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NOMENCE ATURE
o chord outside diameter {mm}
d brace outside diameter (mm)
e joint eccentricity
f, axial stress
f, pending stress (in-plane. y and out-of-plane, z)
o in-place bending stress
Too out-of-plane bending stress
F, chord material ultimate tensile strength (N/mm®)
F, chord material yield stress (N/mm?)
F () function of ()
g gap between braces for K/YT joints (mm)
g, out-of-piane gap between braces

approximate relative length for inclined brace intersection
exact relative length factor for inclined brace intersection
approximate relative section factor for inclined brace

intersection

Ky approximate in-plane relative section factor for inciined brace
intersection

Kio approximate out-of-plane relative section factor for inclined
brace intersection
length of chord between end plates (mm)

can tength of chord can, generally < L {mm)

Ly Distance between brace centreiines on chord surface

M moment (kNm)

M in-plane moment

7 M, characteristic moment at chord surface
f My characteristic in-plane moment at chord surface

Mo characteristic cut-of-plane moment at cnord surface

M, out-of-piane moment

M ultimate moment at chord surface

m mean

N population

F axial brace load

P P,.P, Py axial load
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NOMENCLATURE CONTINUED
axial load

}

characteristic
uitimate axial icad

chord stress factor

multiplier on joint capacity to account for gap

Toad and geometry factor in API and AWS

P

strenglh factor for various joint and

0.3
chord radius
brace wall thickness {(mm)
chord wall thickness (mm)
thickness of chord can (mm)
chord utilisation ratio
shear stress
g function in K,

g function in K’,

statistical constant
nondimensionalised chord length ratio
diameter ratio d/D

chord slenderness parameter D/2T
displacement

gap parameter g/D

multiplier used within (, parameter
B/sind

intersection angle

intersection angle for compression loaded brace

intersection angle for tension loaded brace

Bz06 1.0 forg<0.6

intersection angle for overlapping brace (overlapping joints)

intersection for through brace (overlapping joints)
standard deviation

thickness parameter /7

angular separation between planes of braces
in-plane bending

out-of-plare bending
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1. INTRCDUCTION

1.1 Scope

nsiders methods f@r determining the static
‘ e nd complex tubular Joints typically used in
steel gacket @ff hore s;ruﬁturﬂs

ATT known relavant data are collated in comprehe avng databases.
These inciude experimental and numerical data and cover all the
parameters which might influence Joint static st r@rgtﬁ

The databases are used to review and assess current codified
design guidance and other relevant published formulae. Both
design and reassessment aspects are addressed and where
necessary additional and/or alternative improved guidance are
proposed.

1.2 Joint Definition and Notation

Within the context of this guide, tubular joints are formed by
the intersection of non-coaxial circular brace and circular
chord members. To satisfy this criterion the cutside diameter
of the brace may not exceed the outside diameter of the chord,
and in line with industry practice the thickness of the brace
member does not generally exceed the thickness of the chord

member.

It is assumed that a simple tubular joint is an unreinforced,
non-overlapping, uniplanar welded tubular intersection. The
term "complex joint™ covers intersections with ring-stiffeners
or grout (composite) reinforcement, a casting. or where braces
are c¢verlapped or ?ﬂ?t'p?anar Configurations and detailed
definitions for various Jjoint types are given in the relevant
sections.

The geometiric notation and non—déme&sional parameters for simple
Joints are shown in Figure 1.1. SI units are used throughout
this chapter; suitable conversions are applied in restating
data from other literature.

o maintain consistency in the sign convention used. tension
loading 15 defined as positive and compression loading is
defined as negative,

1.3 Failure Modes

The mode of failure of 2 g*a»fc 'y loaded tubular joint depends
on the type of Joint, the loading conditions and the domt
geometric 7 parameters. Tests carried out on mazn}y simple
joints have identified several types of TJocal and global

failures which inciude:

Y
gt

“”‘S‘
]
o
]
-3
j '

Local failure of the
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tic failure of the chord wall in the vicinity of the

)
7y L

£

Pl
Dirac

}

L2} Cracking Teading to rupture of the brace from the chord
L3) Local buckling in compression areas of the chord
Globat fatlure of the chord:

51} Ovatisation of the chord cross section

G3)  Beam shear failure bDetween adjacent bracings.

The failure of typical joints often involves combination of the
above modes especially L1, L2, L3 and Gl which are the most
commonr.  In tension loaded joints, the chord wall around the
brace undergoes large plastic deformation and the chord cross
secfion distorts. As the load increases. a crack may initiate
in the hot spot region while the joint continues to carry higher
foads until the cracking becomes excessive and leads to gross
separation of the brace from the chord. Failure in compression
loaded joints is usually associated with buckling and/or plastic
deformation of the chord wall. Joints made of relatively thin
walled sections are particularly susceptible to local buckling.
Ovalisation of the chord occurs particularly in tension loaded
X Joints. Beam bending failure may take place in high « axially
loaded T/Y joints while beam shear failure may be critical for
%&de joints with large § ratios subjected to balanced axial
cading.

For in-plane moment Toaded joints failure typically occurs due
to fracture through the chord wall on the tension side of the
brace and piastic bending and buckling of the chord wall on the
compression side.

For out-of-plane moment Toaded Jjoints, Jocal buckling of the
chord wall near the brace saddis occurs, reducing stiffness.
Failure is usually associated with fracture on the tension side
of the brace after excessive plastic deformation.

Fajlure Criteria

Typical ‘load defocrmation curves for axially Toaded tubular
Joints are shown in Figure 1.2, Failure criteria which may be
used to cefine the static strength of tubular joints in genera’
/e5

are indicated on the curves and commonly referred to as follows:

Wy

Flastic limit

¥

Z. veformation limit

Crack initiation

o (9]

Ultimate or peak Toad.
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The elastic timit criterion s clearly inappropriate for
defining faillure, because tubular Joints have substantial
reserve capacity beyond the associated Vimit lead.  The most
internationa'ly acceptabie and widely used criterion Tor
accounting for such reserve strength and defining fatlure is the
uitimate or peax Toad. However in some cases, eg. in tensiie
loaded Joints, crack initiation may precede and possibly
influence the ultimate load. In other cases, such as in moment
Yoaded doints, an ultimate ioad may only be reached after
excessive deformation or i1 may not be reached at all within the
confines of the testing rig. Accordingly, 1t is oTten argued
that the crack initiali for deformation Vimit criteria may
be considered as valid alternatives fo the ultimate Jload
criterion as discussed below

a) Deformation 1imit

o The main arguments for the use of a deformation Himit
include:
L Absence of a peak load on the load deformaiion curve

of certain tubular joint tesis.

L Possible differences between the usable Joint
capacity within a frame and the capacity recorded in
an isolated test may become large if the latter is
associated with excessive deformation white such
deformation may never be reached during the collapse
of the frame. In addition, the second order effects
accentuated by large deformation may render the
capacity predicted in isolated tests less reliable.

The main argument against using a deformation limit is that
it might be regarded as a serviceability criterion which is
not admissible within an ultimate 1imit states concept

There is no international agreement regarding either the
magnitude or the relevance of a deformation based failure
criterion.  The best known and possibly the most widely
used deformation Timits, especially in American studies.
are those of Yura (19807

or axialiy ltcaded Joints:

-1y

2F, 1

displacement 1imit = : (H
For moment Toaded joints
gE
I R T T T 3
rotation Himit = =T —5 (72}
where | = Erace length
d = Brace digmeter
F, = Chord yieid strength
E = £lastic modulus of steel

C6060R07.21 Rev A February 1996 Page 1.3 of 1.11
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Eguafé@ﬂ 1 is based on the American
nstruction Buliging ¢esign guidance.

o 1 din 1? is assumed 3?3t a branch member
reaches 11s practica: deformetion 1imit when the strain
along 1ts entire length 4 is four t?mﬂs the yield s*rawn It
is further assumed that the comparable practical 1imit of
1ocal joint deformation at each branch end is twice the
branch yield deformation. For an individual test, the
deformation 1imit is determined by assuming a branch length
equal to thirty Limes the tranch diameter.

e xpressed in Eguation 2 iz defined as the joint
tatio responding to the angie at the end of a simply
supported beam which 13 uniformly loaded to four Times the
first yield strain. A beam Jength of thirty times the
branch diameter is used to establish the Timit (Yura,

1980).

.r‘
th
d

b)Y  Crack initiation

This failure criterion appliies primarily to tension tests
where Jjoints continue to carry loads after cracks have
initiated. and u]twmate?y fail at higher loads than those
COP”ES@GPGEHQ to first evidence of cracking. Although the
concept of using the "first crack’ Toad as joint capacity
instead of the ultimate load was first proposed in the late
seventies {Yura. 1980). it has been either accepted without
detailed evaluation or compietely dismissed as a
serviceability ¢riterion.

Seme normally overlocked aspects of the crack initiation
criterion are outlined below:

poomd

) Scale and frame dependency

The effects of scale, die. specimen absclute
dimensions, on crack initiation and propagation
between the first crack load and ultimate load. are
yet to be evaluated. In addition, the differences in
joint restraints between isolated tests and real
frames may result in the isolated joint response
being unrepresentative of frame behaviour. As a
'esult, the relevance of tension test data to the
behaviour of full sc&%e joints in frames 1s

D
weesrt.
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o}

2
o
.
3
e
"3
4
i
L
L)
by
oty
annd
s
[#43
e
4
3
[#3]
8]
.
[
0
¥
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initiation criterion s
ysé s of the fension test

database H to be infiuenced by the
inaccuracies inherent in determining and interpreting
the first evidence of cracking in the relatively Tew
tests where cracking was monitored and recorded.
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37 Interaction of first crack and uitimate Toad criteria
The crack iritiation criterion cannot he considered
a serviceability criterion, because if first crack
data and/or the relatad ultimate locad results are
dependent on scale, addressing the effects of
cracking becomes an inherent part of determining the

i

f—

Eimate strength.

bound conservative approach
th of tension loaded joints
s of cracking on uliimate
have : re rigorousiy. However, it
be noted that tests on small scale specimens suggest
that cracking does not have a significant impact on joint
behaviour until the crack has propagated through the
thickness.
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Design Approach

Codified design guidance for the assessment of the static
strength of tubular joint is generally based on cne of the two
following broad approaches:

L. Working stress design (WSD), or permissible (or allowable)
load design.

2. Load and Resistance Factor Design (LRFD), or ultimate 1imit
states or partial factor design.

The governing principle in the first approach (WSD) is that the
nominal loads should not exceed an allowabie value which is the
nominal failure Toad reduced by a safety factor. Thus a Lypical
gesign equation is of the form:

Nomingl strength

safety factor

In the second design approach (LRFD), & number of partial safety
are used to account for uncertzinties associated with load and
resistance aspects. A typical design eguation may be expressed
as foliows:

fpads

Resistance factors * Nominal strength » Sus of factared external

o

where th
G

g noand loads may be the same as in the
(WSD) approach, but each terms is
act

muitiplied by its respective

safety factor.

General Form of Strength Fguations

Examination of the design cedes and published formulae yields
the following Tist of variables which may affect the strength of
a tubular Jjoint:
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2 Brace ocutsige diameter d
3 Chord wall thickness T
4. Gap (Tor K, YT and KT joints only)

5. Included angle between chord and brace g
6. Chord length L
/. Chord material yield strength Fy

The chord and brace diameters are taken here to relate to
outside tubular dimensions. Details of the geometric notation
are given in Figure 1.1.

Additional parameters relating to geometric and material
properties affect the strength of complex joints.

the static strength for a particular load case can be expressed
in the general form

P, or M, = F(D. d. T. g, 8. F, L)

where P, and M, are ultimate axial and moment capacities
respectivety.

The effect of brace wall thickness on joint strength has been
examined by Kanatani (1966) and is shown to have 1ittle effect

on joint strength,

The number of parameters can be reduced by introducing non-
dimensiona! geometric ratios as foliows:

=2/ B=d/0 y=0/2T (=

P, or M, may therefore be expressed as:

Fla. B, v, € 8. F)).

The accepted non-dimensione! forms of the ultimate capacities P,
and M, are:
Axial loading:  PJ/F,T?

Moment loading:  M/F T
The term {F'T2> 15 Dased on a ring analeogy and can be related o
the theorefical yield strengcth of a ring model with similar
diameter, thickness and yield stress to those of the chord
(Wardenier. 1982). The term (F,T%) can also be asscciated with
the theorstical expression for "failure in the chord under the

wiils

action of a point load (Yura et al 1980).

The calculation of Joint strength s wusually based on
consideration of axial and moment load components perpendicular

C6060R07.21 Rev A February 1996 Page 1.6 of 1.11
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SIS

d axis. These are P.5Inf and M Sinf for the axial and
MCWSFL aaaé £ases ftSp&Ct;Vsé¥. Tnerefare the fo?1ewzﬁg
expressions are often considered as a basis for derivation of
joint strength.

Psing
f\'ga M Y ”—-"F . H F
Axial - —— Fla.2.v.0.8)
?\f%
: Msind s i
In-plane bending - =Pl By, (8
!
¥
. Msind
OQut-of-plane bendirg - =M B.y.C.8)
i 9]

Examination of design codes leads to the identification of other
parameters which may affect strength. These are:

K, or K', refative Jength factors

Ky, K OF Ky relative section factors

Up sometimes referred to as the geometric
modifier

In all cases these parameters are functions of § and 8 and their
validity can be tested by investigation of their applicability
1o the general eguations,

The above equaticns for joint strength are expressed using the
nominal brace load format which is adopted in the majority of
current design codes. An alternative format which was used in
earlier design codes 1s the punching shear stress format. This
is expressed in terms of the punching stress V), which is
assumed to be uniformly distributed over the ﬂurch1ng shear area
in the chord and calculated as follows:

V, =7 T sinfd

i

acting punching shear
7 = ratic of brace thickress to chord thickness

= nominal  axial.,  in- p are or  out-of-piane
bending stress in the brac

oy

Historical Development of Static Strength Equations

Gver the last three decades, tubular joint research programmes,
carried out mainiy in Japan, the USA and Europe, have provided
a large database u¥ test resy . tarly test programmes were
aimed at 3rveﬁtfﬁaf%ng the effects of parameters such as B and
¥y ratios on the strength of simple Joinis. Such  hasic
investigations Were f@;-¢wea Ly p ogra%ﬁes which targeted issues
of increasing complexity such as the influence on joint strength
of:

ri"””ﬁ

Rev A February 1996 Page 1.7 of 1.11
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. Joint configuration {e.g. 7/Y. X and K joints)

. Brace joad type (1. e. axizl compression and tension, in-
plare and out-of-plane bending)

. Chord  leading  end  wmuiti-axis  brace Joading (i.e.
comainations of axial and bending loads)

The size of test pecanﬁns also increased from reiatively smali

scate models with chord diameter around 100 mm or less to !argwr

models providing a better renresantation of the actual scale of

tubular joints.

The increasing evaliabitily of wide ranging test data enabled
empirical des' i guidance to be deveioped as lower bound, mean
or Charﬂctﬂ“iStE” capacity equations, based on different
interpretations of tfest data.  Such equations were formulated
using the punching shear stress format and/or the nominal brace
toad format (ses Section 1.6).

Up until the early 1980°s. most American and European design
codes followed the lead of the API RPZA (1969 and following
editions) and adopted the punching shear stress format. These
codes include: AWS D1.1-84 (1984), BSI BS6235 (1982). NPD (1977)
and DnV (1977).

A number of comprenensive critical reviews of the worldwide
tubular joint database were published in the period 198(-1985.
These studies resulted in & significant evolution in the
yltimate strength technology for tubular joints and initiated
dramatic changes in tubular joint design codes. The most
prominent of these reviews which are examined below include:
Yura et al (1980), Wardenier {1982), Kurobane et al (1980-1984),
UEG Design Guide (1985) and the UK Department of Energy
(DEn/HSE. 19905 . The codes which adopted the results of fhese
reviews inciude: API RPZA, the DEn/HSE Guidance Notes. CIDECT
and TIW design codes.

Yura et gl 1980

Yura el al presented, in a 1980 OTC paper. lower bound capacity
equations for the static strength assessment of simple tubular
joints using the brace nominal load approach. These equations
were based on the results of 137 static strength tests on simple
T, ¥, X and K joints. This relatively small test database was
established after screening the data available in the late
1970°s . Only joints with chord diameters greater than 140 mm
and measured material properties wers admitted.  Furthermore,
the failure load was taken as the Towest of: meximum lcad
attained during the test. first crack locad, or Toad at an
excessive deformation limit.

The equations of Yura et al were introduced as new design
equations in the 14th Bdition of ﬁﬁT RPZA ASW (19843, in which,
the brace nominagl load approach was adeg*eﬁ as an alternative o
the p“ﬁfﬁz g shear stress concept for determining the static
strength cﬁ tgcw lar joints.  The designer was allowed to use

gither of the two apafaachﬂs, wiich were intended to give
equ'va"ewi rasu?iq These changes. iniroduced in a permissible
icad format have beer ¢a1wtawnﬂé in all subsequent API RPZA-WSD
editions up to and including the Z20th Edition publishad in 1993.

Rev A February 1996 Page 1.8 of 1.11
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ko ke WSD Jﬁ?a??fs
nominal brace load
tress equations have

th

mm,,;..p

Fart B oof this guide inciudes 2 Itnorcugh review of des égﬂ
guidance and test data on the static strength of t bqaa” Jjoints.
2 set Dy Yura et al, the worldwide tfest

Following the example sel Dy
database. as in ear y 1954, was screened and a rﬂdaced database
consisting of 290 sults was established.  This total
included 223 JD?ﬂtz subjected to uni-axial brace loading, 55
Joints tested with additional chord loading and 12 Joints
subjected to muiti-axial brace loading. With regard to tests
performed under uni-axial brace Teading. only joints with chord
diameters greater than 110 mm and measured material properties
were accepted. However, unlike the approach adopted by Yura et
al for tension tests, the first crack load was considered to
correspond to a serviceability criterion and not to the ultimate
strength which was defined as the maximum icad achieved during
the test. The analysis of the UEG database enabled mean and
characteristic equations to be derived and design guidance to be
pr@posed according to limit state principles using the brace
ncminal load approach. The background to the new equations was
published earlier by Billington et al (1982).

L/‘)
ot "
"‘S

Department of Energy (DEn/HSE 19603

In the period (1985-1986), Wimpey Offshore, on behalf of the UK
Department of Energy, carried out a comprehensive data
assessment similar to that reported in the UEG Design Guide.
Test resuits available in January 1986 were screened and a
database consisting of a total of 346 test results was
established. Tnis total included 211 joints subjected to uni-
axial brace Toading, 61 Jjoints tested with additional chord
loading and 74 Joints subjected to multi- directéonaf brace
loading. The screening procedure for the uni-axial brace tests
was similar to that aﬁ@p ed in the UEG work but the minimum
acceptable chord diameter was s2t to 125 mm.  The database was
then aralysed and new static strength design formulae were
dgeveioped in a form suitable for use with Timit state design

codes., the same iines of the UEG equations. An equivalent
permissibie load approach was aiso proposed for consistency wit

3 fEne 1 wotes, The prcnesad equations

together with the ba ound aﬂa?ya?s in 1995, were

in the datest edition of the DEﬂ HSE Guidance Notes

parison of th eguations with the lower bound

ulae recommended in the 15th eéaL‘@n ot API RPZA-

und ; / s Register Of Shipping and

86, Thi oncluded that: 'The Joint

predicted using the new uzd&ncm gﬂfﬂr Tty show less

tter towith the available test results
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e tubular Jjoint tests. The analysis of this
ively large database enabled Kurcbane and his team 1o
derive mean and characteristic design eguations based on the
nominal brace load approach. The latest set of Kurobane's
equations was adopted by the IIW and CIDECT and issued by these
two organisations in their latest onshore codes (IIW, 1989 and
CIDECT, 1991).

Wardenier (1982)

Wardenier and his team, based 1in the Netherlands. also
contributed to the enlargement of the tubular joint database and
to the IIW and CIDECT design codes. Wardenier's book, entitled
‘Hollow Section Joints® (1982}, is an important contribution to
tubular joint technology. It includes a comprehensive critical
review and analysis of all data on the static strength of
tubular Joints in addition to detailed comparisons of various
design equations which were available in the early Eighties.
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Figure 1.2 Typical load-deformation curves for axially loaded joints
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METHODS FOR DETERMINING STATIC STRENGTH

Current design guidance for the static strengthn of tubular joints is
almost entirely based on experimental data obitained from model tests on
steel specimens. The main reason for this dependence on the experimental
approach has been the inability of numerical methods in the 1970s and
eariy 1980s to compete with laboratory model testing in terms of both
reltability and cost effectiveness. However, this condition has started
Lo change in favour of numerical methods in genera; and the rnonlinear
finite element technigue in particular since the mid 1980s. Such 4 change
as become possible dus to the increasing availability of powerfu]
omputers at affordable costs and to the success of both numerical
ralysts and software developers in refining and optimising the underlying
anaiytical and numerical theories and their practical implementation.

The following sections highlight the parameters which might influence the
accuracy and reievance of static strength data obtained using either
experimental or numerical methods. Recommendations on conducting static
strength investigations, interpretation of data and reporting of the

resuits are also given.

2.1 Experimental Methods (steel models)

This section examines laboratory based techniques for assessing
the static strength of tubular joints. Particular emphasis is
placed on fidentifying the key factars which affect tha
re1i?bi¥éty and relevance of the data generated from steel
models.

In the early days of the offshore industry, model tests using
steel specimens provided the only practical means to study the
static strength of tubular joints. Since then steel model tests
nave continued to be regarded as the most trusted source for
reliable data. However, practical considerations have often
driven researchers to scale down steel specimens in order to
reduce the size and cost of both specimens and testing rigs. In
addition there has been considerable variation in testing
technique betwsen different studies which alongside the scale
effect and other factors may have led o inaccuracies and
inconsistencies in the results.

The following guidelines for conducting tests, interpretation of
data and reporting of results are recommended:

a)  Lpecimen gecmeiry
. Subject to the Vimitations of Jjacks and reaction
frames, th noul 1

2 M g arge as possible.
Although  the minimum  acceptable” chord  sizes
associated with some Eurcpean and American databases
are debatable. the inaccuracies and anomalies
attributed to small scale specimens, eg. with D <
00mm, are e ikely to occur with Jarger
specimens.
rt from absolute size considerations, geometric
; u1d rigorously cobserved for all
N ot the specimen.

[T e B o

ot
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meas ured rather than nomina? dimensions shouid

Actual
be used in data interpretation.

D) Specimen material and manufacture

. The model should be Ccrsiﬂuzted from Qtep? having
stress-strain properties similar 1o those of fj@?“ﬁT
offsnore material

. The static tensile properties of both the chord and
brace(s) should be measured. These are more relevant
than the dynamic properties because joint tests are
conducted in a guasi-static manner. However, since
only the dynamic tensile properties of most availabie
test data are known and in order to maintain
consistency 1in the static strength database, the
dynamic tensite properties of both the chord and
braces shouid also be measured.

. As a minimum the chord and brace(s) yield and
ultimate tensile strength should be reported for all
Jjoints. The brace yieid properties are particularly
important for assessing brace failure. Ideally the
measured  full  stress-strain  curves should be
reported. In addition, measurements should be made
using several coupons which, 1in the case of
Tongitudinal tensile specimens, should be taken
arguné the circumference, at least for fabricated
tubes.

. The model should be fabricated to standard offshore
procedures, which are different to those for onshore
construction (eg. with regard to overlapping joints).
Weld sizes shouid be scaled down appropriately to the
model thickness. However oversized weld fillets on
smail scale steel joints may be unavoidable without
grinding. In order to allow the effects of
fabrication procedures inciuding the welding process
and weld size to be assessed. these should be
documented fully

Specimen ioading and restraint

@]
g

There is 1ittle consensus amongst parties invoived in both
hv testing and analysis of tutu1ar joints regarding which
CMoers $?vu d be supported in o Joints with muitiple
mcﬂger:, and Zh boundary cond? 411ans {ie. fixed or pinned)
to be adopted for the supported members. In the absence of
other ﬁ“*@@lﬂvﬂa zze supported members should be ¢chosen to
rwg?@c@ the Q”?ﬁﬂ ipal loadpaths through the joint when in
nosition on the stru t@r . Section (Z.2.5) on effects of
boundary canéétéanﬁ and chord length on predictions from
féni*e element aaaﬁvgg provides data which are equally
relevant to model test

CT)
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d)  Reporting of joint deformation and failure modes

. Observed failure modes and Toad deformation curves
including points a ich physical changes like
cracking or buckling occur, should be reported for
all specimens.  The criteria used to determine
failure (ag. first peak or deformation 1imit) must be
statec

. If fail cracking, the method used fo
detect nomust be documented.  The
extent ron during the test should be
record 5 pessible and reported.

