median V ~ Median VvV
LA T034 0 1820 038 148 7 057
Demand bias
RAM B31G DNV
Median g Median V Medan OV

Tabk:s 8 and 9 Demand.and capamty bi&SGS.h.” ..

Finally, based on the age of the pipelines, and with the use of appropriate corrosion
prediction model (the one used in this example is described in appendix d), enter the
expected median corrosion depth and coefficient of variation (table 10). These values will
be used to assess the probability of failure of the sections of the pipeline where no defects
were detected. This program also allows assessing the probability of failure of the
sections of the pipeline where no defects were detected by the use of a statistics on the
detected defects and apply them where no defects are detected. Values from the statistics
and the prediction are to be compared, and the most appropriate or conservative value is
advised to be used.
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Median d(in) V

Tabic.i(}. EXpected. corrosion depth, width and length.
B) Test Results

Test results from the program for line 25 were consistence with results from the POP
report. It should be noted however, that the values might be slightly “shifted down” due
to the use of slightly different pipe information (SMVYS...) and no biases were included in
the burst pressure (Pb) calculations, but were included in the Pf calculations.

Fig shows the burst pressure predictions for the detected defects from the three models.
They match with those from the POP report. B31G appear low because of the use of the
safety factor of 0.72 in the program.

Fig 2 shows Ram prediction of Pb for the detected defects, and non-detected defects. The
non-detected effects Pb comes either from statistics (Pb stat), or form prediction (Pb
predictions). The prediction values for Pb from Ram appear o be more conservatives.

Burst pressure

Pb {Ksi)

0 2000 4060 6000 8000 10000
Lengthinft

Fig 1: Detected defects burst pressures from the three models
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Fig 3 and 4 show respectively B31G and DNV predictions for Pb of detected and non-
detected defects. While it appears that B31G and DNV have relatively “high” Pb
predictions from the non detected defects compare to RAM, this is mainly due to the fact
that RAM Pb predictions decrease quickly for low values of the defect depth d, while
B31G and DNV Pb predictions are almost insensitive for low defect depth. As we now,
from the line 25 data, the median defect depth falls in the low range (around 0.1 inches)
explaining this behavior (Fig 5 and 6)
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F1g 2: Ram estimates of Pb for the detected defects, and non-detected defects.
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Fig 3: B31G estimates of Pb for the detected defects, and non-detected defects.
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Fig 4: DNV estimates of Pb for the detected defects, and non-detected defects.
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Fig 5: DNV trends of Pb change with different defect depth. (Other parameters fixed)
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Fig 6: RAM trends of Pb change with different defect depth, (Other parameters fixed)

Pf calculations confirm the Pb calculations: the mode! estimating the lowest Pb (B31G)
gave the highest probability of failure (fig 7). The large significant difference between the
Pf from statistics and the pf from predictions for DNV although the Pb are almost equal is
due to the differences in coefficients of variations.
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Fig 7: Pf of detected defects from the three models.
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Fig 8: RAM Pf for detected and non-detected defects.
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Fig 9: B31G Pf for detected and non-detected defects.
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Fig 10: DNV Pf for detected and non-detected defects.
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V1) Final analysis
A) Analysis
The consistent results of the test (section V) confirm that the program is “functional”.

The program integrates most of the rescarched factors that affect the reliability of
pipelines. It also presents a useful tool to calculate the probability of failure with different
models and for all sections of the pipeline (detected and non-detected defected). The
approach used in this research to assess the effects of the probabilities of detection/ non-
detection is a unique approach and among the very few for pipelines in-line inspection
tools.

However, and in order to account for all the parameters, lot of complexities have been
added to the program to integrate the many aspects researched to affect the reliability of
the pipelines which render it slightly complicated for both users and programmers,
especially that it has been developed using excel. This complexity could be avoided by
doing a parametric study to “filter” the important parameters that considerably affect the
probability of failure in order to simplify the task for both users and programmers.

Other researches should complement this work whether on the technical aspect or on
other parallel aspects. In order to build on this research, which T believe is a very strong
start, which might lead to very important outcomes, I suggest the following:

B} Recommendations:
To improve the developed program:

s Perform a parametric study to select the most “useful” information that affect the
most the reliability of the pipelines

* Based on the outcomes of the parametric study, modify program to only account
for those factors qualified impotents by the parametric study in order to make the
program more user and programmer friendly.

s  Work on the “format” of the program by the use of a more advanced
programming tool/language, which will simplify the algorithms and the user
“feedback™.