Numerical Methods

The most successful and probebly the most promising numerical
tool for the static strength assessment of tubular joints is the
finite element method. General purpose finite element packages
which can handie both material and geometric nonlinearities and
which contain large libraries of sophisticated finite elements
have become increasingly availabl2. This. is in line with
decreasing hardware and computing costs has produced a rapid
growth in the use of noniinear numerical methods. As a result,
a Jlarge number of recent investigations and appilications,
associated with tubular joint static capacity, have relied on
the finite element technique. In several instances, it has been
proven that the fimte element bas ﬂd numerical approach can
match the accuracy of the experimental approach while offering
the investigator several additional advantages which include:

* The ability of the finite element technique to handle
complex joints of any geometricai shape. under any type of
loading or restraints.

L] The flexibility that the technique offers in terms of
allowing the effects of any parameter to be evaluated
independently wbevher it is rmiatmd to a geometrical or a
material Qr”n@rby As a result, systematic parametric
studies can be conducted at relatively modest costs.

. Uriike Tlaboratory w*;re pafamet@r such  as
displacements aﬁd st 3y be recorded at Timited
sampiing ;ﬂS@t ons wit o for cbtaining additicnal
data once the model s festss a finite element analvsis
can provide comprehensive data on any variable at almost
any part of the Joint.

However, alongside its advantages, the Tinite element technique

has & number of Timitations nciuding:

nas o make
el cant eoffects on
e anatysis. The most
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501
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Tor gaining an?J:”LQ in

and extension is stitl

finite element packages.
resiits

of analyses involving
toaded Joints, difficult

background information on development of the finite

alement method with regard to tubular joints is given in Chapter

4, Section Z.2. In the

7ol lowing

sections, general

recommendations on performing and interpreting nonlinear finite
elemant analyses of tubular Joints are provided. Detailed
reviews and evaluations of numerical results from various
tubular Jjoint studies are reported alongside the relevant
experimental test data later in this chapter.

2.2.1 Choice of element tvpe and weld modelling

A Targe number of different element formulations are available
which may be used for the analysis of tubular joints. The most
appropriate of these are curved thin and thick shell elements

and three-dimensional solid elements,
efficient for modeltling the bending of
to medel the complete tubular joint.
analyses where only

However,
the tube mid-surface is modelled, the weld

Shell elements are very
shells and are often used
in sheil element

geometry at the intersection region cannot be represented

As a result. the weid

accurately. 1
for exampie, a

or approximated Dy,

influence is either ignored

single row of elements

diagonally linking the brace and chord as shown in Figure 2.1

(van der Vegte, 1991)

1rberse 10n rag on buL awe ge eral
for shell 1
elements are used *C“ mode EE%&G the ¢
cost of the analiysis can inc

C6060R07.21 Rev A February 1996

improved modelling in the
inferior to shell elements
three-dimensional solid
céﬂte tubular Jdoint, the
tially. An efficient
ﬂﬂzs to represent the
E slements to model the
Gwaf@r uniess adequate
nell element interface or
element compatibility.
2 and Wilmshurst, 1993).
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* Ouadratic elements (eg. & noded shells and 20 noded bricks)
provide more accurate mo d@‘ﬁﬁﬁg than Tinear elements (eg.
4 noded shells and B noded bricks).

. Thick shell element models and three-dimensional solid
element models predict stiffer joint responses and higher
capacities than thin shell element models.

L In shell element models, accounting for the weld, using
either approximate shell representation or more accurate
three dimensional modelling. generally results in higher
capacitias than 1f the weld is omitted.

. In modelling p=1.0 joint configurations using shell
elements, Ponsaderat1ors sho d%d be given to realistic
representation of the brace/chord intersection at the
saddle allowing for weld cut back. The effect 1is
p&rtwﬁuiarEy important for an X joint where, in practice,
a physical gap exists between the opposite brace weld toes,
whereas the tneoretical interseciion of the brace and chord
centrelines at the chord & ntal plane of symmetry does
not create 2 gap. 1t may €= refore be appropriate to adopt
a smaller brace diameter (eg. equal to the nominal brace
diameter minus the brace thickness) to gﬁve af va%qe clase
to bui not egual to unity. ther
gap.

Model validation and use

CD:“

ce of any finite

*

el iz dmportant to
apprecia uch vatidation. If
a ceriain T Lo operTorm W in predicting the
uitimate strength for a specific 3@iﬁt geometry and loading
type, this does n sarily justify the assumption that the
model Yy W gaﬂﬂf gegmetries or
ipadi failure location may
chang metries and/or different
Toa care must be exercised
whe s outside the range of
the
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Seametric nonlinearity and large sirains

Since the deformation of a tubular Joint at high ioad levels s
often sufficiently large to modify the response of the Joint to
additional loading, geometric nonlinearities must be accounted
far in the analysis,

In general, tubular joints fail at relatively small strain
Tevels. Trerefore consideration of large strains is ng
normally essential

Material nonlinearity

Appropriate representation of the material properties must be
included in the analysis inciuding the yield strength, rate of
strain hardening and the ultimate tensile strength. Whilst
properties of fne chord are the most relevant in Cetermining
joint capacity. assigning realistic properties to the brace is
essential for predicting premature brace failure. Otherwise the
brace properiies can be manipulated in order to ensure joint
failure. Static tensile properties are more relevant than the
corresponding dynamic properties especialiy for comparison with
joint tests because these are conducted in a quasi-static manner
(see Section 2.1.1). True stress-strain tensile data are more
relevant than nominal engineering stress-strain data.  The
former can be estimated from the latter, assuming that the
vol$m@ remains constant during uniform plastic elongation, as
follows:

It

g, =30, (1 + ¢,
€ =LN (1 +¢,)

where ¢, and 0, are the true and nominal stresses respectively,
while €, and ¢, are the corresponding true and nominal strains

respectively.

Although material properties are technically ortnotropic,
adopting isotropic mode!ling has generally proven adequate.

Boundary conditions and chord length

Depending on joint geometry, joint type and loading conditions,
the boundary conditions and chord length adopted in the analysis
of a tubular joint can have significant effects on the predicted
capacity. Although such effects have been highlighted by recent
finite element studies which provide valuable data, the dats are
generaliy Yimited and in some cases inconciusive.

Boundary conditions and chord length effects arise from several
causes which include:

. tocality of the chord end plates which affect chord
ovalisation, A short chord with stiff end plates

suppresses ovaiisation and causes higher capacity, eg. in
anaiyses of T/Y and DT/X joints.
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2.2.6

2.2.

]

. In doin ard e
length of the chord between its support points and the
applied boundary congitions fixed or pirned) affect
the overall chord in-plare Dear bending. Joint failure is
more 1ikely to cccur in axially Toaded nigh £ T/Y joints if
the chord 15 short with fully fixed ends, wnile with longer
pin-ended chords Joint failure may be preceded by overall
chord failure (van der Valk, 1988}

» The capacity of K Liected to balanced axial
1oading may be aff the loading and boundary
conditions (B Parameters which c¢an

influence the ty include:

- Whether one or both chord ends are supported

- Whether one or both braces are supported or loaded

- Brace in-plane rotational restraints

- wnether the direction of the applied Toad remains
colinear with the brace axis in analyses ailowing in-
plane brace rotation.

Loading and solution strategy

In single brace joints., 1t is recommended to use dispiacement
control or the arc length algorithm. These are more efficient
than load control and, in cases where the load-deformation curve
reaches a peak, they allow the post-peak response to be
predicted. In multibrace Jjoints where displacements of the
braces in relation to each other are not known in advance, the
arc length algorithm may be the only feasible technique to

predict post-peak behaviour,

Note: In the arc length ailgorithm, the Toading is assumed
to be proportional, that 1s all the load magnitudes
vary with a single scalar parameter. The basis of
the method 1s to use the load magnitude as an
additional unknown ang to control the increments
taken along the iocad-displiacement response curve.

Evaluaticon of results and interpretation of failure modes
Unlike a tlaboratory te N of fatlure can be
readily observed. extensiv oc of the results from
a finite element ana ysis i 47 er to interpret thg
model  response such an evaluation serves two essential
DUrposes:
1) Ensuring that the anaiysis 1is acceptable in that the
intended input parameters, such as ipading and boundary

conditions, have

been prescribed  accurately (by the
analysi) and executed satisfactor

actorily {by the program).
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BOMEL 20

3. STATIC STRENGTH OF SIMPLE JUINTS

3.1 Introduction

A deteiled evaluation of the static strength design of simple
tubuiar Joints is presented in this section. Principal design
codes and recently published non-codified formulae are reviewed
n Sections 3.2 and 3.3, respectively. The newly constructed
BOMEL simple tubular joint database, used to evaluate key design
codes and published formulae s described in Section 3.4
Results of this evaiuation study are reported Tully in Section
3.5. Finally. conclusions and recommendations are summarised in
Section 3.6.

3.2 Review of Existing Design Codes

3.2.1 General

several design codes are currently available to aid the designer
in assessing the static strength of tubular connections. Some
are aimed specifically for use in offshore structures (eg. API,
MSE), while others are produced primarily for onshore
constructions (eg. CIDECT). This section outlines key features
of a number of principal design codes, describes the basic
format of their strength equations. and highlights differences
between the codes with respect tc these strength equations.

the codes considered in this section can be split into two broad
categories depending on their design format. The first category
includes codes which are based on working stress design (WSD) or
permissible (allowable) design formats. For simplicity. these
are referred to hereafter as WSD codes. They include:

WSD: AP RPZA-WSD (1993)
ARS (1994)
DnV (1993)
HSE (1990)

The second category incliudes codes which are based on locad and
resistance factor design (LRFD), ultimate Timit states or
partial factor design formats. For simplicity, these are
referred to hereaffer as LRFD codes. They include:

LRFD: APL RP2A-LRFD (1993}
AAS (1994)
CIDECT (1991
CSA (19923
DV (1993)
NPD (1990)

The API, AWS and DnV codes are listed under both categories
because they provide design guidance based on WSD and LRFD
formats, allowing the designer to adopt either of the design
approaches .

C606QR07.21 Rev A February 1996 Fage 3.1 of 3.101
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For the purposes of this section the following nomenclature
pertaining to joint strength in either WSD or LRFD formet nas
been adopted.

4SE Codes
= allowable axial strength (includes a global safety facter)

allowable bending strength (includes a global safety
factor)

Py
M

]

LEFD Codes

Py = Tactored axial design strength (includes partial safety
factors)

M = factored bending design strength (includes partial safety
factors)

For joint strength to be adequate, the following should be
satisfied:

In WSD codes: P, = nominal applied loading.

In LRFD codes: P, = factored loading (ie. including partial
safety factors for dead, environmental and
1ive Toading).

Basic form of static strength equations

Most design equations contain the following basic parameters:

(1) F,. T and sinf: These are the chord yield strength,
the chord thickness and the brace angle. T is always
represented by a T? term.

(i1} Q,: The joint strength parameter dependent upon joint
geometric configuration and the loading mode.

{(111) 0, The Jjoint strength reduction factor to account
for existing chord load.

Several design equations include additional parameters for
evaiuation of joint strength.  These are discussed in the
relevant secticns,

The general format and main features of each code are described
in Section 3.2.2. Differences between the codes with regard to
basic assessment parameters are discussed in Section 3.2.3.

Scope_and key features of existing desian codes

API RP2A 'Recommended Practice for Planning, Designing and
Constructing Fixed Offshore Platforms - Working Stress Design
20th Edition (1993); and Load and Resistance Factor Design
{LRFD) First Edition (1993}
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Format/definition of Joint strencth

WSD and LRFD based on a Tower bound interpretation of test data.

Backaground/source of eguations

Commentary sections (Section (4.3 in API-WSD and Commentary £ in
APT-LRFD); Yura o1 al (1980)

Expressions of doint strenath

FT?
"2 T pepesi W (Axial)
M = FQ?Z 0.0:(0.8d)  (Bending)
s " GEpeeTrg WA(0.8 ?

GSF 15 a global safety factor egual to 1.7 and 1.28 for normal
and severe Joading conditions, respectively

The above expressions are adepted in API-WSD. Similar
expressions are used in API-LRFD, except that., P, and M, are
repiaced by @*P, and §*M,, where @ is a joint resistance factor
equal to 0.8 or 5.95 depending on joint type and loading: and P,
and M, are obtained by removing the global safety factor (GSF)

from the expressions of P, and M,. respectiveiy.

Scope of Guidance in API-WSD

Section 4.1 specifies the minimum strength of joints in relation
to the effective strength of the connected members.

Section 4.7 includes general comments on effects of restraint
and shrinkage associated with welds.

Section 4.3.1 on 'simple joints' covers the following items:
Joint classification; determination of allowable joint capacity
using either the punching shear stress format or the nominal
load format (intended to give eguivalent results). including
evaluation of Q,. Q,, brace Toad interaction and joint detailing.

Sections 4.3.2-4.3.5 cover, respectively, overlapping joints,
congested joints, load transfer across chords, and other compliex
joints.

Scone of Guidance in APL-LRFD

and £.3.1-£.3.5 are virtually identical. with

%Y

IS

Y
e

ctions F.I-E. 3.
regard to both scope and content, to Sections 4.1-4.2 and 4.3.1-
4.3.5 of API-WSD respectively. The only differences are that
the guidance in API-LRFD 1s presented according to the LRFD
format, joint design equations are given in terms of the nominal
toad format only, ie. the eguivalent punching shear stress
approach hnas been dropped. and the brace load interaction
egu&tésﬁ 15 stightly different to the arcsin expression of API-
WSEh.
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It is noted in Sections 4.3.1 and £.3.] that
to chord diameter ratio approaching 1.0 wi

;;_3
failure mechanisms and strength properties than

he empirically
based formulae contained herein (in API-WSD and API-LRFD). A*
present. insufficient experimental evidence exists to quantify
the degree of increased strength. Therefore  reasonable
alternative methods may be used in the design of such Joints’.

The commentary Sections in both API-WSD and API-LRFD cover:
basis of simple Joint equations, joint classification. load

]
transfer across chords, and other joints.

3.2.2.2 Canadian Standards Assoéiation ‘Steel Structures - (ffshore
Structures’ (1992)

Format/definition of doint strength

Limit states design based on ‘best fit’ to empirical data. No
further explanaticn of the term ‘best fit' is given in either
the code or in the accompanying Commentary Document .

Background/scurce of equations

section 11 in CSA SP S473.1-1992 "Commentary to CSA Standard
CAN/CSA-S473-92, Steel Structures’

Expressions of joint strength

F 12 |

Pe = i "‘S-t]%g 0% (Axial)
F.T? )

Mo = 0 S;nB 0,0d  (Bending)

In the document. P, is expressed as C, (for compression) and T,
(for tension): M is expressed as M.

Z; s the resistance factor of the joint, which varies depending
on joint type and loading.

Scope of Guidance

Section 11.1.1 covers the following items: Joint classification:
Jjoint types: minimum resistance of joints in relation to
resistance of the connected members: and joint detailing.
Section 11.1.2 on ‘simple joints’ provides guidance on Joint
detailing (in refation to gap size in K joints): determiration
of joint resistance using the nominal load format, inciuding
evaluation of Q,. O and brace load interaction: and load
transfer across chords.

i mn
m?‘
nt

sections 11.1.3-11.1.6 Cover, respectively, overlapping joints,
compiex joints, congested joints and grouted Jjoints.
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CIDECT ‘Design Guide for Circular Hollow Section (CHS) Joints
under Predominantly Static Loading’ (1991)

rormat/definition of doint strength

Ultimate 1imit states based on a characteristic strength
interpretation of fest data, corresponding to 95% confidence
(11W, 1989).

Background/source of egquations

LW Doc XV-701-89 (1989); IIW Doc XV-461-80 (1980); and IIW Doc
XVY-488-81 (1981)

Expressions of doint strength

FT? ]

Py = szn@ Q.0  (Axial)
FT?

;= S§n9 Q,0d  (Bending)

In the document, Py and M, are expressed as N and all partial
coefficients are embodied in the Q, and Q terms. Q, is
expressed directly in terms of 8 and v, and Q, is designated as
fin").

The characteristic joint strength may be obtained by multiplying
the design strength (P, or M) by y,.. the material and joint
partial safety factor, which is equal to 1.1 for all joint types
(IIW, 1989)

Scope of Guidance

Section 2 describes key steps of the design procedure of tubular
structures (primarily onshore), and provides practical guidance
on optimising the design process including consideration of
static strength, joint detailing, economy in fabrication and
maintenance.

section 4 entitled "joint design under predominantly static
Toading’ includes eguations for determination of the design
strength of simpie Joints and provides further guidance on
optimising their design including measurss to improve the
efficiency of the connected bracings {see notes beiow). In
adcition. guidance on design of axially loaded multiplanar
joints is given based largely on recent finite element analyses.
This guidance 15 in the form of correction factors which relate
the strength of muiti-planer Joints fo that of uni-planar
Joints, A simple approach is also proposed to relate the
strength of a number of nonconforming uni-planar Joints to the
strength of common simple configurations.
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Notes

fer _ 5 T onshore
uctures. The same joint design eguations are also adopted in
a g

.._._..,]‘

-t

nis code is dintended primerily for desion o
t

EE

r
”ugegade 3 Anrex K (1992) and in the International Institute of
welding design guide (1989).

In addition to satisfying the above joint stre
relating mainly to resistance due to chord plas ,
code requires that punching shear checks are carried cut. It
notec that the iatter design criterion is likely to be criti
for Joints with thick chords {Tow ¥ ratio), and generally

HEREAS
']

combination with low 8 ratio.

t
]

Jesign charts intended fo speed up joint sizing and help check
computer calculations are given in terms of B, v and the joint
efficiency parameter C,. This is defined in terms of the joint
axigl strength divided by the brace yield capacity (for axially
loaded joints), and in terms of the joint moment strength
divided by the brace plastic moment capacity (for moment loaded
joints).

With regard to fension strength, the following is noted: The
ultimate strength under tensile loading is usually higher than
under compression loading, however, it is not possible to take
advantage of this strength due to large deformations or due to
premature cracking’.

3.2.2.4 DnV - Rules for Design, Construction and Inspection of Offshore
Structures (1993}

Format/definition of doint strenath

Allowable Stress Method (WSD) or Partial Coefficient Method
(LRFD) based on a characteristic strength interpretation of test
data. This is based on the 5th or 85th percentile of the test
results, whichever is the most favourable.

Background/source of eguations

According to Eliinas et al (1993}, the DnV eguations are based
on the test results and eguations of Gibstein (1973 and 1975).
Such information could not be found in the Code.

Expressions of doint strenchh

FoT2

P o=__r Q0 (Axia})
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GSF is a gliobai safety Tactor equal To 1.85 [=1/(0.6 x 0.9)]
and 1.39 [1/00.8 x 0.9)] for normal and severe lcading
conditions, respectively

The above expressions are for WSD.  Similar expressions are
adopted for LRFD, except that. P, and ¥, are replaced by P, and
M. and the glcbal safety factor (GSF) is substituted by a
partial material safety factor equal to 1.3,

L7

-~ = el o
Cops OF singgnee

L

Recommendations sints are given in Part 3,

on design of tubu
Chapter 1, Sectio i

n 6, far

Section F100 covers joint detailing including comments on
overlapping joints, congested joints and stiffened joints.

Section £200 “Static strength of simple welded tubular joints’
provides guidance on determination of the characteristic joint
strength for use with either WSD or LRFD design formats,
including joint classification, chord load effects, and brace
load interaction.

Sections F300 - E500 cover, respectively, multiplanar joints
(allows the use of the equations of uniplanar joints but
discusses measures to ensure conservatism), overlapping joints,
and complex joints.

Notes

The characteristic strength of simpie joints under axia?l 1oading
is Timited by the chord shear strength. The Code provides an
equation to perform this check which is also adopted in the
CIDECT Design Guide.

3.2.2.5 Health and Safety Executive (HSE) - ‘Offshore Installations -
Guidance on Design, Construction and Certification’, Fourth

Edition (1990)

Format/definition of ioint strength

wSD based on a characteristic strength interpretation of test
data (defined as the value below which not more than 5% of the
results of an infinite numner of tests would fali)

EBackaround/source of equations

e underiying experimental database and the evaluation process
ich led to mean and characteristic eguations are reported in
DEn/HSE Report entitled 'Background to new static strength
vidance for tubular Joints in steel offshore structures’ (UTH
9 308, 1990).

™
h

¥

N

0L 43 3E ]

Expressions of doint strength

FT? K
¥ \} b
GSF¥*ging ™

a I

P, =
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3.2.2.6

In the document, P, and M, are expressed as P, and M, respeciively

GSF is a global safety factor equal to 1.7 and 1.28 for normal
and severe loading conditions, respectively

scope of Guidance

Section AZl.Z. 4 in Appendix AZl grovides guidance on the
foltowing items: Hetermination of design lgads: Joint
ciassification: determinalion of the charaecteristic capacity of
simpte joints, inciuding evaluation of {, and Q;; validity ranges
of the simplie joint design equations: approaches for estimating
the strength of nonconforming joints: safety factors: brace load
interaction; allowable shear stress at transverse sections in
the chord; and joint detailing. In addition, comments are made
on overlapping Joints but no design equations are given quoting
a lack of data as the reason. However the user is referred to
the Background Document and the UEG Design Guide for an
assessment of the available test data.

Notes

This code includes an additional factor K, which takes into
account the length of perimeter of the brace footprint on the
chord, causing an increase in predicted capacity for angles iess

than 90° (K, = 1.0 for 8 = 90°). This term is only present in

the axial Toad joint capacity ecuations and not in those for

?eterméning capacity where the Jjoint is subject to moment
cading.

Norwegian Petroleum Directorate ‘Guidelines on the Design and
Analysis of Steel Structures’ (19290)

Format/definition of ioint strength

LRFD based on a characteristic strength format.

Background/source of equations

Hot stated in the document.

Fxpressions of Jdoint strength

FT
o= Y a0 Axial)
‘ —r Q.G Axial)
F oyersing
F T2y
M= Y G0  (Bending)
Vo xsing

In the document, P, is expressed as N and M, is expressed as M,
or M.

v, 15 @ partial material safety factor egual to 1.15.
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Scope of Guidance

Section 351 covers

overlapping Joints.and

Section 3.5.2 'S
guidance on; Det
including chord load effects, and brace load interaction; design
of overlapping joints; and comments on complex joints.

tatic strength of tubular jJoints' provides
ermingtion of the strength of simple joints,
d

Notes

Guidance on design of conical transitions are given in Section
3.5.3.

3.2.2.7 American Welding Society (AWS) ‘Structural Welding Code -
Steel”. ANSI/AWS D1.1-94 (1994)

Foermat/definition of joint strength

Allowabie stress design (ASD or WSD) based on the punching shear
stress format, and LRFD based on the nominal load format.

Background/source of equations

Section C10.5 in Appendix CI0 (includes a number of references
to a number of publications mainiy of P. W. Marshall)

Expressions of joint strength (ASD)

Expressions of the allowable punching stress, which incorporate
a safety factor of 1.8, are given in terms of F,, v, Q, and G;.

Expressions of Joint strength (LRFD)

'{2
Po=¢ X __(orBQ 0, {(Axial)
7 sing PG
F1% d,. . -
Moo= ¢ sénﬁ Eixnﬁﬁ 0% (Bending)

@ is the resistance factor which is egual to 4.8 for all joint
types.

The above expressions, dintroduced in the 1992 Edition of the
code, are derived Trom, end intended 1o be equivalent to, the
earlier punching shear criteria (the Q, and O, parameters are the
same as in the ASD punching shear eguations).
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Section 10.5.1 on design of circular T, Y, and K Join!
provides guidance on determination of Joint <a ]
sither the punching shear stress format or the rominal 1oad
format, including evaluation of O, G brace load interaction,
allowable shear stress in the chord, general collapse (see
below). weld sizing., material considsrations for base metal
selection, overlapping Joints, Joint classification, and
muitiplanar Joints.

o
&
@]
el +
o
b 4
)
93]
[

oS

Notes

In addition to the above criteria relating to local joint
failure, is required that general collapse (general ovalising
plastic failure in the cylindrical shell of the main member; 1s
investigated especially in cross joints and joints subjected to
crushing loads. An expression for the allowable transverse
chord load due to compressive brace loading in unreinforced
cross joints is given. In ASD format, this is equal to the API
allowable compression capacity for compression toaded X joints
with a global safety factor of 1.8 rather than 1.7. With regard
to joints reinforced by a Joint can, an expression for
determining the allowable brace load is provided which has been
adopted in both API-WSD and API-LRFD.

A key difference between this and other codes is the use of a
chord ovalising perameter « in the Q. factor. For simple
joints, the parameter a is assigned different values depending
on joint type and loading. However, 1ts key merit is that it
allows results from uniptanar joints to be extended to
multiplanar joints (see Section 3.2.3.8).

In the Commentary Section, it is noted that the LRFD (with a
resistance factor of 0.8) is nominally equivalent to the ASD
(with a safety factor of 1.8) for structures having 40% dead
Toad and 60% service loads.

Comparisons of key desian parameters

This section presents a systematic comparison of the codes
considersd in Section 3.2.2 with regard to the static strength
design of simple tubular joints. The following aspects are
considered:

1) Jeint classification

2y Safety Tactors

2)  Chord yield strength

4y The Q, factor

5)  Chord Joad effects (O, factor)

6)  Brace load interacticn

7y Validity ranges of design equations
8) Joint detailing

9)  Load trensfer across chords

when possible, in order to ease comparison, the information is
presented separately Tor WSD and LRFD codes. and the API
nomenclature is used.
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3.2.3.2

C6060R07 .21

Joint classification

odes provide guidance on joint classific
Lion with design for static strength.  Simple joints may
ssified as T/Y, DT/Y (cross). or YT/ Jjoints on the bhasis
int configuration and ipint loading.  Figures 3.2.1
and 3.2.2, reproduced from AP WSO (1993) and HSE (1990)
Lively, show typical examples of Joint classification.
I I8

ation Tor use inp
1 b

s
g

Lt
o

respective
auidance in other codes is broadly simiiar and s typified by
ey s WhI Tarie e . i s LT i i T
the following clauses (quoted from ASE, 1990) which are based on
the UEG Design Guide (1985).

‘tach Joint should be considered as a number of independent
intersections and the Capacity of each intersection
should be checked against the design requirement set out in
paragraph (i). Fach plane of a multiplanar joint should be
subjected to separate consideration and classification.

tach chord/brace intersection should be classified as Y, K, or
X according to their configuration and Jload pattern for each
load case. Examples of joint classification are shown in Figure
AZl.6 (Figure 3.2.2) and should be used with the following
guidelines:

(i) For two or three brace members on one side of the chord,
the classification is dependent on the equiTibrium of the
axial Toad component in the brace members . If the
resultant shear on the chord member is essentially zero,
the joint should be allocated a K classification. If this
requirement is not met, the joint can be downgraded to Y
classification as shown in Figure A21.6 (Figure 3.2.2).
However, for braces which Carry part of their load as K
Joints and part as Y or X Joints, interpolation based on
the portion of each in total may be valid. The procedure
for interpolation in these cases should be agreed with the
certifying authority.

(11) For multibrace joints with braces on either side of the
chord as shown in the example DYDT Jjoint in Figure A21.6
(Figure 3.2.2), care should be taken in allocating the
appropriate  classification. For example, a K
classification would be valid if the net shear across the
chord is essentially zerg. In contrast, 1f the lcads in
all the braces are tensile feg. at a skirt pile
connection?, even an ¥ classification may be unsafe due to
the increased ovalising effect. Classification for these
cases should be agreed with the certifying authority.”

Safety factors

ASD Codes (APT, AWS. DnV and HSD)

In WSD Codes. the aliowable ioint strength incorporates a global
safety factor. Estimates of Joint strengtin, based on either a
Tower bound or a characteristic representation of relevant data,
are usually divided by the global safety factor to obtain the
Joint design (or allowable) strength. If this is larger than
the nominal {(or characteristic) applied Joad. the static
strength design criterion is considered satisfied. The global

L
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safety factors for the AP, AWS
follows
AR AHST bny HSE
Normal Joading 1.7 1.8 1.85 1.7
conditions
Severs loading 1.78 - 1.39 1.28
conditions

* The safety factor is embodied in the equations
based on the punching shear stress format

Table 3.2.1. Safety factors in Working Stress Design codes
LRED Codes (API. AWS. CIDECT. CSA. DnV. NPD)

In LRFD Codes. the joint design strength incorporates a partial
safety factor (may consist of a number or constituent safety
factors). Estimates of Joint strength, based on either a Tawer
bound or a characteristic representation of relevant data. are
usually multiplied by the partial safety factor to obtain the
Joint design strength. If this is larger than the factored
applied Toad (incorporating other partial safety factors). the
static strength design criterion is considered satisfied. The
partial safety factors for the API. AWS, CIDECT, CSA. DnV and
the NPD codes are as follows:

APT: 4, referred to as the joint resistance factor, is

equal to 0.90 for tension loaded T/V and X joints,
and to 0.95 for other cases.

ANS ¢. referred to axs the joint resistance factor, is
equal to 0.8.

CIDECT: (1/y,) is equal to 0.91 (=1/1.1) for ali Joint types
(ITW. 1989). vy, referred to as the material and
joint partial safety factor, is embodied in the
CIDECT design equations.

CSA: G, referred to as the joint resistance factor, is as
follows:
K{Gap) Ty X K{lap)
Tension 0.72 0.52 0.89 0.72
Compression 0.7 0.91 0.91 G.72
P8 0.87 0.75 0.62 .-
0PB 0.70 .59 0.61 -
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e Timits on the maximum value o Fy.
e cnord, that can be used in design e0ua
g stalic strength of tubular Joints. Su
a0 as a maxinmum absoiute value of F, and/or as
maximum value of the ratio F/F,. as shown in the table below.

%)

Max. Source: Max. Source:
Code Fy Sec. No. F/F, sec. No. in
(N/mm?) in Code Code
APT-WSD N 2/3 4.1
API-LRFD - 2/3 E.1
AWS 415 16.2.5.3 2/3 16.5.1.1
CIDECT --- -
CSA 450 5.4.7° 0.85 5.4.3
Onv —_ 0.85 Pt.3 Ch.1
Sec.6 A304
HSE 400 A2l.2.4 g 0.7 Azl 2.4 e
NPD - “--

Specified in connecticn with material requirements
rather than static strength of tubular Joints

Table 3.2.2 Limitations on vield strength of the chord

3.2.3.4 Expressions of the , factor

Table 3.2.3 shows the Q, factor for each Joint geometric and
leading type for 21l the codes considered in Section 3.2.1
except the AWS. whose equations include a 0, factor of a
different format to the 0, factor. The 0, expressions are
resented at the end of this section. Most U, factors are
dependent solely upon a function of the Joint 2 ratio {d/D).
However, some of the Q, expressions of the (SA. CIDECT and Dny
codes imply that y ratio (D/27) has also an influence on the
strength for many joint configurations . For Joints loaded by
IPE all codes except the AP] suggest some dependence on .
Finally all the equations for € Joints subjected to balanced
axial loading include the gap factor Q,. which is a function of
the surface gap betwesn the braces, 9. The applicahility of
these factors is discussed further in Section 3.5 where the
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simple joint database is used to evaluate nost of
eqguations,

It snould be noted that the (., factors do not necessarily
represent the same function in gl the design equations which
may contain additional factors, ie. the G, expressions are not
necessarily equivalent and they should not be compared without
consideration of the full design equations. However, for most
codes O, may be expressed as follows:

9 e ez m2e e e
L4 My TOESInO/r P (Tor axial

foading)

(Se]

where P 15 either P* GSF (WSD codes) or Pe/ @ (LRFD codes).
One exception is the (, expression of the HSé*cade which in
addition contains K, in the denominator of p°

® O, =M sing/F,T%Qd (for bending Toading)
where M" is either M,* GSF (WSD codes) or M/, {LRFD codes) .

One exception is the Q, expression of the API code which in
addition contains 0.8 in the denominator of M.

The gap factor (

The gap factor Q, (= 1.0) is as follows:
APL-WSD, APT-LRFD. and NPD

Qg =1.8 - 0.1g/T for y < 20
= 1.8 - 49/D for y > 20

CSA and Dnv
Q= (2.4+18¢/D)/(2.4+70 g/D)

CIDECT

1. 0.024 2
¢ exp (0.5g/7-1.33) +1
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The geometric modifier {,

some of the 0, expressions of APT(WSD &LPFD), AHS. CSA HSE,
and NPD include the s factor which is often referred to as the
geometric modifier. Tt g defined as:

Q% =1.0for =06

Q, expressions (AWS)

fhe AWS equations are unigue in that they include the chord
ovalising parameter o which allows the simpTe joint equations to
be extended to the more complex multiplanar configurations. The
nominal load version of the AKS equations is described in
section 3.2.2. Al} the factors which meke up these equations
have already been outlined in the previous sections except the
Q, factor which may be considered equivalent to the Q, factor in
other codes. The Q, expressions. common to both the punching
shear and nominal Toad equations, are as follows:

1.7 0.18

Q, = ( - + __z?_? Q> e for axial Toads
and
Q, = ( 241 + 056} Q2087 for bending loads

For simple joints. the chord ovalising parameter o is as
follows:

1.7 for axially loadec T and Y Joints

2.4 for axially loaded X Joints

1.0+0.7 g/d

1.0=sqg<1.7
for K joints subject to balanced loading

0.67 for in-plane bending

1.5 for out-of-plane bending.

3.2.3.5 Chord load effects {Q factor)

Formulations of the Qs factor are given below for hoth WD and
CRFD codes.  Symbols and formulae used in the codes have been
standardised, tazking where possible the API nomenclature as a
basis (see Section 3.5.10 for evaluations of the parameter { and
of the available data).
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Wol Codes (API. AWS . DnV and HSE)

7y

In most codes the formulation of the 0 Tactor is very similar
L0 that of APL-WSD, which is as follows:

whers
A = 0.030 for brace axial icading
= 0.045 for brace in-plane bending (0.044 in AWS)
= 0.021 for brace cut-of-plane bending (0.018 in AWS)
Z _f2 2
A= \/fax ' fapb "Lfopb
(F,/GSF)

fax. Too and f . are the nominal axial. in-plane bending, and
out-of-plane bending stresses in the chord. respectively: and
G5F is a global safety factor usually equal to the factor used
in Eo??ection with joint allowable strength. Values of GSF are
as follows:

GSF API AWS OnV HSE

Normal Joading 1.7 1.7 1.85 1.7
conditions

Severe loading 1.28 - 1.39 1.28
conditions

Table 3.2.4 Global safety factors in WSD codes for use 1in @,

In the HSE formulation. the parameter A is effectively similar
to that of API-WSD except that it is expressed in terms of chord
Toads rather than chord stresses as shown below:

o V00.23PD)% U2 <HE,
0.72D2TF / GSF

r
¥

where P M. and M., are the nominal applied chord Toads: D and
a

T are the chord diameter and thickness, respectively.

LRFD Codes (API. AWS, CIDECT. CSA. DnV. NPD)

The formulation of the ¢, factor is broadly similar to that of
APL-WSD except that while in WSD Codes a giobal safety factor
(GSB) 1s applied only to the chord yield strength, in LRFD
Codes. partial safety factors are applied to the chord yield
strength and to the chord nominal applied stresses. thus: [
fo 2nd f o are the factored axial, in-plane bending. and out-
of-plane bending stresses in the chord. respectively: and g, is
a partial safety factor (referred to as the yield siress
resistance factor in API-LRFD). Values of P, are as follows:
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,fa ax s;)i oph
g
4y
APT ARS Dnv NPD
2, 0.95 1.0 0.8

Table 3.2.5 Partial safety factors in LRFD codes for use in O,

In the CSA formulation the A parameter is expressed in terms of
chord loads rather than chord stresses as follows:

2 2

Ax _FE—Q‘EEE +Eq...f...°_

C M M

ro el ng ro OPE

where Gy, 1s the greater of the compressive forces on either side
of the joint: M, is the factor applied in-plane-bending or out-
of-plane bending moment in the chord; C,, and M, are the factored
chord  strengths under compression and bending Tloads,
respectively.

The CIDECT formulation ds significantly different with
expressed as follow:

f
1+0.3n" -0.3(n")%  where n’ = ng
Y

fop 15 defined as the compression prestress in the chord. ie. it
1s the resuitant stress due to chord loads in excess of those
associated with equilibrium. However. no further guidance on
evaluation of f is given.

A1l codes state that Q must not exceed 1.0 and that it is equal
1.0 if all extreme fibre stresses in the chord are tensile. The
NPD additionally states that if £=20.9, O =10,

€
3
€0
oN

Brace load interaction

AT codes adopt a2 similar approach to deal with combinations of
axial and bending brace loads. generally oy means of an
interaction equation of the form:

F P+ £,I000Y M, = 1.0

where P' M "and M. are ratios of applied design loads to design
strengths, respectively for, axial. in-plane bending, and out-
of-plane bending loads; and f, and f, are simple functions based
on approximate interaction models and/or empirical interaction
data (see Section 3.5.11 for evaluations of common interaction

equations and of the available data).
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In W5l Codes, the design strengths (denon and
Mo b incorporate a global safety factor.  Howsver, in LRFD
Codes. both the design loads (numerefors in P', M. and Moo ) &Nd
design strengths incorporate partial safety factors.

The interaction equations are given below for both WSD and LRFD
codes. Symbols used in the codes have been standardised in
order to ease comparison,

Wob Codes

API-W5D and Doy

2 2
lp!
2

The argument under the square root sign must not exceed 1.0,
otherwise the arcsin term is undefined.

M
cZaresin | 2] LM =1.0
" M M

AKS
1.7%
acting v, _|acting Vp <1.0
m axial | m bending |
HSE
[ 2o
0 I HLN IR L B
2 M M
a a lwpn a P8

where P and M are the nominal (or characteristic) applied axial
and moment loads, respectively, and P, and M, are the
corresponding allowable design strengths.

LRFD Codes

API-LRFD

2 2
7P M M
1-cos o # o | + — L - =1.0
2 M M
i FB OPB
A4S
1.75
F M.
—_— + Mi,,,. = 1 Q
Y
P, 1
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3.2.3.7
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CIDECT and CSA

R
{E}+{j] »r[vf} = 1.0
pf Mf ) Mf org

i

dn
r pd
oo al [u)
+ Z @rcsin - I =10
Pl M, M
iPB OPB
NP

2
2 Y R IR
Vm* Pf jf‘,m* Mf FB ym* Mf oea ym

(1/y,) is egual to 0.87 (=1/1.15). vy, is referred to as the
material coefficient (see Section 3.2.3.2 on safety factors)

In the above equations P and M are the factored applied axial
and moment Tloads. respectively, and P, and M, are the
corresponding factored design strengths.

Validity ranges of design equations

Most codes state ranges of applicability of their equations for
the static strength design of simple joints. Such limits are
given in relation to joint geometrical parameters (eg. B, v and
). and/or joint material property (eg. F, and F,). In general,
application of the design equations to joints lying cutside the
stated limits is not recommended since it may lead to unsafe
Joint design. In such cases, most codes recommend other means
for estimating joint strength for example using finite element
analysis or laboratory tests.

Limits on a number of geometrical parameters of simple joints
gre summarised in Table 3.2.6. In general. these limits reflect
the range of parameters in the test datahbases on which the
equations are based. The API, AWS and NPD codes do not state
any similar Timits. Limits on material properties relating to
the yield strength are reviewed in Section 777,
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Y axial G.2-1.00 =75 J60-907
K bal. axial 8.2-1.00 =75 30°-94°
CIBECT X axial 0.2-1.00 =20 36°-90°
AT M, same as axially loaded joints same
ATT M., as axially joaded joints
T tension b.20-1.08 9-30 a0°
CSA T comp. 0.25-1.85 10-20 age
4 Y tension 0.20-6.85 10-30 a57-90°
ony Y comp. 0.25-0.85 10-30 30°-90°
K bal axigl | 0.25-0.85 10-55 4,230°,8,=90°
£ tension 0.25-0.55 10-20 Not stated
CSA X comp. 0.20-1.0 16-25 Not stated
AT M, 0.20-0.99 7-30 Not stated
AT My, $.30-0.90 13-28 Not stated
DT tension 0.25-0.85 10-20 90°
Dy 0T comp. 0.20-1.0 10-25 90°
T Mg §.25-0.90 7-30 a¢°
T Mo 0.30-0.90 13-28 90°
Al simple
HSE joints under | 0.15-1.00 9-50 30°-90°
axial or
moment loads

Table 3.2.6 Geometric 1imits of equations for simple joints
Joint detailing

Most codes provide guidance on joint detailing (Figure 3.2.3).
These commonly cover minimum length of joint reinforcement on
the chord side (Jjoint can) and brace side (brace stub). minimum
gap between nonoverlapping braces, and maximum offset of working
points (intersections of brace and chord centrelines). Such an
offset may be used to satisfy the minimum gap requirement or to
reduce the reguired length of heavy wall in the chord. The
guidance of API-WSD, API-LRFD. CSA, DnV, HSE, and NPD are
summarised in Table 3.2.7. It can be seen clearly that except
the CSA, most codes adopt similar timits to those of API-WSD.
CIDECT and AWS are not covered in Table 3.2.7 since they provide
iittle guidance on such joint detailing. The HSE's guidance is
restricted to general comments but the reader is referraed fto the
Background Document (OTH 83 308) for a summary of practices on
Joint detailing.
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ness of the thicker prace
it the ¢iameters of both braces are z 650mm
ppiies 1f the diameter(s) of one or Doth braces are < 450mm

Table 3.2.7 Limits on: Length of joint reinforcement, gaps
and offset of working points in K joints

Load transfer across chords

Joints in which load 1s transferred across the chord may fail by
general collapse. This is defined in the AWS Clause 10.5.1.2 as
‘general ovalising piastic failure in the cylindrical shell of
the main member’, and is reported to be particularly severe in
cross joints and in Joints subjected to crushing loads. It is
suggested that such joints may be reinforced by increasing the
ma%? member thickness, or by use of diaphragms, rings or
coliars.

For X ({cross) jJoints reinforced by a Joint can having an
increased thickness T, and Tength L, AWS Timits the allowable
brace axial Tead to the following:

L - -
Po=Py+ 5ED {Pog =Py d Tor L<2.5D
- i i 51
Po=P for L=z2.5D
where Pary 15 evaluated using the nominal chord thickness
Pun 15 evaluated using the Joint can thickness T,

The same approach s applicable to LRFD equations with the
allowable joint strengths replaced by factored design strengths.

Simitarly, APL (WSD & LRFD) require that general collapse is
considered 1n the design of X {cross) joints, launch leg doints,
and other joints in which load is transferred across the chord.
For such joints with 8 < 0.9, API adopts similar equations to
those recommended by AKS for designing doint cans in X joints.
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Review of Other Published Formulae

General

As well as those provided by or referred to in the design codes
summarised in Section 3.2, se !

strengih are given in the Titerature.  Most of the formulae
published prior to 1985 are reviewed in the UEG Design Guide
inciuding those of Reber (1972). Pan et al (1976), lLee et a]
(1976), Yura et al (1980}, IIW SC XV-E (1981). Graf et al
(1981), and Billington et al (1982).

More recently, New test data have been generated leading to
entargement of the worldwide test database. In addition.
nontinear finite element analysis has been used extensively to
perform parametric studies aimed at investigating specific
factors or at filling gaps in the experimental database. These
developments enabled new static strength formulae to be derived
and, in some cases. incorporated in design codes. Some of the
new formulae are reviewed below, while others are considered in
the relevant sections.

Yura et al (1980

This paper published in 1980 gives a review of test data on the
static strength of tubular joints. After preliminary discussion
of the database and the equation format, this paper
systematically addresses axially Joaded T. Y and DT Jjoinis,
axially loaded K joints and moment loaded joints. In each
section there is a review of joint performance characteristics,
a presentation of new formulae and a statistical analysis of the
accuracy of the database.

The formulae given are based on lower bounds to the test data
and form the basis of recommendations given first in the 15th
Edition of API RPZ2A and in all the following editions,

DEn/HSE CTH 89 308 (199D

s document reports in detail the background analysis which
d to derivation of the static strength equations of the
UEn/HSE Guidance Notes [1990).  The mean strength equations
implied in the document are summarised below. The design
eguations are described in Section 3.2.
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Joint Loading
Type
T Compression | P,sing/FT" = (1.61+24.898) vVOQ,K,Q;
T/Y Tension | Psing/FT5 = (11.7+32.268)K,0
DT/ X Compression | Psind/F T = (2.98+15 4583040,
0T/ Tension PSind/F T = (9.2+22 63£)CK.0.
4 B. Axial PSind/F T8 = (2.37+23.608) VK00
Q, = 1.67-0.86V(g/D) = 1.0
T/Y, OT/X IPB M/FT? = (6.208-0.27)d vyQ:
T/Y, K 0PB Msing/F,T7 = (1.88+8.644)d0,Q;
DT/X 0PB Msind/FT" = (1.88+8.648)d vQ,Q,

Table 3.3.1 Mean strength equations (DEn/HSE OTH 89 308, 1990)
3.3.4 Yura (1993)

Yura, whose work forms the basis of static strength guidance in
API RP2A (API-WSD 15th Edition to date and API-LRFD). has
produced a new set of static strength formulae which may be
congidered as an update of his earlier equations (Yura et al.
1980) .

The new eguations. which are based on an enlarged database (in
comparison with the database reported in 1980). were
communicated privately to BOMEL in 1995.

The general format of the equations is as follows:

P, =0, (F,Tsind) Q. (axial loading)

M, = Q,(dF,T%/sing) Q, (moment loading)

Expressions of 0, representing mean and Jower bound joint
strength are given in tables 3.3.2 and 3.3.2 respectively.
Different Q, formulae are recommended for tension loaded T/Y and
DT/X joints, depending on whether the first crack criterion or
the ultimate load criterion is used to define joint failure (see
section 1.4). In addition a new factor dependent on v and £ is
used in the formulae for tension Yoaded OT/X joints. This is
designated as G, and defined as follows:

Q =y/8.6 for > 0.9

1.0 for 8209
rormulae of the gap factor Q, and the chord load factor G, are
similar to those in API-RPZA. The (. formulae were proposed by
Yura and co-workers at the University of Texas (Boone et al,
19823
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loading interaction effecis, a simplified
o i 1 b i
by 1

With regard to brace
version of The Hoadiey and Yura polynomial equation {1885),
which has been adopted in the HSE Guidance Notes (1990) is

recommended.,

Joint Loading Mean Strength N 50
Type

/Y | Compression|3.1+20 .98 371 0107
T/ Tension  10.5vVy(3.1+20.958) 22 1 0.138
OT/7% | Compression | (3.4+15.38)0, 45 | 4.093
DT/ X Tension 13608 Q, 361 0.18
YT/K B. Axial 11.3(3.1+20.98) (, g8 | 0.172
AT IPB 68 V. but not<0.8(3.4+198) 461 0.121
Al 0P8 3.56/(1-0.818) 27 1 0.088

Table 3.3.2 Mean strength Q, factors (Yura, 1993)

Joint Loading Lower Bound Strength
Type Failure Criterion

T7Y Compression 2+218

T/Y Tension (Ist crack) [2+218

T/Y Tension (ultimate) |3+328

OT/X Compression (3.4+138) Q,

DI/X | Tension (1st crack) {258 Q,

DT/% Tension (ultimate) [308 Q,

YT/K | Bl Axial 1.05(2+218) 0,

Al IPB 58V, but not < 0.8(3.4+198)
AT OPB 3.2/{1-0.815;

Table 3.3.3 Lower bound Q, factors (Yura, 1993)
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Healy and Jetiismover (19933

T
[}
o

o

The authors report the findings of a non linear FE st o
irn-piane bending st nof 7/Y joints. A total of o}!
covering wide ranges of £ (0.3-0.95}, v (8.0-40.0), and 6 (45°-
90°) were analysed, with a particular emphasis on ensuring the
achievement of Joint failure rather than brace failure A
statistical regression of the results enabled the following
equation representing the mean strength of the joints to be
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) 5ingoe?

Eliminating the 7°% term and introducing & number of
simplifications including rounding the powers of other terms
allowed the authors to derive the following simplified

expression:
2,165T3
M - 9.5F B y0T
? siné

This equation is reported to increase the coefficient of
variation from 6% (previous equation) to only 8%,

The new equation was then used to evaluate the in-plane bending
test database for T/Y, DT/X, and YI/K joints. This had been
updated and rigorously screened by the authors. The static
yield strength was used in this evaluation rather than the
traditionally adopted dynamic yield strength. The authors argue
that such a choice is justified since joint tests are conducted
in a quasi-static manner. For cases where no static yield data
were measured, the dynamic yield data were converted into
approximate static data using a correction factor of 0.93.

the new equation was found to represent a lower bound to the
valid experimental data. The scatter of which was not
considered so large as to suggest that a separate IPB equation
is required for each joint type. It should be noted that a
rearrangement of the terms in the new equation shows that,
except for the slightly different lead constant. it is similar
to the IPB equations of a number of the codes reviewed in the
previous section as shown below:

Proposed IPE Eguation @ Msing = (C)F T?A/d

where the Tlead constant C is equal to 4.75, 4,85, 6.0, 6.0, and
5.0, respectively, in the egquations of Healy/Zlettlemoyer,
CIDECT. CSA, DnV, and NPD.
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he authors report the findings of a non Tinear FE st
out-of-plane  bending strength of T Joints. P
investigations showed that the tensile to yield streng
(F/F,). and v ratio affect joint strength. The Tatter p
was Tound to be influential especially at high 2 valu
ratio was also investigated but found to have a neg)
effect for values exceeding 10. A parametric study wa
performed on 16 7 joints covering wide ranges of 8 (0.3
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and y (10.9-40.0). Tre results, together with
experimental dala, were curve-fitted fo produce the fo
equation representing the mean of all data:

FT? ) F
M, = —tee 4 18p9515d 10 14 1 4077
sindg F

Y

Experimental Y joint data were excluded from this analysis as
the authors note these cause considerable scatter. Hence the
above formula is stated as only being applicable to T joints.
It should be noted that no information is given on screening of
the experimental database.