* A close cooperation between a professional programmer and the developer of this
excel program is highly recommended for proper communication of algorithms
used and technical information’s the professional programmer does not usually
have.
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» This program has lots of potentials to be developed and implemented by large
industries.
* Account for uncertainties related to pig location along the pipeline.

To improve the technical aspects:

Develop and research more corrosion rates models.

Correct corrosion models by the use of more statistics.

Work to understand and incorporate better the different forms of corrosions.
Develop more accurate information on POD and detections uncertainties.

To account for important complementary aspects:

¢ Analyze the effects of human and organizational factors on pipelines integrity and
reliability. Large errors might occur from processing pig data information.

* Implement models to plan inspection policies, and link it to cost of inspections
and cost of failures,

* Use corrosion models to predict the inspection policies and when to carry them.

»  Corrected the corrosion models after every inspection with field data and reiterate
to get new inspection policies.

V1I) Conclusion

This research presented a large variety of subjects of importance to pipelines integrity
and rehability. It presented some of the various models used to assess the burst pressures
of pipelines and iltustrates their use, and revealed their relative accuracies and hiases. It
also provided information on probability of detection/ non-detection for in-line
instrumentation pigs, and their relative uncertainties. The topic of corrosion rates was
also addressed, and concepts of probability theory and pipeline reliability were
introduced.

The current report, with the development of the excel program, integrate most of the
aspects of the topics covered during this research project. Some aspects however still
need to be further researched and than integrated for reliability calculations.

Finally, we believe that this research project is a strong foundation toward many
developments in the field of offshore pipelines and in-line instrumentations techniques,
and that industries can built on it to develop useful and optimal inspection policies for
purposes of risks assessments and managements of their infrastructures.
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Appendix a) User Guidelines:

All inputs are to be entered in “sheet]”of the spreadsheet. Data required to input have the
cells colored. The following data have to be inputted:

1. For the different specified feature types (General pitting, pitting defect, axial
grooving, circumferential grooving) and for different defect depth intervals
(intervals of 10% of thickness t from 0 to t) the user should enter the following:

e POD: Under columns B,F, I, N, Which is the probability of detection
given a call, in other term, the cumulative probability that given a call, the
call is true, 1.¢, a defect exist, This data should come from inspection
companies and tool vendors.

Typical values of d for a POD of 90% are:
o General defect: 0.1t.
< Pitting defect: 0.2t
o Axial Grooving: (.15t
o Circumferential Grooving: 0.151

» The median depth as a fraction of thickness t: Ranges from O to t at 0.1t
inerements. Under columns C, G, K, O. This is needed in order to correct
for measurement errors and bias between data from the pig, and the real
value of the depth of the defect. Inspection companies should have a
database on the bias and distribution of the measured depth. User has to
enter the “real” defect depths corresponding to the measured depth. Ex:
when a pig measures a defect depth of 0.1, the real median depth of the
defect is 0.11t (this is the value to be inputted).

Typical values of median measured depth vs real depth:
For a real depth of 0.2t, the measured depth is 0.22t.
For areal depth of 0.8t, the measured median depth is 0.77t.

* The coefficient of variation of the defect depth d and that of tc (tc = t-d)
remaining thickness): Under columns D, E, H, I, L, M, P, Q(The reason
behind inputting for both d and fc is to avoid truncations close to t and 0Ot
of the assumed lognormal distribution. Both are used when appropriate in
the algorithm to minimize “lost are” outside 1t.

Typical values of coefficient of variations for d are 10% for d= 0.2t and
20% for d=0.8t.

2. Input respectively for W (width) and L (length) of defects the following:
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¢ The median W or [ as a fraction of t: Under columns S (median Width)
and V (median Length) for the correction purposes explained for the
defect depth.
Typical values of L and W: 2t to 6t.
For a real value of 3t, W and L measured around 3.2t.

* The coefficient of variation of W and 1.: Under columns T and W.
Typical values: 10 to 20%.