Database on Static Strength of Simple Joints

General

The tubular joint static strength database used in this project
is an expanded and comprehensive re-screened version of the
databases underlying offshore structural design guidance. In
this section the background to the database s presented
together with the basis of the screening criteria adopted.

For offshore structures worldwide, considerable importance is
placed on the resistance provisions of API-RP2A (1993). For
tubular joints the lower bound capacity equations are based on
the results of just 137 static strength tests as documented by
Yura et ail (1980). During the early 1980s the database was
recompiled in the UK and scme 211 test results were used to
derive mean and characteristic capacity equations to form the
basis of the Department of Energy (DEn) Guidance Notes (1990)
now under the jurisdiction of the Health and Safety Executive
(HSE) . The background is described in a separate document (DEn,
OTH 89 308, 1990}, The larger DEn database is attributable not
only to the availability and awareness of more test results but
also to differences in the screening criteria and the minimum
acceptabie specimen size in particular. This importance is even
more marked wnen reference s made to the work of Kurcbane and
Nis team at Kumamoto University in Japan. By accepting chord
diameters as small as 60mm. a database of 674 axially loaded
Joint tests was obtained and the resulting mean and
characteristic eguations now underlie current I1IW (1989) and
CIDECT (1991) Design guidance.
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These latter codes and the Japanese work are directed primariiy
to onshore construction and the realism of weld size effects

for such small specimens is guestioned in relation to  large
offshore siructural tions., Despite this immediate
observation, 1t was recognised that UK/US researchers had
perhaps not included a1l rejevant data from Japan. Furthermore,
more research programmes, pariicularly from Delft Universily of
Technology in The Netherlands, had contributed significantly to
the understanding of tubular joint behaviour, thereby demanding
s re-svaluation of database screening criteria.  In the early
19905 the HSF endeavoured to establish a new databese with new
screening criteria. A total of 634 static strength resuits for
simple  joints (T/¥, DI/X, YT/K)  under either axial
tension/compression, in-plane or out-of-plane bending were
compiied. creening criteria were proposed and comments
obtained from experts worldwide. The final screening inciuded
the us2 of a minimum acceptable chord diameter of 1lbmm, in
addition to other traditional criteria. The screening process
reduced the available data points to 293 in number.

As part of rigorous international activity to develop an IS0
code, BOMEL were provided with the full (unscreened) database to
verify. This thorough re-examination of all source material and
values within the database has revealed a number of anomalies
and omissions which indicate the enormity and complexity of the
database collation activity. Nevertheless these differences
have been resclved with the HSE database contractor and the
newly constructed BOMEL database is the most comprehensive and
accurate available, being the combined result of years of
research and benefiting from a rigorous QA/validation procedure.
The full database contains 680 raw fest results with a minimum
chord diameter of 100mm. The screening process outlined below
reduced the available resulis to 423 in number.

Screening criteria

The criteria eliminating results from the screened dataset are
as follows:

Wall tnickness ratio, 7

The 1imit on this brace to chord thickness ratio has been set 10
1.2 to ensure that brace failure for a joint configuration is
not suppressed. Offshore practice demands 7= 1.0,

Chord slenderness ratio, v

No 1imit has been imposed on this parameter. The maximum and
minimum values in the database are aporoximately 48 and 8.
respectively. However the vast majority of the data are around
the middie of the practical range.

engtn parameter o

a a f e approach was adopted with regard to this
parameter due to the uncertainties surrounding the chord length
data. The houndary conditions vary depending on joint type,
joint Toading and available testing equipment. As a result 1t
is not easy to define a minimum acceptable chord Tength based on
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not affect Joint failure mai th:
difficuit. wWhile this parameter reguire ]
possibly using a recent approach based on numerical results
generated at TY Delft, the minimum o in the current screened
database s 4.3,

Where chord yield data were not measured and only mininum
specified yield strengths were given. the results are screened
out but may be considered to provide a lower bound for the data.
For general a ment the maximum measured "dynamic’ chord
yield stress is 506 MPa but data with higher values are retained
for the assessment of HSS joints. Data on the tensile strength
of the chord and yield strength of the brace have been included.
Where these were not reported for each specimen in a certain
test programme, approximate values have been estimated based on
tensile data for other specimens in the same test programme.
Where "dynamic’ and ‘static’ chord yield data were reported, the
‘dynamic’ values were used in order to maintain consistency with
the majority of the data where only "dynamic’ properties were
given, ‘Static’ values have bheen estimated, based on an
extensive analysis of a Targe set of tubular joints and tubular
members data (Appendix A3.7), and used for conducting member
capacity checks. Tests where the joint capacity is lower than
the capacities of the brace members, have been rejected.

[0
(%
g%
L
%2

Cnord and brace thicknesses

AT Jjoints in the full and screened databases have thicknesses
larger than 2. 0mm.

Gaps_in K joints

Only X Jjoints where the nominal gap is not equal to zero and is
larger than the brace thickness have been accepted.

Load-deTormation data

Available data on load-deformation characteristics have been
carefully studied. Where there is no evidence that a peak or
plateau was reached in compression loaded joints, the fests are
screened out and treated as providing lower bound data. Tension
data were accepted regardless of whether & peak was reached or
not because joint failure is governed by cracking. If a lcad-
deformation curve shows both a plateau and a maximum capacity,
the joad corresponding to the plateau is adopted because in the
majority of cases. it is found to coincide approximately with
the first crack lgad.

L1

s
P

Minimum chord diameter

With reference to minimum chord diameter the justification for
retaining only 100mm and above chord diameters is as follows:
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than 100mm, end in most of
curves do not reach a peak.

There are no known T/Y tests with chord diameter lawer than
10 0mm.

the data for chord diametars lower than 100mm ars
se K Joints tested under halanced axial ioading.
he vast majority of these have y = 11 and FAF
: Therefore, they do not represent typical offshor
Joints.  In eddition, the effects of oversized weld o
capacity of small gap K Joints increase significantiy when
the chord diameter is below 100mm.

o T

i

Carefully assembled databases on compression  loaded
X joints and K joints under balanced axial leading,
representing wide ranges of chord diameters. have been
analysed. This has revealed that there is no clear cut-off
1imit for chord diameter below which a size effect can be
identified (see Figure 3.4.1). The evidence for such a
Hmit is clouded by the scatter of the small as well as the
large scale data. It would appear that the effects of
other paremeters such as chord length. chord boundary
conditions, chord slenderness and yield properties may be
as large as the so-called size effect.

Omission of the data for diameters between 100 and 115mm
could reduce the size of the compression loaded DT and K
Joint databases significantly and could mask the effects of
impartant parameters coverad only by the small scale data.

screening criteria are rigorous, reflecting industry
standing of tubular joint behaviour and the evidence is
nted by the full database itself. The screened database

used within this project therefore represents the leading state-

of-th
3.4.3 Scope

e-art in this field.

of the simple ioint database
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creened database is shown in Appendix A3.1 and comprises:

Joints under axial compression
Joints under axial compression
Joints under axial compression
Joints under axial compression
Joints under balanced axial leading
Joints under balanced axial joading
Joints under axial tension

Joints under axial tension

Joints under in-plane bending
Joints under in-plane bending
Joints under in-plane bending
Joints under in-plane bending
joints under out-of-plane bending
Joints under ocut-of-plane bending
Joints under out-of-plane bending
Joints under out-of-plane bending
Joints under out-of-plane bending
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configuration, geometry and Toading, and the number of sach Lype

tle relation to the number in service. As noted in the
following sections, this lack of data leads to the introduction
of a number of key assumptions in formulating design guidance.
oncern 1s the lack of data for a number of joint
- :

The data Tisted do not cover the complete ranges of Joint
E %

e

es 45 outlined below:

¢ /Y and DT/X joinis: Most data in the
compression datasets are for T and D7 joints with onty a few
date for ¥ and X joints, while a1l data in the tension datasets
are for T and DT joints. This general lack of Y/¥ cata Hmits
the assessment of design codes particularly with regard to the
influence of # and the relative length factor, K,. present in the
HSE formulation. A wide range of B ratios are present in the
compression datasets, allowing a thorough assessment of the
influence of this parameter. However the maximum g ratio in the
tension dataset for T joints is 0.76, which limits the scope of
assessment for § ratios approaching 1.0.

Axially loaded YT/K joints: A1l the data are for the balanced
axial load case, ie. where the net force perpendicular to the
chord is essentially zero. Although a large volume of data is
available, most from small scale specimens, there are relatively
very few tests for § > 0.8, A wide range of angle
configurations is covered with some non symmetric K Joints (ie.
0, and 6, = 90°; and 8, = 4,) as well as some YT Jjoints (Ge. &,
= 90°, 4, = 90°). but the majority of data are for 8, =6, = 60°.

Moment loaded joints: Most of the data are for T joints with
relatively very few data covering Y/X Joints. This restricts
the scope of assessing the effects of brace anglie on IPB and OPB
strengths. Data on YT/K joints are also limited with only six
and four K joint tests for the IPB and OPB cases respectively,
end no IPB tests for the YT configuration.

It should be noted that addition of the largely Japanese smali
scate data (100mm < D < 115mm) has enhanced mainly the data for
compression loaded DT and K joints. The limitafions outlined
above 1in relation to Y and X Jjoints for all loading fypes had
been largely noted in the UEG Design Guide (1985). Although
this awareness led to generation of new data to cover some of
the gaps. especially through the JISSP Programme, problems have
been identified in connection with some of the old as well as
the new data. These problems concerning validity of some
parameters, eg. cnord length and/or boundary conditions. have
cast deubt over some data or led to the omission of a
significant volume of data from the latest screened database.
The net result is that important gaps still exist, However, the
new anaiytical

I data generated using non linear finite olement
analyses and the potential for production of more anaiytical
data in the future, are likely to compensate for the limitations
of the experimental database as is shown in the following
sections.
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Assessment of Design Fquations for Simple Joints

General
The screened simple joint database is used in the following
sections to evaiuate the static strength equations of six
principal codes. These are API-RPZA, CSA, DnV, HSE. CIDECT. and
NPD. The data are assessed in terms of the ratio of measured
Joint strength, P (axial) or M___ (moment). to predicted
Joint strength, P, (axial) or ¥, (moment). Axial refers to
either compression or tension. and moment refers to aither in-
plane bending or out-of-plane bending. Poreg 8NG My are
evaluated after removing global and partial safety factors from
the equations of each of the codes. The resulting equations are
reproduced in full in the relevant sections together with plots
0T Preas’Pores 07 Mioas/Mpeq versus key nondimensional geometric
parameters, especially #, for most of the codes considered. In
addition, statistical data in the form of mean. standard
deviation and coefficient of variation (CoV) of Proess’ Poreg a1
Mreas’ Moreg 7€ given for all six codes.

Depending on joint loading and type, the joints are divided into
three main groups and a number of subgroups as follows:

Compression loaded igints

- Compression loaded 1/Y joints (Section 3.5.2)

- Compressiaon loaded DT/X joints (Section 3.5.3)

- YI/K Jjoints subject to balanced axial loading (Section
3.5.4;

ATl axially Toaded YT/K joints were tested under balanced axia]
Toading. ie. tension in one brace and compression in the other
with the net force perpendicular to the chord approximately
equat to zero. Under these conditions and uniess the braces are
of significantly different geometry. failure is always
asscciated with the compression loaded brace. The failure data
are therefore given in terms of the load in the compression
brace and the joints are Jdentifiad as compression loaded
Joints.

Tension loaded doints

- Tension loaded T/Y joints (Section 3.5.5)
- Tension loaded DT/X joints (Section 3.5.6)

Since failure of tension loaded joints may be associated with
gither crack initiation or the attainment of an yltimate load
(Section 1.4). data defined according to both these criteria are
reported in the database. The ultimate load data are analvsed
in Sections 3.5.5 and 3.5.6. while the relatively limited first
crack (crack initiation) data are considered for both T/Y and
DY/X Joints in Section 3.5.7.
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20ints subject to in-
- Joints subject to out

z-pending {Section 3.
i

ane 5.8}
of-plane bending (Section 3.5.9)

The value of moment used throughout this document s that at the
intersection of the brace and chord rather than at the chord
centreline.  This is more representative of the position at
which failure occurs.  In the analysis of structures it i
normal to base the calculation of member end moments on the
distance between chord centrelines. This results in higher end
moments than those which occur in practice and thus the use of
formuilae based on failure moment at the intersection of the
brace and chord Teads to a slightly conservative design.

Effects of combined Toading on joint strength including brace
load interaction and chord load are considered in Sections
3.5.10 and 3.5.11.

3.5.2 Compression loaded T/Y doints

Scope

This section considers test results for a total of 110 Jjoints
consisting of 98 T joints and 12 Y joints (Appendix A3.1).

Formulae implied by existing desian codes

Formuiae given in the API, CIDECT, CSA, DnV. and HSE codes are
reproduced in Table 3.5.1 (global and partial safety factors are
excluded) . Examination of these allow the following
observations to be made:

. There are differences in the implied effects of some
geometric parameters on strength. In particular, v is
inciuded only in the equations of CSA. DnV and CIDECT. The
power assigned to y in the latter code is different to the
power adopted in the CSA and DnV formulations. The API,
HSE and NPD codes imply that v has no effect on
nondimensional strength. In addition, all the codes imply
that « (ratio of chord Tength to chord radius) has no
effect on strength.

L] The CSA and DnV formulae are identical. while there is
relatively tittle difference between the API and Dnv
equations.

. The Tength factor ¥,. which accounts for the length of the
brace Toolprint on the chord surface implying higher
strengths for joints which inclined braces, is included in
the HSE formulation only. This is also unigue in that it
inctudes also the geometric modifier. §§ {raised to power
0.5), which impTies higher strength at Targe values of 3.
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Table 3.5.1 Static strength formulae for compression
loaded T/Y joints

Evaluation of design equations

Using the above equations the ratio P, .../P..q has been evaluated
for all the avaitable data and plotted versus B in Figure 3.5.1.
In addition, statistical data in the form of mean, standard
deviation and coefficient of variation (CoV) of the ratio
Press’ Fpres @76 given for all the codes in Table 3.5.2. Based on
these results the following may be noted:

N=110 Mean Std dev CoV
APT 1.21 0.31 0.26
CIDECT 1.17 0.17 0.14
CSA 1.01 0.21 0.20
bnv 1.01 0.21 0.20
HSE 1.22 0.19 0.16
NPD 1.30 0.31 0.24
Table 3.5.2 Poeas’ Parea TOr compression loaded T/Y joints

. The Standard deviation of the API and NPD predictions are
both equal to .31, while those of the CSA and DnV are
lower (both equal 0.21). However, lower values are
associated with the HSE and CIDECT predictions (0,19 and
0.17 respectively}., with the latter having also the
smatlest CoV at 0,14,

. The API formula, based on a Towsr bound interpretation of
test data. overpredicts joint strength stightly at Tow B
ratios, especiatiy Tor values close to 0.4, However, this
trend is reversed at higher 8 (>0.8). In particular the
APT predictions appear to be overly conservative at f=1.0
where there s significant scatter.
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Effect of v (= 1/2T)

As noted earlier the codes differ in their treatment of
dependence of joint strength on y ratio. The approach adopted
in the CSA/DnV formula which includes the term v is evaluated
in Figure 3.5.7. This is a plot of actual vy versus
PreasS 18/ (7.58F T%) which 1s the value of Vi implied by the CSA/
OnV formula. Whilst there is some evidence of an increase in
nondimensional strength as vy increases. this trend 1s clouded
by the scatter. Furthermore the data where vy is greater than
6.0 exhibit a decrease rather than an increase in nondimensional
strength, which cast doubt over the validity of the implied
effect of V.

Effect of K, (approximately = (1+1/sing)/2)

For Y joints the effect of the brace/chord angle @ is twofold.
Firstly the brace load is resolved into two perpendicular
directions and only the component perpendicular to the chord is
considered. Thus the term sind apoears in virtualiy all design
equations for axially loaded joints. Secondly, the length of
the interaction (brace footprint on the chord surface) is
Increased, as the brace/chord angle becomes acute (6<90°), by a
factor K, Only the HSE formulae for axiatly loaded T/Y, DT/X
and YI/K joints incorporate the parameter Ko The implied
increase  in nondimensional strength can  be significant
especially for §=45% and £=30° where K, is equal to 1.21 and 1.5
respectively. 7o investigate the validity of this approach,
experimental and numerical data for T and Y Jjoints. which are
nominally identical except for the brace/chord angie, are
reproduced in Tables 3.5.3 and 3.5.4 from a recent paper by Bolt
and Crockett {19935, These data show clearly that gqood
correlation of the ¥ joint and 7 joint data could be achieved Dy
using the term sind only. When. in addition. the parameter K,
s inciuged the T and Y data appear to diverge.

It should be noted that although the ahove evidence suggests

that adoption of the X, parameter is not valid. its use i

mplicit in the development of the HSE axial strength equations.
eff

Hicit in th
IT K, had not been included coefficients of the other parameters
in the equations would have been different. It <5 therefore not
appropriate to simply replace K, with unity.
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7 Ratio of Falio o
Pysing 1o P, Pusin
0.40 1.044 0
0.67 0.983 0
0.90 3.4903 0
Average 0.977 {
Py and Py are the strengths of a Y joint (g=41°
Joint, respectively. which are nominally identica
with regard to 8.
Table 3.5.3 Comparison of analytical joint strengths with
and without account of K,.
A v Ratio of Ratio of
Pysing to Py Pysind/K, to Py
0.8 20 1,043 0.864
0.8 32 1.017 0.843
1.0 32 1.028 0.852
Average 1.029 0.853
Table 3.5.4 Comparison of experimental joint strengths

with and without account of K, (JISSP Data).
tffect of o (=2./D)

Possible effects of the parameter @ on the static strength of
axially Toaded T/Y joints have traditionally been ignored mainly
due to the general lack of data. As a result. none of the
existing design codes includes o in the strength formulae for
/Y joints. In order to shed some iight on this issue, failure
mechanisms which may imply an « effect and the available data
are examined below, in addition to findings from recent finite
element investigations.

Compression  loaded T/Y  Joints  fail nermally  due  to
plastification and/or buckling of the chord wall in the vicinity
of the brace/chord intersection. aspecially for Joints with Tow
B ratios. However, as 8 ratip increases. a larger proportion of
the brace compression load contributes to glohal bending in the
chord than to Tocal deformation of the chord wall arcund the
brace footprint. Thus. local and global failure mechanisms
interact and failure may no longer be associated with local
punching into the chord as for low B ioints.

The above analysis Decomes more complicated 37 the chord is
snort. since the restraints applied to the chord ends {eg. via
welded  flanges) may increase the stiffress and  reduce
ovalisation of the chord cross section teading To higher joint
strength. This is more likely for high 8 ratios for the reasons
outlined above (ie. because brace loads are resisted by botn the
tocal and global stiffnesses of the chord). Thersfore, the
combiration of a short chord (low o) and high £ enhances joint
strength, wnile this effect is less likely for low 5 Joints
which are influenced less by the chord boundary conditions.

Rev A February 1996 Page 3.36 of 3.101




C6060R07.21

and o increase. with the brace
VR b i

maximum bendd
. £

atio of axial
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i Foax cad o maxdimum
rd decreases. As a resuit the plastic
Ly of the chord may be reached prior to Joint
faiiure. This is more likely for high 3 ratios. where trye
Joint failure may not be achieved or at jeast if ic Tikely to
interact with beam bending failure in the chord.

in compiling the experimental database all the available
information on chord length and chord boundary conditions were
ver this information was not always reported or

cocumented. Hows
the Doundary conditions were not described with sufficient
detail in the original references. As a result it was not
always possible to determine reliable estimates of the effective
chord Tength. or of the associated chord bending moment at the
section adjacent to the joint. This limitation has preciuded
the analysis of the experimental data with regard to failure of
the chord member (beam bending failure). and the use of the
results in the screening process since such actions are
debatable and mignt Tead fo erroneous findings. Equally. The
inconsistencies in reporting the chord tength and boundary
conditions are bound to influence the relevance of the
associated w values and affect the reliability of investigations
based on these values,

Despite the above reservations, a preliminary investigation of
the effect of o is performed in order to illustrate
approximateiy the scatier in the test data. The ratio P meas’ Porea
for the HSE formulation is plotted versus @ in Figure 3.5.3. A
considerabte degree of scatier is evident especially for a<7.0.
As noted above, in addition to the boundary conditions. 8 ratio
has an important influence on the interaction between bsam
bending failure in the chord and joint failure. In order to
investigate this further, the data in Figure 3.5.3 are split
into three groups depending on 8 ratio. It can be seen that
most of the joints with 6<a<7 which have higher capacities than
the rest of the data, have also large 8 ratios (>0.5) confirming
that the combination of Tow o (short chord tength) and high 5
enhances strength.  However, this trend is not evident for
Joints with o below 6.
A better ipsight into chord length effect may be gained by
considering enaiytical data where most of the uncertainties
surrounding experimental data could be eliminated or at least
minimised. Such data were reported by Van der Valk (1988) who
undertook non-Tinear finite element analyses of T Jjoints subject
to axial compression. Several B and v ratios were considered
nd @ ratio was varied between 6 and 18, The nordimensional
oint strengths shown in Table 3.5.5 for y=20 indicate that
r th considerably for § ratios
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g g =6 o= 12
0.7 5.91 5.6
0.4 10.87 10.6
0.6 i7.60 15.18
c.8 27.09 21.25
0 29.33 24 .54
Table 3.5.5 Non-dimensional capacities of compression

loaded T joints (Van der Valk 1988).

Effect of scale

In order to shed some light on effects of specimen size on the
strength of compression loaded T/Y joints, statistical data in
the form of mean, standard deviation and coefficient of
variation (CoV) of the ratio P_.../P,.. have been evaluated for
the following groups of joints {Table 3.5.6):

1) joints with chord diameter < 115mm
11)  Joints with chord diameter > 115mm
111) ATl Jdoints

in addition, the above groups are illustrated on Figures 3.5.1.
Based on these results, the following observations. where data
from Groups 1 and 11 are referred to as small scale and farge
scale data respectively, may be made:

Number of all joints = 110
Number of Jjoints with D > 115mm = 92
Number of joints with D < 115mm = 18
Mean Std dev CovV
Otam. | AT1 [>115| <115 | A7 [>116] <115 A1l | =115 <115
APT 11.2001.211 1,19 10.3110.24[0.151 0.26 | 0.28 10 13
CSA | 1.0110.99] 1.08 [0.20{0.2210.08] 0.20 | 0.22 10 07
HSE 11.22711.22) 1.20 10.1910.2010.16] 0.16 | 0.16 {0.13
Table 3.5.86 Prveas/Porea TOr compression loaded T/Y joints:

Scale effect

* Figures 3.5.1 suggest that the small scale data are well
within the scatter of the large scale data.
L] Table 3.5.6 shows that for the API and HSE formulae the
mean of the smail scaie data is slightly lower than that
based on the large scale data. For the CSA formula, the
opposite 13 true, dmplying that small scale specimens
extibit higher nondimensional strength.  The standard
deviations and CoVs associated with the small scale data
iower than those based on the large scale data
suggesting a larger degree of scatter in the latter group.

-
are

't may therefore be concluded that the above evidence does rot
support the notion of a scale effect relating to Group 1, and
that consideration of data from this group aiongside the large
scale data is justified.
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Conclusions

The CIDECT and HSE formulations provide the best representations
of the data. However further refinements of existing design
equations are required, especially with regard to consideration
of the chord Tength parameter o.

Comoression loaded DT/¥ doints

Cad
LI
Ty

Scope

This section considers test results for a total of 73 Joints
consisting of 75 D7 joints and 3 X Joints (Appendix A3.1).

Formulae implied by existing desian codes

_______ ) Formulae given in the API, CIDECT, CSA, DnV. and HSE codes are

o reproduced in Table 3.5.7 (global and partial safety factors are

S excluded) . Examination of these allow the foliowing

observations to be made:

L Unlike the formulae for T/Y joints. None of the DT/X
formulae inciudes the parameter y. Rather. the latter
formulae imply that # is the only parameter that infliuences
nondimensional strength.

L The formulee of API. CSA. HSE and NPD adopt a similar
format of the Q, factor which consists of a linear function
of £ multiplied by the geometric modifier Q,. In
particular there are relatively 1ittle differences between
the Q, expressions of the API, HSE and NPD.

L Similarly to the T/Y formulae, the ¥, factor is included
only in the DT/X formula of the HSE,

3 F;Tz
API ( 44-13[9)05 Sing
FT2
-~ (2.2+17.38)0, -
LA ¢ Q”siné
7*’573 F»rz
DnV 14581
FT2
HSE (7.5 +i§-5)§—:}3 5‘?{}{;’,(3
2
ek Saturak }. :}L 6’2 Fy—{
CIDECT 1-0.8181sing
Table 3.5.7 static strength formulae for compression

toaded DT/X joints
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Evaiuation of desion ecuations

Using the ghove equations the ratio Press’ Poee 025 been evaluated
for a17 the available data and plotted versus £ in Figures
3.5.4. In addition, statistical data in ths forn of mean,
standard deviation and coefficient of variation (CoVy of the
ratio Fre../Poe are given for all the codes in Table 3.5 8.
Based on these results the following may be noted:
N=78 Mean Std dev Cov
API 1.14 0.11 0.10
CIDECT 1.1z 0,17 6.10
SA 1.04 0.10 0.09
Onv 1.69 0.14 4.13
HSE 1.19 0.10 0.08
NPD 1.23 0.11 0.09
Table 3.5.8 Pmeas/ Purea TOP compression Toaded DT/X joints

* The standard deviations and CoVs for all codes are in the
ranges 0.10-0.14 and 0.08-0.13 respectively. In addition,
they are lower than the corresponding values for T/Y
Joints, 1e. the scatter in the DT/X data is less than in
the T/Y data. One possible reason for this difference is
that DT/X joints are not susceptible to beam bending
faiiure in the chord.

] There is relatively Tittle difference between the standard
deviations and CoVs of the API, CSA, HSE and NPD codes.
This is not surprising since they adopt formulae which are

broadly similar. However, the smallest CoVs and
subsequently the least scatter are those of the CSA and HSE
predictions.

i . The APl formula. appears to provide a Tlower bound
representation of most of the test data. However. it is
s1ightly more conservative at £=1.0, where the scatter is
much tower than that of T/Y joints apparently due to the
introduction of the parameter 0, into the DT/X formula.

. the CSA formula appears to provide a mean representation of
the data for B>0.4. but it is more conservative for other
values of 5.

. The DnV  formula  provides approximately &  mean
representation of the large scale data (D>115mm) for #<0.8,
but 1t is very conservative for f=1.0.

. The HSE predictions appear to incorporate a constant Tevel
of conservatism across the 3 range.
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Effect of K, {approximately = (1+1/5in@)/2)

A useful insight into the validity of the ¥, factor may be
cbtained by considering data on 0T and ¥ joints reported by
Katho (1977). The Joints are excluded from the DT/X simple
Joint database because they have cans, but they are retained for
future evaluation of effects of joint can. Table 3.5.9 shows
nominally identical DT and X joints (8=90° and 60° raspactively)
from the Katho programme which differ only with respect to the
brace/chord angle.  The cans do not affect the ratic of Pesing
Lo Pyy since they have identical geometries in the 0T and ¥
Joints.  Similariy Lo the findings relating to the validity of
Lo In T/7Y formulae, the data in Table 3.5.9 suggest that the use
0T sinf only achieves better correlation between the DT and X
data than that resuiting from the inclusion of K,. However, the
use of K, only provides the best correlation.

Specimen Ratio of Ratio of Ratio of
ot X Pysing to Pur| Pysing/K, to | Py/K, to Pyr
PDT
CCa0-3 | CLe0-11 0.97 0.85 0.99
CCo0-4 | CCeO-12 0.89 0.82 0.95
CC90-7 | CChO-13 0.95 0.88 1.02
CCo0-8 | CCh0-14 0.94 0.87 1.00
Average 0.925 0.855 0.99
Por and P, are the strengths of the CC90 and CC60 specimens
which have f=1.0 and differ only with regard tc 4.

Table 3.5.9 Comparison of experimental joint strengths
with and without account of K,.

Effect of scale

In order to shed some light on effects of specimen size on the
strength of compression loaded DT/X joints, statistical data in
the form of mean, standard deviation and coefficient of
variation (Co¥) of the ratio P_../P.., have been evaluated for
the following groups of joints (lable 3.6.10)

1) Joints with chord diameter < 115mm
11)  Joints with chord diameter > 115mm
1) ALY joints

Number of a1l joints = 78

Number of Joints with D > 116mm = 41

Humber of joints with D < 118mn = 37

Mean Std dev CoV
Diam. | AVY 1=115<115| A71 | =115} <1161 A1] [>115] <115
API 1141312011690, 11 0 0.1310.0810.1010.11]0.07
CSA 10411.0211.0710.1010.1040.0910.09(0.1010.08
ASE 119411611223 0.1610.1010.0910.08{0.0910.07
Table 3.5.10 Prrcas’ Porea TOr compression loaded DT/X joints:

Scale effect
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L] Figure 3.5,
generally ¢
impiying that the former group exhibits higher strength
than the i

4 suggest that the small scale data Jlie
3

latter. However, the vast majority of the small
scaie specimens have long chords whnich are known to
contribute To enhancing the measured strength.

s Simiterly to Figures 3.5.4, Table 3.5.10 indicates that the
mean of the small scale data is approximately 5% higher
than that of the large scale data. However, the standard
deviations and CoVs associated with the former group are
Tower than those based on the latter suggesting a greater
degree of scatter in the large scale data.

The above evidence would appear to support the notion of a scale
effect relating to Group (1). However, consideration of other
factors which affect the measured strength of DT/X joints, such
as chord length and boundary conditions (eg. whether or not
flanges were welded to the chord ends), may reveal that these
factors contribute to the observed enhancement in joint strength
more than the scale effect.

Conclusions

The HSE and CSA formulations provide the best representations of
the data.

YT/K Joints subject to balanced axial loading

Scope

This section considers test results for a total of 126 joints
consisting of 118 K Joints and 8 YT joints. A1l these were
tested under balanced axial loading. ie. tension in one brace
and compression in the other with the net force perpendicular to
the chord approximately equal to zero (Appendix A3.1).

Formulae implied by existing desian codes

Formulae given in the APL, CIDECT. CSA, DnV, and HSE codes are
reproduced in Table 3.5.11 (global and partial safety factors
Examination of these allow the Tollowing

gre exciuded;. Exam
observations to be made:

4]

{

Page 3.42 of 3.101



FT2
. (3 92y ¥
API 54 +195 sing
T2
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FT2
1.1(1.8+10.28) %2 v __
CIDECT AV == G,

the O, formulae are reported in 1able 3.7 3

Table 3.5.11 Static strength formulae for YT/K Jjoints
subject to halanced axial toading

. The design codes generally imply that when the gap between
braces at the intersection is large. a joint with a YT/K
configuration should be treated as a number of separate
simple T or Y joints. As the gap reduces, the strength of
the joint usually increases in comparison with a nominally
identical compression loaded T or Y Joint. The increase is
often quantified using the gap factor Qg which is a
function of the gap ratio. This is g nondimensional
expression of the gap as either g/D (designated as ¢ and
adopted in the API (y>20), CSA/DnV. and HSE formulae). or
g/T (sometimes referred to as g’ and adopted in the API

- (y=20) and CIDECT formulae).

] the formulae of the API and HSE imply that the strength of
YT/K joints subject to balanced axial toading becomes equal
to that of compression loaded T/Y Joints, when the gap
fector Q, is equal to 1.0 (for high values of g). Thus
represents the ratio of strength of Y7/K Joints to that o?
Y/T Joints. However, this is not the cCase in the YT/K
formulae of CSA/DnY. CIDECT or NPD. The API expressioen of
0, implies that the threshold Gap size corresponding to

,=1. 0 s g=BT for ps<20 and g=0.20 for y=24, The

orresponding thresnold gap size in the HSE formulation is

=0.60. For gaps smaller than these threshold values Q, s

1.0

L2

S ED TS

Vo oy
-

. The CIDECT formulation is unigue in that it accounts for
both gap and overlapping joints. Estimates of joint
strength are obtained by inserting a positive value of g
(for gap joints) or a negative value of g for overlapping
Joints, in the same formuia. In the (SA formulation, the
formulae used for gap and overtapping joints are identical
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except with regard to the §, facter. The othe
a completely different approach to deal wit
Jjoints based on enginesring mechanics {Sect

. There are differences in tmh implied effects of some

geomelric parameters on ”Eﬁgtﬂ in  particular,
formuiations of the gap factor (, differ significantly fram
one code to another. In add1bzer v is included only
the eguations of CSA, DnV and CIDECT. In the latter csd@
v 1s also incorporated in the ?g expr ﬁsgé@a, while in the
corresponding APT expression, th ere s ﬁf1v an indirect
reference to y. Tbe HSE and WPD codes imply iﬁgJ v has no
effect on nondimensional strength.

Evaluation of design equations

Using the above equations the ratio P .../P,.q has been evaiuated
for all the available data and plotted versus ¢ (=g/D) in Figure
3.5.5.  In addition, statistical data in the form of mean,
standard deviation and coefficient of variation (CoV) of the
ratio Press/Poes dre given for ail the codes in Table 3.5.12
Based on these results the following may be noted:

* The least degree of scatter appears to be associated with
the CIDECT and CSA/DnV formulations (Standard deviations
equal to 0.15 and 0.14 respectively). The scatter in the
predictions of the remaining codes is siightly larger
especially for g/D=0.2.

. The API and HSE formulae appear to provide Tower bound
representations of the vast majority of the data. The
CIDECT formula provides a similar representation of all the
data. The mean of P ,,/Peq TOr the CSA/DnY formula is 1.03
implying a mean representation of the data especially for
g/D=0.35.

. The scatter associated with the YT/K data appears to be
larger than that of other joint configurations. This may
be attributed to a number of factors including:

Boundary conditions: YT/K joints have been tested in many
different ways with the balanced Toad case generaily
falling into two broad categories (Figure 3.5.6). In the
tirst category, compression ]u@u]ﬂg is aap?zmd to one brace
and reacted out at the other brace and one chord end,
whilst the other half of the chord is unsupported and does
not transfer any load.  In the second category. both ends
of thé chord are supported and balanced axial loading 18
ag; ied to the braces to be reacted out at both chord ends.

t can be envisaged that different ioint capacities may be
”Q”QTGQQ depending on ?%e WQadﬁﬂg and rﬁsfrazwt conditions,
especially if the critical compression brace intersects the
unsupported half of the chord.  Numerical data on the
effects of bogndavy conditions on the capacity of K joints
are reported by Bolt et al {1992).
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» size data: Where the nominal gap is small (eg. for g/
I in small scale specimens) the weld size may have
ificant influence on the actual size of the gap.

ersized welds reduce the effective gap size which is
tikely to Tead to slightly higher Joint strength than the
strength which would correspond to the nominal pre-welding
gap. However, for the majority of tests. only data on the
size of the pre-welding gap are reported. As a resylt. the
effect  of the actual! post-welding gap cannot  be
investigated and discrepancies in the ratio of actual to
rominal gap size are 1ikely Lo contribute to the scatter in
the data.

N=126 Mean Std dev CoV
API 1.35 0.18 0.14
CIDECT 1.38 0.15 0.11
CSA 1.03 0.14 0.14
Dnv 1.03 0.14 0.14
HSE 1.22 0.19 G.15
NPD 1.56 0.22 0.14
Table 3.5.12 Prmeas’ Porea TOr K Joints subject to

balanced axial loading

Effect of v (=D/2T)

As noted earlier, the codes differ in their treatment of Joint
strength dependence on v ratio. The approach adopted in the
CSA/DnV formulation which includes the termvy 1s investigated
in Figure 3.5.7. This is a plot of actual v versus the value
of viy implied by the CSA/DnV formula (fe. the measured strength
divided by the CSA/DnV formula excluding the vy term). While
there is evidence of an increase in strength withVy for vi< 4,
1t could also be noted that there is no increase at larger v
vaiues (>4) which lie below the (x=y) Tine. It is speculated
that a horizontal 1ine around an abscissa value of 4.5 would fit
the data equally well indicating no v effect. The evidence of
dependence upon gamma is therefore questionable partly due to
the large degree of scatter.

Effect of K, (approximately = (1+1/5inf)/2)

A useful insight into the validity of the K, factor may be
obtained by considering data on YT/K joints, which differ only
#1th respect %o the brace/chord angle {(Togo 1967). Data for
compression brace angies in the range. 4, = 90°- 30°, are
available. These are summarised in Table 3.5.13 and similarly
to the findings relating to the validity of K, in 7/Y and DOT/X
formulae, suggest that the use of sind only achieves better
correlation between the Y7 and X data than that resuiting from
the inciusion of K, and sinf.  However, the use of K, only
provides the best correlation.
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Specimen Ratio of Ratio of
\{Ti’!K ;:KSA”?g t(.} PYT pKSEI’?&fKa Jig py“r
g.=75° 0.97 U.495 :
g,=45° 0.89 0.74 1.04
8.=30° 0.77 0.51 1.03
Average .88 0.73 1.02
P oand Pyr are the stren gﬁh of s pecimens with £.<90 and §=90
respectively {(Series K-1-3.2-£- 9 f,-1,283)
Table 3.5.13 Comparison of experimental joint strengths

with and without account of K,.

Effect of scale

In order to shed some light on effects of specimen size on the
strength of compression loaded YT/K Jjoints, statistical data in
the form of mean, standard devwat%on and coefficient of
variation (CoV) of the ratio P../P..q have been evaluated for
the following groups of joints (Tabfe 3.5.14):

1) Jjoints with chord diameter < 11bmm
1)  Joints with chord diameter > 115mm
i11) AY1 joints

In addition, the gbove groups are itlustrated on Figures 3.5.5.
Based on these results. the following observations, where data
from Groups (1) and (i1) are referred to as small scale and
large scale data respectively. may be made:

Number of all joints = 126
Number of joints with 0 > 1ibmm = 39
Number of Jjoints with D < 1ibmm = 87

Mean Std dev CoV
Diam. A1l | =115 1 <115 Al1 1 >1151 <1151 AT1 1=1151<115

AP 1.3511.4411.3110.1810.2210.1510.1410.16/0.11
CSA 1.0310.95]1.0610.1410.19(0.1010.1410.2010.1C
HSE 1.2211.2311.2210.19(0.211018}0.1510.17]0.15

Table 3.5.14 P oeas’ Tm, for K Joints subject to balanced

axial lcading: Scale effect

] Figures 3.5.5 suggest that the small scale data are broadiy
wwtn n the scatier of the large scale data.

L] Table 3.5.14 shows that depending on whather the API, CSA
or HSE formula is considered, the mean of the small scale
data is either iower or nigher than that of the large scale
data. this implies that the evidence of a scale effect is
guestionable and cloudad by the scatter. The standard
deviations and CoVs associeted with the small scale data
are lower than those based on the large scale data
suggesting a larger degree of scatier in the latter group.
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e be concluded that the above evidence does not
i scale effect relating to Group 1. and
ata Trom this group alongside the targe

It may therefor
suppert the notion
that consideration of
sCate data is justif

"
]
iy
o8]
(e}
]

Conclusions

There is a signific rez of scatter in the representations
of data by all the formulas However. the CIDECT formulation
may be considered to offer the hest fit because it includes
approximately a constant margin of safety across the ¢ {=g/D)
rangs.  The HSE formulation may also be considered to provide a
reasonable representation of the data

3.5.5 fension ioaded T/Y doints

Scope

This section considers test results for a total of 14 tensicn
foaded T joints. No v Jjoint data exist in the screened database
and the largest 8 ratio is 0.76. ie. there are no data for the
g=1 configuration. Ultimete load data were recorded for all the
14 joints, while crack initiation {or first crack) data were
available for only eight joints (Appendix A3.1).

The following analysis is based on the ultimate foad data. The
first crack data are analysed together with those of DT joints
in Section 3.5.7.

Formutae implied by existing design codes

Formulae given in the API. CIDECT. CSA, DnV, and HSE codes are
reproduced in Table 3.5.15 (global and partial safety factors
are excluded). Examination of these allow the foilowing
observations to be made:

] A major cause of differences between the formulae for
tension Toaded joints is whether they are based on the
first crack or ultimate Toad criteria (Section 1.4). The
uitimate load criterion is adopted in the CSA, DnV and HSE
codes. The Tirst crack criterion would appear to have been
adopted first in the API Code. then in the CIDECT and NPD
codas.  This is not manifested explicitly by specific
formulae representing first crack data. Rather. the
tension strength of T/Y and D7/X Jjoints according to the
APL. CIDECT and NPD formulae is limited to that of
nominally idertical compression Joaded Joints, presumably
because compression strength appears to be close to or
lower than tension strength if this is based on the first
Crack criterion. Furthermore the API formulae imply that
the strength of DT/X joints is lower under tension than
uncer compression for 8 > 0.6,

. The comments made in relation fo the T/V compression
formulae. including differences in the implied effects of
the geometric parameters y and K, but excluding the
parameter (,, are equally applicable to the T/Y tension
formulae.
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A1
CSA & Dny (2.3+68y "2 A
s T 5iné
HSE §8~+225}§25:Za
CIDECT 1‘1(2.8+Z4.262)y92£%;;
Table 3.5.15 Static strength formulae for tension

toaded T/Y joints

Evaluation of design eguations

Using the above equations the ratio P,,../P, .. has been evaluated
for all the available data and plotted versus 8 in Figure 3.5.8
(Press 15 the failure load based on the ultimate load criterion.
Simiiar analyses based on the first crack data are reported for
both T and DT joints in the Section 3.5.7). In addition.
statistical date in the form of mean, standard deviation and
coefficient of variation (CoV) of the ratic Preas/ Prea 81'€ gliven
for all the codes in Table 3.5.16. Based on these results the
following may be noted:

L The CSA/DnV formulation. which includes avy term, provides
the closest representation of the data (standard deviation
and CoV eqgual to 0.16 and 0.19 respectively). The HSE
predictions are more conservative and exhibit more scatter.
However, the database. restricted to T Jjoints, s
relatively small and does not represent the full § range.
in particular there are no tests for the =1 configuration.

L Given the uncertainties surrounding determination of
fension strength and the problems associated with beam
bending faiiure in the chord and short chord length
effects, the relatively limited scatter in the ({SA/Dnv
predictions is quite surprising (standard deviation is
tower than the corresponding value for compression loaded
Joints). However, it is difficult to make direct
comparisons of the statistical data relating to the
compression and tension databases since tension data are
much fewer than the compression data and the associated
failure mechanisms are significantly different.
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®  The plots and statistical data of Preas/ Porea TOr the APT,
CIDECT and NPD formulations, represent effectively the
ralic of P_... (measured tensicn strength based on the
ultimate load criterion) to Poeg  (@SSUMING  compression
loading). Therefore, the high values of Psas’ Porea (M2ANS
in the range 2.35-2.60) are not surprising.

N=14 Mean Std dev Loy
APT 2.40 0.58 0.24
CIDECT 2.35 0.52 0.22
CSA 1.20 0.19 0.16
Ony 1.20 0.15 0.16
HSE 1.59 0.38 0.24
NPD 2.60 .64 0.24

Table 3.5.16 Preas/Parea fOr tension loaded T/Y joints

Effect of v (=0/2T)

The vatidity of adopting av} term in the CSA/Dnv formuiation is
investigated in Figure 3.5.9. This is a plot of actual vy
versus the value of viy implied by the CSA/DnV formula (ie. the
measured strength divided by the CSA/DnY formula excluding the
Vi term). A trend for tensile strength to increase with vy is
noticeable suggesting that the CSA/Dnv approach is adeguate.
However, this conclusion, based on a relatively small database,
should be reeval

tuated if more data become available.

Conclusions

The CSA/DnV formulation provides the best representation of the
data.

3.5.6 Tension loaded DT/X ioints

Scope

This section considers test results for a total of 32 tension
foaded DT Joints.  No X joint data exist in the screened
database. Ultimate load data were recorded for al] the 37
Joints, while crack initiation {or first crack) data were
available for only 12 joints (Appendix A3.1).

The Tollowing analysis is based on the ultimate load data. The
first crack data are analysed together with those of T Joints in
Section 3.5.7.

Formulae implied by existing desian codes

Formulae given in the API, CIDECT, CSA. Dnv. and HSE codes are
reproduced in Table 3.5.17 (global and partial safety factors
are excluded). In addition to the comments on the formulae for
tension leoaded T/Y and OT/X Jjoints made in Section 3.5.5 in
relation fo the effects of tension failure criteria, the
following may be noted-
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. The DnV formulae imply that the fension strength of 0T
Joints 1s equal to 1.7 times their compression strength.
. The Tormulae of a1l codes imply that the parameter v does
not influence the tension strength of DT/ Joints.
£y
AT (3.4 *2?1?? 3(!;
API sing

; 7{%5.75} F T2

CSA VT a5 TRl sine

Dny 7+5.78) ¢ +2

(BT only) ”{m RT
FT2

(7+17 YK

HSE + !”Qasmg .

(5.2 )RT?

CIDECT 1-0.813|sing

Table 3.5.17 Static strength formu]aé for tension

loaded DT/X joints

Evaluation of desian equations

Using the above eguations the ratio Preas’ Poreg 135 DeEN evaluated
for all the available data and plotted versus 3 in Figure 3.5.10
(Preas 15 the failure load based on the ultimate load criterion.
Similar analyses based on the first crack data are reported for
both 7 and DT joints 1in Section 3.5.7). In addition,
statistical data in the form of mean, standard deviation and
coefficient of variation (CoV) of the ratio Preas’ Porea @78 given
for_all the codes in Table 3.5.18. Based on these results the
following may be noted:

. Given the uncertainties surrounding determination of
tension faiiure Joads. the CSA/DnY and HSE formulatiors
appear 1o provide reasonable representations of the data
{means equal to 1.3% and 1.55 respectiveiy). However, the
scatter 1s significant and the predictions are more
conservative at A=1.0.

. The statistical data of Preas’ Poreq TOr the CIDECT ang NPD
formulations. represent effectively *he ratio of P meas
{measured tension strength based on the ultimete Jloac
criterion) to P, (assuming compression 1pading).
Therefore, the high values of Pness’ Pores (meaNS equal to 2.49
and £.62 respectively) are not surprising.  P.. according
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b g

to the AFL formula, which does not include the factogf

s even iower than the values for compression Joaded joints
for g=0.6. This explains partly the excessive conservatism
of the API formuiation at 8=1.0 and the very high standard
ceviation and CoV equal to 1.04 and 0.47 respactively.

N=37 Mean Std dev CoV
APT 2.07 .84 0.47
CIDECT 240 .87 0 74
CSA 1.39 .38 0.28
OnV 1.39 .38 0.28
HSE 1.55 g.41 0.27
NPD 2,62 0.e2 0.24

Table 3.5.18 Preas’ Porea O tension loaded DT/X joints
Conclusions

The CSA/DnV formulation provides the best representation of the
data.

Crack initiation in tension loaded T/Y and DT/X ioints

The formulae implied by existing codes for the design of tension
Toaded T/Y and DT/X Jjoints are evaluated, using data based on
the ultimate load criterion, in the two previous sections. A
similar evaluation is performed in this section using data based
on crack initiation in tests on eight and 12 T and DT joints
respectively (Appendix A3.1). The formulae of the API, CSA and
HSE codes are only considered. These are described in detail in
the previous two sections.

The ratio P .../P..q has been evaluated for all the available data
and plotted versus g in Figure 3.5.11 (P, is the failure load
based on the crack initiation criterion). In addition,
statistical data in the form of mean, standard deviation and
ceefficient of variation (CoV) of the ratic Prcas! Porsg a7€ given
for the combined 7 and DT data in Table 3.5.19. Based on these
results the following may be noted:

N=20 Mean Std dev CoV
AP 1.b2 .58 0.38
CSA 0.85 0.25 0.29
HSE 1.01 0.26 (.26

Table 3.5.19 Preas’ Ppog TOr tension loaded T/Y and DT/X
Joints P, is based on crack initiation

. The API, CSA. and HSE formulae appear to provide,
respectively, a lower bound, an upper bound and 2 mean
representations of the data. This is not surprising given
the bases of these formulae (see Sections 3.5.5 and 3.5.6).

Page 3.51 of 3.101



.

®  The scatter in the crack initiation data is broadly similar

te that associated with the ultimate load data In

addition. the levels of scatter in the T and DT data are in
general comparable

L Given that only the APl formulation is based on the
strength of compression loaded joints, the above evidence
suggests that formuiae for compression loaded joints may
provice approximately lower bound representations of crack
initiation data. Howaver this observation reguires
further validation.

3.5.8 Joints subiect to in-plane-bending moments

This section considers test results for in-plane moment Toaded
Joints. The available data consist of 15 T oints, 2 Y Joints,
7 DT Joints, and 6 K joints (Appendix A3.1).