Note: Data inputted under (1) and (2) are to be provided by pig vendors and inspection
companies, and may be a company or a tool (pig) characteristics, thus this data need to be
imputed once as long as the same tool is being used. Moreover the typical values used are
for purpose of illustration as well as to give an approximate “sense” for engineers. More
exact values are to be required as mentioned from inspection conpanies.

3. Pig Run data or feature characteristics:
s Position of the pig in the pipeline inputted in fi: under Column X,
¢ Depth. width, and length of defect in fraction of t: under columns
Y(depth), Z(width), and AA(length).
Typical values: d = 0.5t, W and L = 41.
4. Pipe data:
o Median and V (coefficient of variation) for:
o Thickness (in}: typical values of 0.3 inches and V of 10%.
(Columns AB, AQ).
SMYS (ksi): Typical values of 40 Ksi and V of 10%. (AD, AE).
SMTS (ksi): Typical values of 52 Ksi and V of 10%. (AF, AG).
Qutside Diameter D (in): Typical values of 8 inches And V of
10%. (AH, AI).

o0

O

5. Pressure data (ksi):
e Median and V: Typical values 2 ksi and V of 10%. (AJ, AK).

6. Bias:
o  Median and V for Capacity Bias:
o RAM pipe: bias (B) =1, V= 34%. (AL, AM).
o B31-G: B=1.52,V=36%. (AN, AOQ).
o DNV:B =148 V=57%. (AP,AQ).
e Median and V for Demand bias:
Not studied enough. Assumed B =1 and V = 0. (AR, AS, AT, AU, AV,
AW),

7. Predicted or expected median defect depth, width and length from corrosion
models and their respective coefficients of variations:
* Median and V for d (in): Fusiction of the age, the conditions of the
pipeline as well as the prediction model used. Under columns (BA,BB).
* Median and V for W (in): Function of the age, the conditions of the
pipeline as well as the prediction model used. Under columns (BA, BB).
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¢ Median and V for L (in); Function of the age, the conditions of the
pipeline as well as the prediction model used. Under columns (BA, BR).

Appendix b) Developed spreadsheets and calculations.
Sample Inputs:
Measured Real data for General pitting Reat data for Pitting defect

d(Xt)  POD Mediand Vd(f Vig(fraction) POD Median d Vd(fraction) Vic(fraction)

1. 1

Table 1: Inputs for POD and defect depth uncertain

ties

Real data for Axial Grooving Real data for Circumferential grooving
POD Median d | fon) Vto(fraction) POD Mediand Vd(fraction) —Vig(fraction)
oy St N

Table 2: Inputs for POD and defect depth uncertainties
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WXt) medianW VW) LX) median L. V{L} Distance (ft) Depth(
q e

2

Table 3: Inputs for width and depth corrections, and pig data about pipe

Pipe data
t nominal{in) SMYS (ksi) SMTS(ksi) diameter D{in)
median V(fraction) median V(fraction) median V(fraction) median V(fraction)
gk g i : ‘.

Table 4: Pig data
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Pressure data

(ksi)V
186

Medi

Table 5: Demand data

Capacity bias
RAM B31G DNV
Median V. Median ~ V  Median VvV
Table 0: Capacity bias

Demand bias
RAM B31G DNV
Median Vv Median VYV Meden Vv
Table 7: Demand Bias

Median d(in) v

Median Win) V.

Median L) V

Table 8: Predictions for defect depth, width, length and their correspondent coefficients
of uncertainties from corrosion models

Sample outputs:

Detected defects
Pf
RAM B31G DNV
(.332882 0.474889 0.17072
0.283048 0.474880 0.183842
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0.249622 0.474889 0.161752
0.281437 0.474889 0.168773

Table 9: detected defects Pf from the three models.

Median d{in) V
0.0975 0.56135

Median W(in) v
0.8255 0.310245

Median L{in) V
1.496 0.548877

Table 10: Statistics values for depth, width and length,
Pf

RAM B31G DNV

0.306121 0.487983 0.277938

Table 11: Non-detected defects Pf from statistics and with the three models.
Pf
RAM B31G DNV
0.374538 0.479984 0.191506

Table 12: Non-detected defects Pf from predictions and with the three models.
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Appendix ¢) Data for the report calculations.

Line 25 data.

DISTANCE MAX.
[ft.] DEPTH LEN wWiD
[%.1 [in.] fin.]