Formulae implied by existing design codes

Formulae given in the API. CIDECT, CSA, DnV. and HSE codes are
repreduced in Table 3.5.20 (global and partial safety factors
are excluded). Examination of these allow the following
observations to be made:

(3.4+198)0.84 AT
e B .
API sing
F T2
CoA (3.4+190)0 2
K only >
CSA 65?"”2@ FVT 2
T/Y & DT/X sing
an 65}/3;2(3 FYTz
T only siné
HSE 58yV2dF T2
(1.114.858472¢ AT
CIDECT ey
Table 3.5.20 static strength formulae for in-plane moment

Toaded joints
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. Each of the API, CIDECT, HSE and NPD codes gives one
formuia for in-plane moment strength irrespective of joint
type (/Y. DT70 or YT/K).

. The CSA gives cne formula for T/Y and DT/X joints, but

recommends a different formula for K joints which s based
on a G, formuiation similar to that of the API.

ricted to T joints only {as implied
de).  However, 11 s noted that if
on is not availeble, the Tormula may

"y
(T3 s

L The equations of CSA (1/Y and DT/X), CIDECT, DnV (T only),

and NPD are similar except that the Jeading constant
differs slightly from one code to another. The HSE formula
is also similar but does not permit resolution of moments,
applied to inclined braces, into perpendicular components
(no sind term in the full HSE equation).

. The formulations of the API and CSA (K joints) imply that

y does not influence the nondimensional strength. However,
all the other formulations suggest the opposite and include
the termv¥y in their Q, expressions.

. The codes do not imply. that the direction of in-plane-

bending moments, when applied to inclined braces, affect
Joint strength. The likeliest reason for this lack of
guidance is that the majority of data. on which the
formulae were based, are for T joints where the question of
direction of applied moment does not arise.  However,
limited data generated in the JISSP Programme for Y and K
joints, and recent finite element analyses of Y joinis,
suggest the following:

° A moment causing the inclined brace of a Y jeint o
rotate in the direction ¢of the acute brace angle can
tead to failure at & load significantly lower than
that under a moment applied in the opposite direction
when f and v are high {Healy and Zettiemoyer. 1993).

. Moments causing the inclined braces of a series of K
joints {(B=1.0, 8=45° and 8=45°) to rotate in the
same direction led to failure at a ioad which was 17%
tower than that achieved under moments causing
rotation in the opposite directions towards the gap.
However, the opposite was observed for similar joints
with B=0.5, where the difference in failure loads was
approximately 10% (DEn 0T 89 267, 1989).

Fyaluation of design eguations

Using the above equations the ratio M .../My.s Nas been evaluated

1 the avaitable T/Y. 07 and K data and plotted versus £ in
Figure 3.5.12, where the data are labelled according to joint
5 ie. T, Y. DT or K). In addition. statistical data in the
form of mean, standard deviation and coefficient of variation
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{Ca?EA@?wtég ?%ﬁiﬁ 5meﬁfﬁ§méiare giv 1)
type in fabie 3.5.21. Based on these results the following may
be noted:

L The piots show that the ratios Moeas’ Mg TOr two Y Jjoints
from the JISSP Programme (8 = 0.8 and 1.0) are very high in
comparison with the rest of the data, ie. the joints
exibit exceptionally high strengths. The reason for this
apparent ancmaly is twofold.  First, these joints were
tested under moments in the direction opposite to that of
the acute angle (see above), and second, they had short
chords (@= 6.2) with flanges welded to the chord ends.
which may have increased the stiffress and  reduced
deformation of the cherd leading to higher Joint strength.
Given the small population in the T/Y database (N=17). the
relatively large standard deviations and CoV of the T/Y
data may be partly attributed to the effects on these two
Y joints.

L With the exception of the above JISSP Y tests. the
formulations of the CSA, DnV, CIDECT and NPD appear to
provide similar representations of the data with relatively
Tittle scatter. This is confirmed by the nsignificant
differences between the standard deviations (and Covs)
associated with the four formulations. Furthermore, the DT
and K data are well within the scatter of the T data which
supports the adoption of & single in-plane-bending formula
for all Joint types by most cedes (eg. CIDECT and NPD).

L The scatter associated with the HSE representation of the
Y and K data is larger than that of CIDECT. The two
formulations are broadly similar except that the HSE does
not allow resolution of moments when these are applied to
inclined braces. Healy and Zettlemoyer who undertoock a
comprehensive evaluation of the experimental data and
generated finite element data on T/Y Jjoints with 8 in the
range 45°-90° (Section 3.3), suggest that the format
adopted in the CIDECT equation is adequate. In addition,
they recommend an equation which., except for a slightly
different leading constant. is identical to the CIDECT

formuia.
T7¥ N=17 DT/X Ne=7 YT1/K N=6
Mean | SD | CoV [ Mean| SD | CoV |Mean| SO | CoV
APD 1 1.43,0.5210.3711.2910.2010.1611.2910. 1210 10
CIDECTI1.10710.2370.22 01034 0.05)c.0541.0500.11 10 10
CSA 10.9810.20010.2010.9110.0410.05(1.0210.10l10 10
Dny 10.9810.2010.21) -- . -- -- -- -
HSE 11.2610.4710.3711.1010.05]0.0511.5810.17 1010
NPD 11170 0.2406.22011.1040.065 00511121 0.12 10 10
Table 3.5.21 Meas’ Morea TOr in-plane moment Toaded joints
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Effect of v (=h/7])

In adadition to the above evidence that formulations which
inciude the vy provide good representations of the dat . the
effect of this ferm is investigated further in Figure 2.5 13
This is a plot of actua!l v versus the value sf”vﬁ imptied by
the CIDECT formula (Je. the measured strength divided by the
CIDECT formula excluding the vy term). With the exception of
the two aforementionsd two Y tests from the JISSP Programme &/
.61, a trend for in-plane-bending strength to increase almost
rly with vy is clearly noticeable suggesting that the
T approach 15 adequate.

#

I
nea
TOEC

i

£y

Effect of  (=q/D) in K dpints

Limited data gererated in the JISSP Programme on four K Joints
with ¢ equal to 0.1 and 0.15 (#=0.5) suggest that the measured
strength of the joints with (=0.1 was aimost equal to that of
the joints with {=0.15.

Conclusions

The CIDECT formulation (and the nearly similar formulae of
CSA/OnV) provides the best representation of the data. The HSE
approach which does not allow resolution of moments. when these
are applied to inclined braces, is not supported by the
availabie data.

3.5.6 Joints subject to out-of-plane-bending moments

Scope

Ihis section considers test results for out-of-plane moment
ioaded joints. The available data consist of 19 T joints, 1Y
Joint, 5 DT joints, 4 YT joints. and 4 K joints (Appendix A3.1).

Formulae implied by existing desian codes

Formulae given in the API, CIDECT. CSA, DnV, and HSE codes are
reproduced in Table 3.5.22 (global and partial safety factors
are excluded). Examination of these allow the following
observations to be made:

. Each of the API, CIDECT. CSA and NPD codes gives one
formuia for cut-of-plane moment strength irrespective of
Joint type (T/Y, DT/7X or YT/K).

. The HSE gives one formula for T/Y and YT/K doints, and
recommends an aimost identical equation for X joints which
differs only with regard to the power assigned to the
parameter Qo (0.5 for X joints and 1.0 for T/Y and YT/K
joints).  This impiies that. when B approaches 1.0, the
strength of X joints does not increase as steeply as the
strength of 7/Y and YT/K doints.

L)

ad
e .
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APT 3.4 +75>Q (0.84) 5;!1,
3.56d FT?
CSA 1-0.81¢ sind
E:!ﬂaf Lono . A A FTE
o G‘nggasz%wg S;ﬁg
oF (1.6 +78)0,d v
T/Y & K : o £ 5ing
HSE . BT
DT/X (1.6+78) 44, ds?n@
. 2.7d FT?
CIDECT " 1-0.818 sind

Table 3.5.22 Static strength formulae for out-of-plane
moment loaded joints

. The DnV formula is restricted to T joints only (as implied
by a diagram in the code). However, it is noted that if
more accurate information is not available. the formula may
also be applied to inclined braces.

. The equations of CSA. CIDECT. and NPD are similar except
that the Teading constant differs slightly from one code to
another.

L] There are clear differences in the implied effects of the
parameter 4 and in the fermat of the , factor.

. Only the DnV formulation implies that y has an influence on
the nondimensional strength. However, the power assigned
to vy s only 0.1 which suggests a relatively small vy
effect.

Evaluation of design eguations

Using the above equations the ratio M_,,./M,.. has been evaluated
for all the available 7/Y, DT and K data and plotted versus £ in
Figure 3.5.14. where the data are labelled according to joint
type (e T, Y, 07 or &3, In addition, statistical data in the
form of mean. standard deviation and coefficient of variation
{(CoV) of the ratio M .../M .. are given separately for each joint
type in Table 3.5.23. Based on these results the following may

Co060R07.21 Rev A February 1996 Page 3.56 of 3.101



Co060R07.21

e noted:

T K=2{) or N=h (17K N=H

Mean ] SD | CoV | Mean| SD | CoV [Mean!| SD | Cov
APT 1.2010.291¢0.2411.08]0.13]0.1211.08{0.1210. 17
CIDECT 1 1.2510.25106.2011.1040.0710.0711.1310.1710.1¢5
CSA LOAY0.2140.20610.9210.06,0.0710.9410.14)0.15
ony 1.2610.451 0,357 -- . - - -~ -
HSE D290 2700201 27002200181 113001500 14
NPD A6 02310200 1.0200.0730.0711.050(0.1610.158

Table 3.5.23 Mreas/Morea TOr out-of-plane moment loaded joints

] the formulations of the API, CIDECT, CSA. HSE, and NPD
appear to provide similar representations of the data with
large scatter for £ > 0.6, This is confirmed by the
refatively small differences between the standard
deviations (and CoVs) associated with the five
formulations.  Furthermore, the DT and K data are well
within the scatter of the T data which supports the
adoption of a single out-of-plane-bending formula for all
Joint types by most codes.

. Similarly to the in-plane-bending data, the plots show that
one T and one Y joints from the JISSP Programme (8 = 0.8)
extibit higher strengths than most of the other data.
However, this observation could also be made in connection
with T Jjeints from other programmes (eg. TNO and
Makino/Kurobane) . Although, this behaviour could be
attributed fo the combined effects of short chords and high
8 ratios, further analysis of the data is required posSsibiy
using finite element analysis where the factors causing
scatter could be isolated.

. The DnV predictions are excessively conservative for T
Joints with 8 > 0.6. Furthermore, the implication that
nondimensional strength is proportional to y®' (= 1.26 and
1.45 for y = 10 and 40 respectively) is not justified,

given the large scatter.

. e Mpeas/Moee ratios (evaluated for the HSE formulae) for
the two DT joints with B = 1.0, are relatively larger than
those for the three T and two K Joints with similar £
ratio. ihis suggests that the HSE's adoption of a
aifferent formula Tor DT/X joints. implying that when B
approaches 1.6, their strengih does not increase as steeply
as that of T/Y and YT/K joints is not justified.

Conclusions

There are 1ittle differences with regard to goodness of fit
between the formuiae of the API, (CSA, HSE, CIDECT. and NPD
codes . However, the CSA/CIDECT/NPD format appears to be

siightly superior to that of the API and HSE codes.
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Tests on simple T, DT, and K joints indicate that the presence

of compressive stresses in the chord, in addition to those
required for equilibrium, can cause a significant reduction in
Joint strength. Such a reduction is quantified in design codes
using the factor G which is defined as the ratio of Joint
strength in the presence of chord stresses to ioint strength
associated with brace loads only. Examination of the
expressions of {, in various codes revesls that the formulation
proposed py Boone et al (1982) and first adopted by AP RP2A in
1984 1s widely accepted. One key exception in the formulation
proposed  in Japanese studies by Kurobane and co-workers
(Kurobane et al 1984) and adopted in [IW and CIDECT circles (see
Section 3.2.3).

The O expression of Boone et al is based on a series of tests
on 0T Joints with uniform and trianguiar chord stress
distributions. The joints tested under axial. IPB and OPB hrace
loads have £ ratios in the range 0.48-0.67. The 0; equation
developed largely on the basis of these tests suggests the
following:

. Reduction is proportional to yA® (A, the chord utilisation
ratio, is defined in Section 3.2.3).

. Chord stresses due to axial and bending loading are
considered to have identical effects, i.e. no distinction
is made between uniform stress distributions associated
with axiat chord Toads and bending stress distributions
which are characterised by a gradient across the chord
cross section. This conservative approach is not based on
evidence from tests. Rather it appears to be driven by the
lack of data to support alternative treatments.

] For a fixed stress distribution in the chord, brace in-
plane bending causes the Tlargest reduction in joint
strength.  This is followed, respectively, by brace axial
loading and brace out-of-plane bending.

] The reduction in joint strength becomes more significant as
the chord slenderness parameter, y, increases. i.e. the
chord thickness decreases.  This may be attributed to the
associated reduction in the bending stiffness of the chord
wall which, in the presence of chord compressive stresses,
could lead to an acceleration of joint failure, especially
in joints that resist brace loading by local chord bending.
In addition, once the chord wall has deformed. local P-A
moments may develop and contribute to joint failure.

IT the extreme fibre stresses in the chord are tensile al]
design codes do not require any reduction in joint strength.

The O expression of Kurcbane et al is based on a large database
of tests performed mainly on K joints with uniform chord stress
distributions and subjected to balanced axial loading. Most of
these tests were not considered fully in European and American
studies due to difficulties in tracing the original data and

C6060R07.21 Rev A February 1996 Page 3.58 of 3.101



BOMEL®

possibls

ibly tor 'Sé?ﬁﬁi?FHQ with regard to acceptance of data from
small scai

or
1o Soecimens.

Uatabase on chord load effects

E% order to take advantage of Japanese cn@rd stress data which
have become available recently and of data which were not
considered in previous studies. a comprehensive datahbase
consisting of 113 resa%ig from. 7. 0T, and K/YT Joints has been
assembled.  This s included in full in Appendix A3.2 and
summarised in Table 3.5.74,

Heterence Jdoing Beta Brace load Chord Hp of

fyne (/0 Load Joints
Makinc et al (1985} ¥ G.EL 11.6-23.37 Bai. Axial 1Pe 14
£ 3.61 23.3 Bal. Axial Comp 1
Karajima et ai (1971 YT 1 0.29-0.46 1 13.1-51.0 Bat. Axiad i1
YT 16.29-0.46 1 13.4-51 4] Bal, aAxia? 1
Kurobane & Makino {1965} K 8.4z 14.6-15.9] 8al. Axial 15
K 0.42 15.8 Bat. Axial i3
Togo {1967) K §.48 151 Bal. Axial 9
K .48 5.1 Bal, Axial 9
Koning & Wardenisr {1981) g 0.31-1.0 | 17.1-28.6] BaY, Axiz: : 9
oone et 3l (15982} or 0.67 5.3 Comp Comp ?
ot G.57 25.32 Comp Corp+IPR i
o7 087 5.32 PR Comp 1
oT §.67 25.32 P8 Comp+IP2 1
i) 0.57 25.32 0P Comp 1
o7 0.57 25,32 OPE Comp+IP8 1
Weinstein & Yura {1985) BT 14.35. 1.0 558 Comp Comp 2
oT 3.35 25 50 Comp Comp+IPB H
o7 1.00 25.52 iPs Comp 1
T 1.00 25.53 IPR Comp+IPR 1
oT 1.40 25.53 0PE Comp 1
Sanders & Yura {1987} oY 1.00 25.53 Tension Comp i
JISEP {1989 T 0.8 2585 Comp Comp 1
T .85 24.99 Comp Comp+IP3 1
oY 5.8 20.99 Comp Comp H
T 0.80 20,45 iP5 Comp i
T 08¢ 20.65 IFB Comp+IPB 1
T .80 2117 arB Comp H
T 080 24,82 opa ComprIPB H

Table 3.5.24 Scope of the chord stress database

The following approach has been adopted in assembling and
assessing the database.

1. In Tine with the screening criteria adopted in assembling
the simple joint database. Jjoints with a chord diameter
sma Tef than 100mm have not been considered. This has
resulted in the exclusion of approximately 14 Japanese
tests on K joints with g chord diameter of 61 mm. Omitting
these tests s cnraiﬁerﬂd acceptable dus to  the
availability of a large volume of at?er Japanese tests of
broadly similar Egad1ﬂg and geometrical propertises but with
chord diameters Targer than 100mm.
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T
In some programmes, limited tests rforped without
chord ioading in order to provide te for use in
quantifying the parameter O, associated with tests including
chord loading. However. in most of the programmes. hase
data are not available or some parameters relating to
material and/or geometric properties of the base tests are
different to those of the tests with chord Joading. In
such cases, base data for each series of tests have been
inferred from data generated in the same programme by

[AW]

-
applying correction factors. These are functions of
geomelric and/or material properties and are based on
stalic strength equations relevant to the joints under
consideration.  Key aspects of determining base data for
all tests in the database are summarised in Table 3.5.75.

3. Chord stresses are estimated from the axial forces and
bending moments applied externally to the chord. In the
case of K joints tested under balance axial loading, brace
loading generates forces in the chord to satisfy
equilibrium. As a result, the total force in the chord.
i.e. the sum of external forces and equilibrium forces due
to brace loading. may vary along the chord length depending
on the chord support conditions in the testing frame and
the location with respect to the compression and tension
braces.  However, within the context of assessing the
effects of chord stresses, it may be argued that only
stresses due to external chord Toading need be considered,
since equilibrium stresses are accounted for implicitly in
the derivation of basic joint capacity, i.e. in the absence
of external chord loading. Ignoring equilibrium stresses
is permitted in the IIW and CIDECT codes which are based on
the equations of Kurobane et al (1984), but not in the
other codes which, similarly to AP RP2A, require that all
chord stresses are considered. 1In the present evaluation
of the chord stress database, equilibrium stresses have
been considered only in connection with the U Series of the
Nakajima tests (Nakejima et al 1971), where they are
tensile on both sides of the compression brace. In al)
other cases. where eguilibrium stresses are compressive,
only stresses due to external chord loading have been
considered. This approach is conservative and is partly
driven by the uncertainties relating to determination of
the eguilibrium stresses.

Assessment of dats

s

w

‘uation of the database enables the following conclusions
drawn:

Eva
be
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Refarance Specimens, Joint Bazs Tests Dorrection Correction Notas
Series Type for Factor
Parameters
Makino KA K KAb T Tt
et al K8 K KB4 T 17
1988 KL K KAk Foo T, V gy;qu 2, cioec
KD « KAL Fo, T, ¥ F 170, 9, cioeer
KE X Ka4 2
£, T, ¥ F IR, 9 cioser
Nokajima et L T £-2.3-4 Fol.l.y 1R TR1.8+10.28] g,
1;;’! i YT U-2.4-4 gY’;”{;r? , 3 Q.
FT%0,01.8+10.25
3
Kur-Mak 1965 264-2%1 K Av(261,262,263} T,8 T, 8, e
Tegs 1967 I-111 K Av{IV-1,1v-2,1¥-3) None Mone
V-¥I1 K Av(Iv-1,1v-2,1¥-3) Hane None
Koni?g gg E g £,T.4 EYTEQQ Q, s
an £,7,9 T a,
Wardenier 35 K 16 F:,T,g F:ﬁa: Q: :z:
1981 36 K AV(10,11) F.T £ 1ig .
37 < Av(12,13) v o8 Yreg” o Mt
' F,.T.g F,TQ, €, nse
39,40 K AvE14,15) F.1.g F 140 Q. et
vl ¥ £ g
4t 45 K Av(21,22) Nore None
Boone et al APZ,APS AME )3 Al None Kone
1982 P12, 1411 DT 17 None None
GRS, CN10 bT 08 None None
Weinstein APZ5 BT Av(A21,822) None None
and Yura APLE  AMAT DT Av{A40, ALT) None None
1986 1P29, IM30 DT 124 None Hone
cp27 oY Av{023,028} None Kone
Sanders 1987 TP& T Av(T1,12,73) Nong Hone
JI58P 1989 4.1, 4.2 T 1.3 £, T F1TF
2.2, 22 '? TCC-2 éS?;{nenk,) F,T,d.8,7 FyTzciQu &, use
=y - - F rT FT
4.7 D7 7 (Gibsteim) F,f 2 Fgﬁdu“ Qs

C6060R07.21

Base tests and correction factors used in
evaluation of data on chord stress effects

Table 3.5.25

Effect of vA? on axially loaded joints: Figure 3.5.15 indicates

that under the effects of compressive chord stresses, the
capacity of axially loaded joints may be considered o decrease
Tinearly as yA*increases. In addition, a curve representing the
0 eguation recommended by Boone et al {University of Texas) can
be seen to represent approximately the mean of the experimental
Q. data. However, most of the new Japanese data relating to
axiaily Joaded K joints subjected to in-plane bending in the
chord (Makino et al 1988) fall well above the analyfical Q
predictions.  This finding indicates that a bending stress

W"g &

v

é..
distribution in the chord, where the stresses are compressive in
the region adjacent to the braces. is effectively ]
detrimental to joint capacity than a uniform compressive stre
distribution.
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Effect of vA® on moment loaded ioints- Figure 3516 indicat
thal under the effects of compressive chord stresses, +
capacity of T and DT joints loaded by in-plane or out-of-nia
bending may be considered to decrease Tinearly as vA®increases,
The G curves recommended by Boone et al would appear to
represent approximately the experimental 0, data. However, the
data, which originate from programmes at the University of Texas
and the JISSP Programme. are relatively very limited and are
characterised by a considerable degree of scatter.

7

5OIE D
D wn

(9N

i

Effect of Z ratin: The ratic of test G, to predictions evaluated
ccording to the equations of Boone et al are plotted against B
ratio in rigure 3.5.17. Despite the significant scatter. it can
be seen that. in general and excepting the Makino tests where
only bending stresses are applied to the chord, the reduction in
Joint capacity under the effect of compressive chord stresses is
less significant at higher B ratios. This trend characterises
specifically most of the data from the University of Texas and
the JISSP Programme where a range of 8 ratios larger than 0.65
are considered. However, in the majority of the other
programmes only one value of § or a limited range of Tow
ratios are considered, which makes the evaluation of the effect
of this parameter rather difficult.

With regard to data at g=1. four tests on T and DT joints tested
under brace axial or out-of-plane bending loads show no
reduction in strength due to chord loading. Two DT joints
tested under in-piane bending show approximately 10% reduction
or 10% increase in capacity in comparison with the no chord Toad
reference test. With regard to K joints tested under balanced
axial Tloading, the two tests from the Koning and Wardenier
Programme  (1981) indicate & reduction 1in capacity of
approximately 10% under the effect of compressive chord
stresses,

Effect of ratio of bending to axial stress: As noted earlier
current code guidance (e.g. API RP2A} does not distinguish
between chord stresses due to axial compression and those due to
bending moments. This may be due to the lack of data on effects
of chord bending stresses particularly when the maximum
magnitude of these exceed that of axial stresses. The data on
which the APT and ITW/CIDECT guidance are based are mainly from
tests with uniform compression stresses in the chord. Only a
few data with additional bending stresses are available, namely
from the University of Texas and the JISSP Programmes, where the
resultant stress distribufion is of a triangular shape. i.e. the
magnitude of the cuter fibre bending stress is equal to that of
the compressive stress. Recently Makino et al (1988 performed
tests on K joints with balanced axial loading applied to the
braces and in-plane bending moments applied to the chord,
Moments inducing tension and compression bending stressas in the
chord in the vicinity of the compression brace were considered.
In the first Tloading cass, 1.e. tension bending stresses
adjacent to the compression brace, the joints failad 2t loads
well above those corresponding to the no chord load case.
However, 1in the second case, 1.e. with compressive stressas in
the vicinity of the compression brace, the capacity of the
Joints deteriorated in comparison with the no chord load case.
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Evaiuation of the latter tests using the G, equation of Boone et
al produces very conservative estimates (see Figures 3.5.15 and
3.5.173. However. the degree of conservatism can he reduced o
levels identical to those achieved with uniform chord stresses
if the following alternative expression of A is used:
ﬁ\ - fa * fb
VIZ’_*FV

This expression is suggested by Weinstein and Yura (1986} for
assessment of DT joints subjected to out-of-plane bending when
the chord bending stress is greater than the chord compressive
stress. 1.e. when there is tension on ane of the extreme fibres.
One advantage of this expression is that it leads to similar
predictions for the aforementioned DT tests where bending and
axial stresses of equal magnitudes were applied at the chord.
Table 3.5.26 shows all the data involving bending stresses in
the chord evaluated using both expressions of A.