39.505 25 1.063 1.654
39.739 12 1.024 1.654
39.781 10 0.866 1.339
40,124 15 1.142 2.165
40.138 23 1.220 1.575
40.195 19 1.457 1.890
40.199 12 1.142 1.378
40.439 12 0.984 1.417
40.454 37 1.102 1.693
40.696 12 1.378 2.087
40.717 10 0.906 0.866
41.845 20 0.984 1.575
42.185 10 0.984 1.220
42.371 14 0.945 1.260
43.652 34 1.102 3.780
44.441 23 1.339 1.614
92.421 13 1.339 0.551
111.863 45 0.748 2.362

233.649
275.545 49 1.181 5.984
856.807 42 1.417 1.772
1361.224 47 1.142 2.205
1486.085 10 1.063 1.299
1569.664 14 0.433 2.520
1611.383 48 1.378 1.575
1653.234 10 1.102 1.260
2194.626 42 1.260 1.575
2320.538 38 0.945 1417
3427.530 28 0.630 1.220
4592774 13 0.806 1.181
4717.281 37 1.220 1.654
5983.869 K2 0.827 1.575
8475.969 31 0.584 1.693
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8547 481
8052.064
8506.312
8506.404
8643.035
8643.807
8643.955
8644.382
8644.598
8645.677
8647.784
8648.032
8648.291
8649.605
8675.825
8676.029
8718.087
8956.595
9168.235
9245.981
9245.998
89364.101
9364.195
9364.195

22
37
11
24
18
15
11
13
20
10
10
10
13
1
11
14
12
34
47
28
37
47
46
33
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(.591
0.748
0.709
9.709
0.472
0.551
0.581
0.512
0.709
0.906
$.906
0.651
0.787
0.433
0.394
0.827
(.0984
3.709
1.338
0.827
0.551
0.709
0.581
1.102

1.417
1.811
0.827
0.866
0.827
1.181
0.806
0.708
1.063
(.630
1.024
0.827
0.845
0.866
0.709
0.945
1.496
1.575
1.614
1.496
1.614
2.087
3.465
1.969



Appendix d) Corrosion information

Burst Pressure Analysis: Corroded Pipe
For pipeline corrosion defects not detected by the pig during its run, the level of corrosion
can be predicted using a corrosion prediction model. The internal loss of wall thickness
due to corrosion was predicted, based on a corrosion prediction model:

Loss of pipeline wall thickness due to corrosion (Bea, et.al., OTC, 1998):

t= toi T fee
Where:
t. = total loss of wall thickness
t.; = internal corrosion
t..= external corrosion

tc . :ai-vi-(stLp)
i = loss of wall thickness due to internal corrosion
o = effectiveness of the inhibitor or protection

V= gverage corrosion rate
L= average service life of the pipeline
L= life of the initial protection provided to pipeline

Internal Inhibitor Efficiency, «,
Descriptor Inhibitor Efficiency
Very Low 10

Low 8
Moderate 5
High 2
Very High 1

Table 1: Internal Inhibitor Efficiency

Expected Life of Protective System (Lp), or
Service Life of the Pipeline(Ls)

Descriptor Lp or Ls {years)
Very Short 1

Shaort 5
Moderate 10

L.ong 15
Very Long g2 >20




Table 2: Expected Life of Initial Protective System, or Service Life of Pipeline

Corrosion Rates and Variabilities
Descriptor Corrosion Rate, v |Corrosion Rate Variability
Very Low 3.94E-5 in./year 10%
Low 3.94E-4 in./year 20%
Moderate 3.94E-3 in.fyear 30%
High 03% in./year 40%
Very High 394 in/year 50%

Table 3: Corrosion Rates and Variabilities (Bea, et.al., OTC, 1998)

Pipeline Characteristics
Wall Thickness, t (inches)] 0.322
Corrosion Characteristics
internal Inhibitor Effeciency, o 5

Expected Life of Protective System, Lp (Years) 10
Service Life of Pipeline, Ls (Years) 20

Corrosion Rate, v, (Inches/Year)| 0.00394

Total Loss of Internal Wall Thickness (inches)] 0.1897

Depth of Corrosion, d (Inches)| 0.197

Loss of Wall Thickness as a Percent of Initial
Wall Thickness, (d/t}} 61%

Table 4: Sample calculation
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