Reference | Spec. | f./F, | f,/F, | Test Q / | Test Q /
(1-AA2) | (1-AVAS)
KA-1 0.0 -0.6 1.16 1.0
KA-2 0.0 -0.9 1.82 1.11
Makino KB-1 0.0 -0.6 1.25 1.07
et al KB-2 0.0 -0.9 1.80 1,11
KC-1 0.0 -0.6 1.08 0.96
KC-2 0.0 -0.9 1.51 1.08
AME -0.3 | -0.34 1.03 1.03
IM11 -0.3 1 -0.34 0.96 0.9
U. Texas | OM10 -0.3 | -0.34 1.04 1.04
AM47 1 -0.31 | -0.35 0.95 0.95
IM30 | -0.31 | -0.35 J.91 0.91
4.2 -0.27 | -0.27 1.01 1.01
JISSP 4.4 -0.29 | -0.29 1.20 1.20
4.5 -0.27 | -0.27 1.31 1.31

A, is evaiuated using the University of Texas expression
A, is evaluated as (F+f)/ (V2 F)

Table 3.5.26 Effects of the ratio of axial to bending stresses

tffect of chord fensile stresses: Figure 3.5.18 shows the ratio
of test [, to predictions evaluated according to the egquations
of Boone et al, assuming that these are applicable for tensile
chord stresses, plotted against the ratio of chord stress to
yield stress. Data corresponding to K joints under balanced
axial loading with compressive or tensile chord stresses are
considered. It can be seen clearly that, with exception of two
tests from the Nakajima Programme (1971). tension chord stresses
tend to increase joint strength or at least they do not reduce
it dn comparison with the no chord load case.  This finding
suggests that the current approach adopted in virtually all
codes in relation to effect of tfensile chord stresses is
adequate. However, recent finite element data for compression
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toadad OT Joints with £ = 1 subjected o
chord stresses indicate that chord fensi
capacity of this joint configuration
Unfortunately, there are no equivalent v
to verify this analytical finding.

Conclusions:

The API's 0, equations which are has:
of Texas appear to represent most of the available experimental
data adequately. However, the sxperimental evidence is ¢louded
by & significant degree of scatter which needs fo be addressed
in order o increase the confidence in the present design
approach. Since additional tests are likely to suffer from more
scatter, 1t 1s recommended to perform limited finite element
studies to address key areas of uncertainties which include:

d on work at the University
i

o
&
e
i
E
H

. Effect of £ ratic, 1.e. whether there is a threshold value
above which chord stresses do not reduce joint capacity.

] Effect of chord bending stresses, especially when their
magnitude exceeds that of compressive chord stresses.

L effect of chord Toading on capacity of joints loaded by in-
plane or out-of-plane brace bending. Current guidance is
based on a very limited dataset.

L] Effect of tensile chord stresses on joints with 8 = 1.

. Effect of eguilibrium chord stresses, e.g. those which
result from brace loading in joints with inclined braces,
and whether such stresses can be ignored when determining
chord stress effects.

New Japanese data appear to support an alternative expression
for the chord utilisation ratio A where the chord bending stress
exceeds the chord compressive stress.  Application of the
current A equation leads to excessively conservative estimates.
However, the aiternative expression produces conservatism levels
which are broadly similar to those associated with uniform
compressive chord stresses.

Brace load interaction

The effects of multiple-axis (or multi-directional) brace
loading. 1.e. combinations of axial. IPB and OPB brace forces,
on joint strength are accounted for by using load interaction
equations. A number of such equations are available (Section
3.2.3) but only twoe forms have found wide acceptance, namely.
those of the API-WSD arcsin eguation and Hoadley's polynomia)l
gg%atisn. These and other more recent formulations are out)ined
elow.
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The interaction eguation in API-WSD is as follows:
I § 2 e
P Z ) M M
+ Z arcsin _ +{ — <1.0
p 7 M M
E e B El OFg

where P and M are applied brace Toads and P, and M, are allowabie
Joint capacities. The value of the left haﬂd ierw in the above
equation 1s usually referred to as the 'utilisation ratio’. the
“interaction ratio’ or the ‘unity check’ of the joint under
consideration.  Since the arcsin term is undefined if the
argument under the square root sign exceeds 1.0, API-WSD
requires that the following is satisfied:

2 2

..ﬂ. + mri :51.0

v, M

P8 g jors

The arcsin interaction equation is based on the plastic section
strength of a circular hollow cross section, i.e. it is intended
to predict failure of tubular members rather than that of
tubular joints. Its use to account for load interaction effects
on tubutar joints may be Justified only on the basis of its
representation of tubular joint test data.

APT-LRFD

The interaction equation in API-LRFD is as follows:

2 2

1-cos .E*Ji + jﬁ + ii < 1.0

Pf

where P, and M, are Tactored joint capacities. Zettlemoyer
{1994) notes that the LRFD equation is & rearranged form of the
WSO arcsin eguation, and that the egquations give the same joint
‘unity check’ only when the assessment point lies on the failure
surface {i.e. 'unity check” = 1.0). However, the LRFD eguation
nas the advantage that caiculation of a "utilisaticon ratio’ is
always possible even if the argument of the trigonometric term
exceeds 1.6,

HMoadley and Yura {(1985)

Based on interaction tests on [T Joints with B3 = 0.67 and v =
5.3, Hoadiey and VYura prsposed t'% fo?%sﬁzng psl¢nomgaé
interaction equation as a lower bound representation of the
data:
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Tne following simplified form of the equation is recommended 3
both the UEG Design Guide (1985) and the HSE/DEn Guidance Note
(1990):
i 2.

: 2 1
ip! M M -
+ R P % 1.0
AN
a & |y 2 fopg

Stol et gl (1985)

I
5

Based on interaction tests on T joints, Stel et al proposed an
equation of a similar form to that of Hoadley and Yura but with
exponents of the moment terms dependent on both £ and v ratio.
The interaction ecuation was determined as a Tlower bound
representation of the data which included joints with 8 in the
range 0.35-1.0 and y in the range 8.2-25.5. However, due to
suspected premature member failures which cast uncertainties on
interpretation of some of the data, the proposed equation was
reported to be valid to only a fraction of the aforementioned §
and vy ranges.

Swensson _and Yura (1987)

After performing interaction tests on DT joints with 8 = 0.35

and 1.0, and y = 25.5 (in addition to those of Hoadley and
” Yura), Swensson and Yura proposed an equation of a similar form
i to that of Headley and Yura but with exponents of the moment
terms dependent on B ratio. The proposed equation is reported
to provide an improvement in accuracy over the equations of API-
WSD and Hoadiey and Yura, when the interaction data were
nondimensionaiised by the experimental reference data,
especiaily for the f = 1.0 DT series. However, evaluation of
the impact of the three eguations on design is reported to
indicate that the savings associated with the proposed equation
were not significant except for § = 1.0. Noting that § = 1.0
joints make up oniy a small proportion of the U7 Joint
popuiation (according to surveys in the UEG Design Guide),
Swensson and Yura recommend the Hoadley and Yura egquation
because of its simplicity.

nferpretation of interaction ratio

Although an interaction check using one of the above equations
provides information on the adeguacy of a Joint design. 1t does
not give an accurate indication of the proximity of the
assessment point to the interaction (i.e. fatlure; surface. A
parameter which overcomes this lTimitation has been developed at
the University of Texas (Swensson and Yura 1987) and used in
recent American evaluations of interaction egquations (e.g.
Zettlemoyer 1988 and 1993). The parameter. dencted as X. 1s
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gefined as the ratic of the distance from the origin to the
assessment point (L1 to the distance from the origin to the
interaction surface (L2). A ois darger than 1.0 if the
assessment point s outside the failure surface. 1.e. the
interaction ratic is larger than 1.0, and vice versa (see Figure

3.5.19).

The parameter X can be evaluated in connection with any
interaction equation. However. since most of these have
relatively complex forms, iterations are often necessary for
determining X.  One exception is the simplified version of
Acadley’s interaction equation (UEG/HSE version). Assuming that
chord joad effects are smell (0, = 1.0) and that the brace loads
are proportionally applied, Zettlemoyer (1993) notes that X may
be determined by solving the following form of the interaction

1

eguations:
2
AR NI B LI Y
XxP X #M KxM
a 2 Iy 3 joPR

After rearrangement, it can be shown that:

2
XWE"P E._-rc
2 4
where
2
g=|” LM and  c=| M
p M
a a |opg a2 JIPB

Database on brace load interaction

ATl known available experimental data on brace Toad interaction
have been considered. Previous data from the TNO Programme have
been rescreened and new Japanese data including tests on T
Joints under Iension and OPB lcads have heen sourced and
screened. Following the rejection of reference data on
compression loaded T Joints from the Kingston Polytechnic
rogramme, the corresponding interaction data on joints tested
under combinations of compression and IPB lpads. have also been
screened out. The full screened database is given in Appendix
A3.3. and summarised in Table 3.5.27. Key features of the
screening process are outtined below:

. Failure Toads from the University of Texas and TNO
Programmes were originally defined using the deformation
Himit criterion of Yura et al (1980). In the majority of
cases differences between failure loads determined using
the ultimate Toad criterion (or corresponding to the
maximum reccrded load) and those determined according to
the deformation 1imit criterion are relatively small.
However, in order to maintain consistency between the
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simpie Joint databese and the interaction abase,
ultimate load criterion has been generaily adonted 3
Dasis Tor determining the failure Toads.
Refarence Join | Bets Brace Load Ho of
I R Ih) Joints
Type
T o102 3
T los2 2
71075 23.2 1
T 0.8 2B 1
T losal 13asse é
R RN 23.8 I
Tofion] 13,4238 2
Hoadley & Yura (1985} o7 o a7 255 Comp+OPR 2
i N 25.3 Comp+1PR 2
DT | 667 253 1PE+0PR z
0T | 0.67 25.3 Comp+IPE+0PE 3
Swensson & Yura {18873 07 j8.38 25,5 Comp+P8 2
T VR 28 5 Comp+1PR 2
0T | 0.35 255 1PR=0PR 2
DT 1 1.08 25.5 Comp+UPR 3
DT | 1.00 25.5 Comp=1FR 4
0T §1.00 255 [PE+0PB 4
Stol et al (15985) T 10.35] 8.7-34.8 Comp+ 178 2
TOoy0.35) 24.4-25 5 Comp+0PB 2
T 1535 B.7-255 IPR4CPR 2
T 10.35) 8.2-25.5 | Comp+IPB+0Ps 5
T ]0.88] 82555 Comn+ IFR 5
T 1068 8.2-25.5 Comp+0PR 6
T | 0.88} 8.2-25.5 1PB40PB 5
T 1 6.88] 82255 | Comp+IPR+OPE 4
T 1001 14.3-248 Comp+IPB 4
T 1,00} 14.3-24.5 Comp=0p K
Tl 100 14.3-24.5 IPE+0P3 z
T | 1.00| 14.3-24.5 | Comp+IPB+0PR 2

Table 3.5.27 Scope of the database on combined brace loading

. In all the programmes. reference tests were performed under
unt-directional brace loading in order to provide base data
for evaluation of the interaction tests. However. in some
cases especialiy in the TNO Programme, The chord thickness
and/or the chord yield stress of the reference tests were
different to those of the associated interaction tests.
Such differences were overcome by applying the correction
factor (F,T%) to the reference data.

. Cetermination of valid failure Joads of a number of
reference tests in the TNG and Making/Kurobane programmes
was hindered by premature brace faiiure and by problems
relating to the shape of the Toad deformation curves. Such
problems led to omission of the reference tests from the
simpie Joint database. However. in order to make the most

f the corresponding interaction data, which in the case of

the Japanese Programme involved rare tests under tension

nd bending brace loading, exceptional measures were taken

-+ D

a
to determine usable data from the reference tests ag
follows:
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1

-~ 71 s s ot 3 < s .y 3 5 .
ce faiiure was suspected to have occurred prior to

joint faii

r o

joi iure, the maximum recorded load was compared to
predictions based on the (SA equations {excluding safety
factors) and/or the HSE mean equations. Such comparisons
showed that predictions from both codes were in most cases
ciose to or lower than the maximum recorded loads.
Therefore, the latter lpads were adopted since they produce
fower  interaction ratios  and consequently  vield
conservative assessments within the context of analysis of

the corresponding interaction data.  This measure was
applied to tests 3, 4 and 70 of the TNO Progremme, and
tests o-B-T. L-D-T, M-C-T. MA-C-T and L-A-M of the
Makino/Kurcbane Programme.

The loads corresponding to the point of contraflexure in
the load deformation curves of three reference tests in the
TNG Programme were used (Tests 13, 14 and 17). These loads
were found to exceed the CSA predictions.

Predictions based on the CSA equations were used in the
case of only two reference TNC tests because the load
deformation curves were either unavailable (Test 2) or had
an odd shape (Tast 15).

Assessment of data

The screened database has been used to evaluate the polynomial
equation of Hoadley and the arcsin equation of API-WSD. Only
the experimental reference data, obtained from uni-directional
tests, has been used to derive the nondimensional axial and
moment ratios in the interaction equations. In practice, the
reference data are calculated using parametric equations. Since
these are intended to provide conservative estimates of joint
strength. the corresponding interaction ratios will be higher
than those from the experimental reference data.

The results are shown separately for each of the three
experimental programmes in Figures 3.5.20 to 3.5.22. in
addition. in the case of the HSE's Equation (simplified version
of Hoadley's equation). the parameter X has been evaluated and
plotted versus B in Figure 3.5.23. Corresponding statistical
data are summarised in Table 3.5.28. A1l these results allow
the foliowing conclusions to be made:

. Hoadley's Equation is more conservative than the API-WSD
arcsin bquation, 1.e. a larger propertion of failure points
tie outside Hoadley s failure surface than outsicde the AP]-
ASU arcsin failure surface.

. A larger proportion of the failure points from the
University of Texas Programme (D7 joints) fall outside both
failure surfaces than the corresponding proportion from the
TND Programme (T 3oints). Such phenomenon may be due to
the differences in failure mode between DT and T Joints.
it may also be partly attributed to the effect of loading
path, 1.e2. whether the combined brace loads are applied
proporticnally (all Toad components, e.g. compression and
OPB, are applied at the same time) or non-propertionally
{one or two load components are applied one at a time up to
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crespecified magnitudes, then a final Toad comporent is
appilec up to Tailure). The former loading procedure was
adopted in all but two of the THNO tests, while the latter

loading procedure was adopted in all but thres of the
University of Texas tests. Although, the available limited
evidence indicates that proportional Toading causes failure
at lower Toads than non-proportional lecading, further data
are reguirec to stugy this phenomenon.

a

latiy
simpiicity of the latfer equat { y
evaluation of the parameter X, it is preferred to the
original equation on the grounds of practicality rather
than accuracy.

3 i1
fon especially in relation to
1

D
[So e

. The interaction equations, evaluated in previous studies
using data from compression and bending tests, can be used
to assess interaction in tests involving brace tension.
The failure points of the tension and OPB tests from the
Makino/Kurcbane Programme fall well outside both failure
surfaces. For these tests, the mean value and standard
deviation of the parameter X, relating to the HSE's
Equations. are 1.57 and 0.28 respectively. The
corresponding values for the compression and OPB fests from
the same Japanese programme are 1.09 and 0.08. This is not
surprising since tension restricts the OPB deflection at
the brace/chord intersection. and uni-directional Joint
capacity is larger under tension than under compression
brace loading. Recent finite element analyses performed by
Jubran and Cofer (1992) on a range of T and Y Jjoints
subjected to tension and IPB., and compression and IPB,
confirm that in the presence of IPB, tension strengthens
the Joint while compression tends to weaken it, which
supports the aforementioned experimental data.

L Jubran and Cofer report that the interaction diagrams
derived analytically for T and Y joints are essentially
simitar. This implies that the findings relating to the
screened  experimental database, which censists of
interaction tests on T and DT Joints only, are likely to
apply equally to joints with inclined braces.

Reference & lcading Mean Std dev Co¥
Mak / Kur {comp + mom) 1.09 0.08 0.07
Mak / Kur (tens + mom) 1.57 0.28 518
U, Texas (comp + mom) .13 0.12 g.11
THNO LCOmD + mom) 110 0.14 0.1z

Table 3.5.28 Statistical data on the X parameter
tonclusions

L The Hoadiey Eguation and 1ts derivative (HSE's VYersion) are
more conservative than the API's arcsin equation.
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L New finite element data suggest that the available
interaction equations, are Tikely to appiy to joints with
inclined braces as well as to the T and DT gecmetries
testad so far.

® The Hoadley Eguation and its d
a

recommended . Howsver the 1;
simpiicity.

3.6 Conclusions and Recommendations

On the basis of comprehensive evaluation studies. a number of
formulae have been found to offer the best representations of
the available experimental data. In most cases. differences
between the formulae are relatively small. The choice of the
best formulation for each joint type and load type has been
often made on the basis of the statistical evidence in addition
to other criteria not reflected in the statistical data.
Comments on the limitations of various formulae and the
evaluation studies are reported in sections 3.5.2 to 3.5.11.

The following is a Tist of the formulae found to offer the best
representations:

. Compression loaded T/Y joints: CIDECT and HSE.

. Compression loaded DT/X joints: HSE and CSA.

. Balanced axially loaded YT/K joints: CIDECT and HSE.
. Tension toaded T/Y joints: CSA/DnV (ultimate strength).

» Tension loaded DT/X joints: CSA/DnY (ultimate strength).

] IPB Tloaded T/Y, DT/X, and YT/K joints: CIDECT.

. OPB loaded T/Y, DT/X. and YT/K joints: CIDECT, CSA. and
NPD.

The CSA/DnV formula for tension loaded T/Y and DT/X Jjoints
provide estimates of the ultimate strength hased on the ultimate
ivad criterion. LUimited test daza on Toad Jevels corresponding
Lo crack initiation (first crack data) suggest that such loads
may be estimated approximately by using formulae for comoression

loaded joints such as those of API-RPZA or other codes (Section

3.5.7).
With regard to effects of chord load on Joint strength, the
following has been concluded based on the available data:
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L The AFI's O, equations which are based on work at the
University of appear To represeni most of the
avallable expe; data adequately. Howsver, the
experimental ev is clouded by a significant degree of
scatter which needs to be addressed in order to increase
the confidence in the present design approach.  Since
acditional tests are likely to suffer from more scatter, it
1s recommended to perform Himited finite element studies to
address key areas of uncertainties {ses Section 3.5.10).

L
e

aparese data appear to support an alternative
ion for the chord utilisation factor. A, where the
ending stress exceeds the chord compressive stress,
fpplication of the current A equation leads to excessively
conservative estimates. However, the alternative
expression produces conservatism levels which are broadly
similar to those associated with uniform compressive chord
stresses {(Section 3.5.10).

With regard to brace Toad interaction, the following has been
concluded based on the available data (Section 3.5.11):

° The Hoadley Equation and its derivative (HSE's Version) are
more conservative than the API's arcsin equation.

L New experimental data confirm that the available
interaction eguations, which are formulated to account for
compression and moment Toads, can be used conservatively to
account for interaction of tension and moment loads.

. New Tfinite element data suggest that the available
interaction equations, are likely to apply to joints with
inclined braces as well as to the T and DT geometries
tested so far.

. The Hoadley Eguation and its derivative (HSE's Version) are
recommended. However, the latter is preferred due to its
simplicity.

The margins of safety implied by the above formulae differ and
are not consistent. Further evaluation studies are required
before consistent global or partial safety factors can be
recommended for use in design. However, the safety factors
recomrenced in each of the above codes may be used until
alternative guidance becomes available (Section 3.2).

Further studies are required to evaluate the effects of a number
of parameters on the static strength of tubular joints {eg. o,
v, and FJ and introduce the necessary changes to existing
gesign guidance,

¥
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Figure 3.2.1 Typical examples of joint classification (API RP2A, 1993)
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NDITIONS ——
JOINT TYPE CONDITIOE L}E; G

(N ALL CASES:30°£9530° | CLASSIFICATION

Y
2 Py SIN 83 > g3 ¢
P, SIN B,
QUTSIDE ABOVE LIMITS '
t1 > P1LSIN Bl P, &0 K
Py SIN 83 WITH GAP =g
1M 2P SINGy « P3SINGy 2079 K
WITH APPROPRIATE
P31 SiN 83 GAP
S OUTSIDE ABOVE LIMITS ¥

L™
d

oA

bod

ANY OTHER CONFIGURATION
WITH BRACE MEMBERS ON
OPPOSITE SIDE OF CHORD

THIS INCIUDES ANY JOINT
CARRYING (DAD ACROSS

THE CHORD EG LAUNCH SEE A21.2.tq]
RUNNER JOINTS

NOTES

1) The loads Py, F; and P; are taken 1o act in the directions shown.
2) For all cases above check each brace separately.

3) This figure should be read in conjunction with A21.2.4¢) for further
guidance.

Figure 3.2.2 Typical examples of joint classification (HSE, 18990)
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Figure 3.2.3 Detail of Simple Joint (API RP2A, 1993)
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Figure 3.4.1 Effects of chord diameter on nondimensional strength
of compression loaded DT joints with o = 8.0
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Figure 3.5.1-b  Compression loaded T/Y joints: P /P ., vs § (CIDECT)
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C6060R07.21 Rev A February 1996 Page 3.78 of 3.101



1.8

1.6

1.4

P(meas)/P(API)

0.8

Figure 3.5.4-a

1.8

1.6

1.4

1.2

P(meas)/P(CIDECT)

0.8

Figure 3.5.4-b

Co060R07.21 Rev A February 1996

Page 3.79 of 3.101

Compression loaded DT/X joints: P,.,./P.. vs B (CIDECT)
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Figure 3.5.4-d  Compression loaded DT/X joints: P /P ., vs § (DnV)
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Figure 3.5.12-b  IPB loaded simple joints: M, /M ., vs § (CIDECT)
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Figure 3.5.17 Effects of chord load and § on axially loaded joints
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chord Toad (-ve) on balanced axially loaded K joints
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Figure 3.5.20-a Brace load interaction: Univ. of Texas Data, DT
joints under combinations of compression, IPB and OPB
brace Toads (API-WSD arcsin equation)
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Figure 3.5.20-b Brace load interaction: Univ. of Texas Data, DT

joints under combinations of compression, IPB and OPB
brace loads (Hoadley’s polynomial equation)
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Figure 3.5.21-a Brace load interaction: TNO Data, T Joints under

combinations of compression, IPB and OPB Toads (API-
WSD arcsin equation)
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Figure 3.5.21-b Brace load interaction: TNO Data, T joints under

combinations of compression, IPB and OPB Tloads
(Hoadley's polynomial equation)
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Figure 3.5.23 Brace load interaction: X values vs § (X = Distance

to failure point / distance to failure surface)

Ce060R07.21 Rev A February 1996 Page 3.101 of 3.101




BOMEL

4. STATIC STRENGTH OF OVERLAPPING UNIPLANAR JOINTS

4.1 General

A uniplanar overiapping joint is defined as a joint with all
brace members in a single plane, in which the brace members
intersect each other as well as the chord.  Thus, the applied
icad s partially transferred from one brace to the other
through their common weld. This is iliustrated in Figure 4.1

H
wWhich shows an overlapping ¥ Joint.

Overiapping Joints are the result either of congesiion at a
Joint or of design requirement, for instance when increased
static strengin is needed. In particular, overlapping joints
allow thin chord sections to be used efficiently. without Jjoint
cans, since the chord is required to carry only a part of the
load. However, it is customary to avoid overlapping joints as
their use results in increased fabrication effort.

Due to the general lack of data on the static strength of
overlapping joints, these are usually designed using simplified
semi-analytical models which may be based on approximate 1imit
Toad analyses such as described by Marshall (1992). The AWS and
API code provisions for axially loaded overlapping Joints are
founded on a simple model proposed by Marshall and Toprac
(1974), who report that this is based on “a crude ultimate
strength anaiysis, in which the punching shear capacity for that
portion of the brace reaching the main member and the membrane
shear capacity of the common weld between braces are assumed to
act simuitaneously” {(Figure 4.2). Thus, a designer may check
the joint for transfer of the load perpendicular to the chord
member by considering the resistance afforded by the partial
Joint between the chord and the portion of the overlapping brace
which intersects the chord surface, in addition to tne membrane
shear resistance of the overlap weld or of the adjacent brace
wall 1f smaller (Section 4.2.1). The loads parallel to the
chord are carried by the brace/chord intersection weld and hence
tge w$3%jand brace wall thicknesses are designed to transmit
this load.

4.2 Review of Existing Design Guidance

Severai design codes provide formulae or general comments
corcerning the design of overiapping loints.  General desian
aspects, e.g. relating to format or definition of design
strength and safety factors, or to effects of combined Yoading.
are described in connection with simpie Jjoints in Section 3.7.
This section is restricied to reviewing the clauses dealing
specificaliy with overiapping Jjoints.

4.2.1 APT-RPZA (WSD and LRFD, 1993

The guidance provided in API-WSD is based on either the punching
shear or the nominal load formats. whereas the corresponding
guidance in API-LRFD is based on the nominal Toad format only.
since both formats are Intended 10 be equivalent. and the main
difference bebtween API-WSD and API-LRFD ds in terms of
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W5D guidance based on the nominal

Uverlapping Joints are defined as those jc'nts “in which brace
moments are fﬁS?Nﬁz;?faﬁ+ and part of the axial load is
transferred directly from one brace to another through their
coammon weld . The allowable axial Joad component, in the
ever]agﬁ}ng brace, perpendicular Lo the chord is required not to
exceed

1

agéﬁﬁﬁhji +2V BT, (WSD:nominal Toad format)

where

P, = allowable axial Toad as defined in comnection with
simplie joints.

1, = circumference for that portion of the brace which
contacts the chord (actual length)

1 = circumference of brace contact with chord, neglecting
presence of overlap

Ve = AISC allowable shear stress for weld between braces

t = the Tlesser of the weld throat thickness or the

thickness © of the thinner brace.

L, = the oprojected chord Tength (one side) of the
overlapping weld, measured perpendicular to the chord

The basis of this strength model is outlined in Section 4.1 and
some of the ferms used are 1llustrated in Figure 4.3 (4.3.2-1 1in
API-RPZA) .

In addition, the following general guideiines are given:

. The overlap should preferably be proportioned for at least
508 of tne perpendicular component of the acting load. The
basis of this recemmendation. common to most codes, s
explained by Marsnall (1992) as follows: Since the e¢e”1am
is & much s*Wffev load path than the radial ly flexible
chord sheli, it will try to carry much of the Toad at
elastic load levels. If this element is weak it may lack
the ductility reguired to avoid failure before the rest of
the connection catches up.

'Y Where the braces carry substantially different Toads and/or
one brace Is Lﬁ?c<@f than the eiher, the heavier brace
should preferably be the through brace with its full
circumterence welded to the chord,

. inno c s shouild the brace wall thickness exceed the chord
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. Moments caused by eccentricity of the brace working lines
and exceeding that in 4.3.1{c) (ie. ie| > D/4) may be
important and should be assessed hy the designer.

It should be noted that no specific guidance on quantifying P,

(1.e. wnether it represents the axial strength of a simple ¥ or

a simple K joint), or formulae for estimating the Tengths 1, 1,,

or 1, are provided. In addition, no guidance on the design of

the through brace is given.

Ay (1994

Guidance provided in this code for the design of overlapping

Joints is broadly identical to that given in API-RPZA with

exception of the following:

. The aliowable axial Toad component perpendicular to the
chord, P,. is given in the punching shear format only. The
first term in P, (equivalent to P,sind1,/1 in the API-RP2A
nominal load expression) is V. T1,, where V_ is specified as
the ‘allowable punching shear for the main member as K-
connection (g = 1.0)". The expression of o for a K joint
classification is (1.0 + 0.7 g/d) which is equal to 1.0
only if g = 0.0. In other words, it is implied that V_ is
gquantified assuming a K joint classification with g = §.0.

. It is not specified explicitly whether the guidance applies
to the overiapping brace or to the through brace.

in addition the following checks are required:

. The allowable combined Toad component parallel to the chord
axis shall not exceed V,t,2l,. where V, 15 the allowable
shear stress for the weld between braces: t, 1s the Tesser
of the weld effective throat size or the thickness of the
thinner brace: and Z1, 1s the sum of the actual weld
Tengths for all braces in contact with the chord.

L Net transverse Ioad on the combined footprint shall satisfy
the clauses relating to static strength of simple T/Y and
gap K joints.

. Minimum weld size for fillet welds shal
throat of 1.0t for F, < 40 ksi and 1 f
where F, 15 the yield strength of base meta

CIDECT (

9915

[

The CIDECT code is unigue in that it adopts a single formulation
for YT/K Jjoints which accounts for both gap and overlapping
Joints. The strength of these is estimated by inserting the gap
in the strength gssessment equation, as a positive value for gap
Joints, and as a negative value for overlapping Jjoints (Section
3). The equation 1s based on a large test database which was
assembled and anatysed by Kurcbane and co-workers (Ochi et al
1984) . It is not stated whether the formula applies to the
overiapping or to the through brace. However, tests from the
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overiapning Joint database (Section
with other Japarnese data are belis |
urchbane/Dcni database, were perfor ce
loaded in compression. Given c fal Y
associated with the compression brace, it may be inferred that
the equation derived on the basis of these tests applies to the
through brace
o avoid interaction between brace local buckling and joint
strength, the code recommends to limit the joint strength
efficiency by the compression brace for high diameter to wal)
thickness ratic (d/t). This Vimit is expressed as follows
AR
i “ !
<oz | EE
A”: Fyb vbd

where N° is the design compression strength (= characteristic
strength / 1.1): F,. A, t. and d are properties of the brace
representing, respectively. the design yield strength, the cross
section area, the thickness, and the diameter: and £ is the
modulus of elasticity.

the above limit appears to be recommended for all types of
Joints, but it is noted that with regard to member buckling it
will not be frequently critical.

Examination of the reference on which the Timit is reported to
be based (Kurobane et al 1989) and a more recent publication by
Kurobane and Ochi (1994) reveals that an equation was proposed
by Kurobane and co-workers to deal with Tocal buckling of
compression braces in K joints only, subject to halanced axial
loading.  The equation, different to the formula given in
CIDECT, 1s as follows:

F,=0.217 & {(F+Fy)

where F.. refers to the Tocal buckling strength and F refers to
the shell bending strength (quantified using the basic K joint
strength equation given in Section 3). both being represented in
terms of the average stress on the cross section of the
compression brace: and o = EU/(F d).

on is based on data from cold-finished tubegs (fe.
)

The strength interaction between F,, and F ., evident in the 3
equation, is explained by Kurchane as follows: ‘The compr
brace sustains a secondary bending moment with o !
compression on the toe side than on the heel side owing to
uneven support given to the brace by the chord and tension
brace. When the load approaches the brace local buckling load,
the bending moment at the brace end decresses because the moment
15 redistributed owing to local

=3
o B eV

%
L
o
o

3
-
-

: a1 buckling or yielding,
tne compression brace carries a further increase of com
load. When the shell bending

-

nowever, the redistribytio

ng failure mode begins fo
of bending moment is prevented
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howsver, the redistribution of bending moment is prevented .

D

CSA (19920

Guidance 1n the (Canadian Code takes the form of an empirical
formula which, with the exception of the gap factor, 1is
identical to the formulaz adopied for simple gap K joints
(Section 3). The basis of the formula ts not described and It
is not stated whether 11 is applicable to the overlanping brace
or to the through brace.

The 9ap factor for cverlapping joints, designated here as Q.15
as Tollows:
L
L2 119170 wor 1g1=0.4D
1+0.81g]/0

if {g] > 0.4D, then for the purposes of computing Q,, ¢ is to be
taken equal to -0.4D.

In addition, the following general guidelines are given:

® In K-joints with overlapping braces, the wall thickness of
a brace shall in no case exceed the chord wall thickness.
The through brace shall have its full circumference welded
to the chord. The wall thickness of the through brace
shall not be less than the wall thickness of the
overiapping brace.

. If the resistance of the weld joining the overlapping
braces in a K-joint is less than 50% of the brace axial
Toad component {normal to the chord axis), the analysis of
the joint shall identify the loads carried in the several
load paths, and shall also consider the deformations
associated with these loads.

] Resistances of overlap Jjoints in which bending moments
exist at the ends of bracing members shall be calcuiated by
Tower bound analysis or other raticnal methods of analysis,
or shall be determined by experimental tests.

Dny (19933

Guidance provided in this code for the design of overlapping
joints (with no gussets. stiffeners or diaphragms) is broadiy
identical to that given in API-RP2A with exception of ihe
foilowing:

e Unlike API-RPZA, the first term in the expression
representing the design (factored or allowable) axial load
component perpendicular to the chord, does not include
sinf. 1t is not clear if this omission is deliberate or
whether 1t is intended that sinf is considered in deriving
the term P, (corresponds to P, in API-WSD).

. It is not specified explicitly whether the guidance appiies
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to the overlapping brace or to the through brace.

. Vea. Lhe desig
the weld betwee
the design yiel

} gfactered or allowable) shear stress for
n braces, s replaced by 0p V3, where Og 15
d stress of the chord.

HSE 11500

e s A e

No strength formulae specific for overiapping Joints are given
in the code. Rather, the following is stated: "Insufficient
data s available io develop any guidance. The behaviour of
overlapping Joints and an assessment of the available test data
may be found in OTH 89 308 and CIRIA UFG UR33 1985. Procedures
for the determination of characteristic strength should be
agreed with the Certifying Authority. Fach overlapping joint
should be treated as a separate case and the characteristic
capacity of each intersection for each load type should be
determined. This capacity can be determined on the basis of
available test data where appropriate or through application of
rigorous engineering mechanics. The application of engineering
mechanics requires the determination of intersection lengths L.
L, and L, as defined in Figure AZ1.7 (Figure 4.4). In Tieu of
precise measurements, the intersection length formulae given in
Figure A21.7 can be used.

Overlapping joints depend on the combined action of all braces.
Accordingly consideration should be given to checks of the
combined moment from all braces on the combined footprint.

For heavily overlapping braces (ie. L1/l2 = 0.5) the
intersection between overlapping brace and the through brace
should also be checked separately with the through brace taken
to be a chord member under a Y classification.

HSE s Backaround Document OTH 89 308

Section 8 in the document, contains an assessment of the
overlanping joint test data compiled up until the mid 1980s. In
this assessment, the through brace capacity and the overlapping
brace capacity are treated separately. The former refers o the
capacity obtained under compression in the through brace and
tension in the overlapping brace. while the latter corresponds
to the opposite foading arrangement.

A screened database consisting of a total of 16 YT joint tests
was compiled. These are reported to represent the balanced
axial loading case with compression applied tc the through
brace. A statistical analysis of the data enabied a
characteristic strength ecuation fo be develioped providing 2
smooth transition between the capacity of gap and overlapping YT
doints.  However, a recent study performed as part of the

Tubular Joints Group activities (BOMEL 1992) revealed some
anomalies in the database used in the aforementioned assessment.
These include errors in the reported values of yield stress and
degree of overlap, relating to tests by Bouwkamp which had not
heen cuoted from the source document. The awareness of these
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approach adopted in API-R

anomalies, which did nof afi
approach advocated in O7TH B
Researeh Focus (No. 84, 1933).

dith regard to balanced axial ioading with compression applied
to the overlapping brace. it is reported that no date were
available to 3;€ﬁSTzﬁftﬂ *hés loading case, However, the
% based on the model proposed by

"U
D e

%aW\ ail and Toprac, is described and approximate formulae to

guantify the lengths L. ig and Ly are reported in detai]

(corresponding fezgéciéve?v to 1,. 1 and 9*?2 of the API-RP2A
& ]

formuial. ?éaure 4.4, reproduced Trom the HSE GQuidance Notes,
includes 11lustrations aa@ formulae of the three Tengths. It
should be noted that {5 is illustrated as an arc length while
its formuia suggests that it represents the length of the
vertical projection of the common weld. In addition, the L,
expression coes not reduce to zero as the overlap becomes very
small which is an ancmaly.

NPD (1990}

Guidance provided in this code for the design of overlapping
joints (with no gussets, stiffeners or diaphragms) is broadly
identical to that given in API-RP2A with exception of the

following:

] It is stated that the guidance is valid only for K joints,
where compression in a brace is essentially balanced by
tension in Drace(s) in the same plane on the same side of
the joint. However, 1t is not specified explicitly whether
the guidance app11es to the overlapping brace or to the
through brace.

] The design axial Toad corresponding to P, in API-WSD is
defined as N/y,,. where N, is the "characteristic axial load
capacity of brace’, and y,. the partial material safety
factor, is equal to 1.15.

. Ves. Lhe design shear stress for the weld between braces,
is replaced by (f,A3)/y,). where f, is defined simply as
the yield stress. and y,. the partial material safety
factor, 1s equal to 1.15.

Review of Other Published Information

o

kﬂ

Dexter et al (1584

the authors report the findings of a non Tinear FE study of the
static stre ;gt% P“ overiapping K Joints. The FE m@dczs were
caiibrated using Japanese experimental data (Kurchane et a]
1986) g?th LF@ fﬂ lﬂwzng geometrical properties: § = 0.76, y =
13.7, = 0 : 0.14, -0.12 and -0.42. These Joints had

4 i i -
fajled s?e? bending of the chord and/or brace local
536&%13@.

The above matrix was increased by modifying parameters relating
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® For interpediate degres
praces and resiraining .
Teads which are slighfly i nose
the alternative arrangement. wheré one brace
other s subject to the reaction) and only on
supported (Figure 4.5-a). These results wer

] £
models which did not include the hidden weld.

L] cor intermed rees of overlap with the through brace
lcaded in  comoe ' an increase in  capacity of
approximately b2 was cbserved when the hidden weid was
prasent (Figw

° Joint models, where the overlapping brace was subject to
compression and the through brace was subjiect to tension,
failed at slightly higher loads than those achieved with
The reverse loading except for the fully overlapped case (g
= -190mm). The data are shown in Figure 4.5-C

° The above findings were obtained for the v = 13.7 geometry.
when y was increased to 30.0, & different relationship
between degree of overlap and strength was observed (Figure
4. 5-dy. It 1s suggested that this difference is caused by
changes in the failure modes 1in comparison with those
predicted for y = 13.7. However, insufficient data on the
failure modes are reported and ro comparisons with design
guidance are performed.

Healy (1994)

This reference reports the most comprehensive analytical study,
on the strength of overlapping joints, published to date. The
scope covers the generation of data for the balanced axial and
IPB Joading cases in addition to an evaluabtion of the design
guidance of API RP2A {20th Ed. 1993) and CIDECT (1991). The
following Jjoint configurations were considered:

Configuration B V T 3 Fo/F
1 0.95 24 1.0 60° 1.0
2 0.95 15 1.0 i 1.0
3 0.5 24 1.6 60° 1.0
4 0.5 15 1.0 60° 1.0
5 0.5 24 0.5 60" 1.0
6 9.5 24 1.6 60° 0.7z

Table 4.1 Properties of the numerical test matrix (Healy 1994)

For each configuration three gap ratios, expressed as (g/d)sing
and a:ﬁfﬂyzwﬁbp?v equal to -0.5 -0.2 f(overlap) and 0.7 (gapy,

were analysed.

Three loading modes and four combinations of boundary conditions
ard loading modes were considered in relatf ne 1PB and
balanced axial cases respectively (Figures 4. 7

Ty b

o ok
: o
S?*"

]

IPS modes depending on the direction of appiication the in-
plane bending moments are referred to as aligned. Closing or
opening moments. Wnile the axial modes relate fo the applied
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In all analyses, the hidden weld was assumed present, ie. nodes

along the hidden intersection between the through brace and the

chord were fully connected.

Resuits of the IPB analyses: The computed IPB capacities were

compared to predictions based on the author’s own IPB formula

(Section 3.3) and the brace yield and plastic moment capacities.

The following conclusions were drawn:

e Regardless of load type, the design capacity of gapped K
Joints with a large gap may be computed by considering the
K doint as an eguivalent 7/Y Joint

. The design capacity of highly overlapped K joints subject
to opening moments may be conservatively taken as the
lesser of the brace plastic moment and the capacity
computed by considering the K joint as two independent T/Y
joints.

™ The design capacity of highly overlapped K joints subject
to closing moments may be conservatively taken as the
lesser of the capacity computed by considering the througn
brace as the chord and the overlapping brace as the brace
in an equivalent T/Y joint and the capacity computed by
considering the K joint proper as an equivalent T/Y jeint.

. Highly overlapped K joints subject to atigned moments may
be designed as an equivalent T/Y joint provided that the
sum of the brace moments js considered the design load.

™ The computed capacities for a number of configuration and
‘oading modes were determined based on the deformation
Timit criterion (Yura et al 1980). In such cases, it is
noted that cracking is a distinct pessibility and that it
would be useful 1f the deformation 1imit were calibrated to
prevent c¢racking.

Resulfs of the balanced axial load analyses: The computed axial
capacities were compared to predictions based on the following:

e  ihe API Model (Section 4.2.1) with P,
Joint configuration, and t 0
appiicable for overlapping .
thus allowing its value to excesd 1.8,

) The CIDECT equation for chord shell bending failure (or
chord plastificati in ith the brace local
buckling check as . brace local
buckling stress F, = 0.22 va F_, where ¢ is defined as
EL/(Fd)) )

APL-RFZA - T/Y  Joint  compression
conCiusions wers drawn:

Flgures 4.8 j1lustrate the computed capacities normalisad by ©
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] For
bu
of
of
A
. n i
1o «ling,
in fact
the race
in Fal
of k14
not cont ts no flat *op because Eoca
buckling i ressed in the guidance,

* The CIDECT Tocal brace buckling 1imit fails to predict
buh&§*ng in the overlapped region of two configurations
where 1t occurs anaivitically. The CIDECT 1imit does
predict buckling correctiy in the overiapped region of a
third configuration, but the CIDECT chord plastification
capacity correctly and conservatively predicts the flat top
distribution in the absence of the limit.

° The CIDECT Tocal brace buckling Timit fails to account for
instances where a sudden post-peak drop off may be
expected. A more stringent safety factor may be preferabie
in the latter case, but situaticons where 1t 1s applicable
would have to be identified.

. Given that the hidden weld 1s present, the capacity of
overlapped K joints with the overlapping brace 1In
compression genera]]y exceeds the capacity with the thr@ugh
brace in compression. It appears that when the overlapping
brace is in compression, local brace buckling is less
severe, and this lesser tendency to buckie is thought to be
the difference. However, the CIDECT local brace buckling
1imit takes no notice of brace hierarchy.

. There is no numerical evidence that local brace buckliing
occurs  in the  gapped regions  of  the u“aE}Seé
configurations.  However, local brace buckling in the
gapped region 1is reported for joints with similar d/t
ratic by Kurchare et a1l (1986). The nature of this
buckling may not be fully understood and 1t may be related
to focal member buckling.

' “%e ifference Detween "single” an ”d@ab%@” boundary
;m@ tions, when an attempt s made to moge]  frame
conditions by restraining the lateral ﬂﬁvéméﬁi in the brace

g
(Figure 4,77, 1s negligib

H=D
It should be noted that the CIDECT local brace buckling Timit
appiied by the Healy 1S @éffgreﬂi to the original model
wﬁhorm~fﬂeh by 44”@ ne et al (1986 and 1994} and described in
connection with the CIDI guidance in Sec 42 on 4.2, Application
of the erﬂgwna; KH oban e model may have led to different
conclusions.  This issue s addressed in Sectésﬁ 4.4 whers the
experimental database is evaluated using the equations of API-
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buckiing model.

4.3.2 Jan den Valk (1991
The author reporis the findings from g series of finite element
analyses on f 1.0 heavily overlapped i where the
through brace connected to the cho Uil
j X1zl

™ the strength of the joint within the frame was s)igntly
nigher (by approximately 2%) than its strength under
isolated test conditions, where the braces were constrained
to deflect along their axes.

. the strength of the joint when the overlapping brace was
subject to compression was 10% higher than when the
overlapping brace was the tension member.

® Comparison of the computed K joint strength with the YT
Joint data in the HSE database (OTH 89 308) shows that the
strength increase due to overiap is much less significant
for the K joint considered in this study than for the VT
data. This discrepancy (noted prior to discovering the
anomalies in the YT joint database outlined in Section
4.2.6) was attributed to effects of doint geometry and
configuration.

. the author recommends that the approximate engineering
mechanics approach (eg. of API-RPZA) continues to be
adoptec in preference to the strength levels implied by the
YT joint database.

4. 3.4 Approximate iengths formuiae

Approximate length formulae have been derived in order to
facilitate the application of the approximate design approach
recommended in a number of codes {eg. API-RPZA. AWS, Dnv. NPD).

the derivation. described in Appendix A3.5, s based on the
following assumptions,

ich is described

i
ipse.

Formulas for the three Tengths are as ol lows:
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T=nd, K,
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cotand,, +cotand, ) 2

whare
S .1

siné,
K, = b

¢
A1 - 2lg|

dg duy

~ +

sing,  sind,

0, and By are the overlapping and through brace angies
respectivé?y; d, and dy, are the overlapping and through brace

diameters: and g is the distance between the weld toe of the
through brace and projected weld toe of the overiapping brace.

T+ should be noted that 1. 1,, and 1,. defined according to the
Nomenclature of API-RPZA and AWS (Figures 4.2 and 4.3),
cozrespend to L,. L, and L,/2 of the H3E Nomenclature (Figure
4.4},

Database on Overlapping YT/K Joints

411 known available experimental data on the static strength of
overiapping joints have been considered. The resulting full
database including the screened set is given in Aopendix A3 4.
411 the tests were performed under nominally balanced axial
loading. HNo data on other loading modes. eg. IPB or OPB are
availabie. Tn addition to the failure modes reported 1in
connection with simple joints in Section 1.3, overlapping joints
may fail by local buckling of the compression brace near the
intersection (Kurobane et al 1986).

ioint and

n order to maintain consistency between the 0

1 screen ria have
T
5

apping joint databases the same

adopted for both datasets {Section
imit on 7 has been reduced from 1.2 fo
for overlapping joints. This 1 justified e b
ohserved enhancement in strength for 7 > 1.1, which is not
surprising given that a part of the appliad load is transferred
directly from one brace to the other. Thick hraces allow higher
Toads to be transferred regardless of tne chord, and increase
the compression brace resistance 1o Jocal buckling, a failure

D @
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mode which may be critical e

s have been encountered with regarg to tracing
at n a number of parameters which are known Lo affect
pacity of overlapping joints. These parameters, referred
ome but not all source documents, include:

e
{

. Data on failure modes, especially whether or not local
brace buckling adjacent to the overiap region cccurred or
interacted with shell bending failure in the chord, This
uncertainty anplies particulariy to & considerable datasel

reported in Japanese by Togo (1967) and is due o the lack

transiation.

ig
ne

ran

of an English

. Whether or not the through bracs is welded to the chord
along its full circumference, e, whether or not the hidden
weld is present. Limited data on the effects of this
parameter are reported in Section 4.3 based on Tinite
glement investigations.

. Whether compression loading is applied to the overlapping
or to the through brace. Limited data on the effects of
this parameter are reported in Section 4.3 based on finite
element investigations.

The screened data are taken from the fests of Fumagalli and
Pugno (1985), Veritec (1993), de Koning and Wardenier (1981).
Kurobane et al (1980). Kurobane et al (1986), Ochi et al (1981),
and Togo (1967). Differences in the testing arrangements and in
parameters relating to geometrical and material properties are
bound to introduce scatter into the data. The folliowing
differences may be noted:

. In the Ochi and Kurcbane tests the through brace was in
compression and welded to the chord around 1ts whole
circumference,

] In the de Koning tests the overlapping brace was in
compression suggesting a higher capacity (Section 4.3) but
the through member was not fully welded to the chord.

. The Fumagalli specimens were tested integrally within a
lattice beam whereas in most of the other tests one chord
end was fres.

L] The ratic F/F, for most of the joints reported by Kurcbane
ot al (1986 is very close fo 0.9, Although this s
nrepresentative of traditional offshore materials the data
are considersd particularly vaiuable because failure in
most of the tests 4s reported to be due to lGocal brace

buckling.
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BOMEL 0

Assessment of Desion Guidance

This section considers test results for a total of 54 K joints
(including 32 tests reported by Togo 1967) and one YT joint
{(Appendix A3.4).

cvaluation of desian eguations

The rafio P/ F .. has been evaluated for all the screensd data
and plotted versus g*sin#/d in Figures 4.9 to 4.11. Two
estimates of ¥, have been calculated, P4, and P, ,. depending
on whether or not & lTocal brace buckling check 1s performed.
This s recommendad by Kurcbane et al (1986 and 1994) and
described in connection with the guidance of CIDECT in Section
4.2 Poess refers to estimates of overlapping joint strength

exciuding Tocal brace buckling and based on the equation of API-
RPZ2A (assuming K joint classification with Q. = 1.8), and the
equations of CIDECT and CSA, and excluding g%aba] and partial
safety factors (Section 4.2). P, 15 taken as the lowest of
Porsar @nd Ppeg . where Py 1s estimated as follows:

Poegr, = 0.217 6" (AF 4P, o))

where o = EX/(F,,d) is the brace Tocal buckling parameter and A,
is the cross section area of the brace (see Section 4.2).

Data representing P,.., are plotted on Figures 4.9-a to 4.9-c;
and data where P, 1S lower than P,..,. le. where the brace
local buckling check governs, are highlighted on Figures 4.9-b
to 4.11-b. Based on these results the following may be noted:

. the formulae of the API. CSA and CIDECT provide reasonable
representations of the data although they do not embody all
the relevant failure modes. The most conservative model is
that of CIDECT, followed by the API. The (SA formula
underpredicts the capacity for a significant proportion of
the data.

® Application of the local buckling model, @s described above
produces results which differ from one code to another.
The CIDECT formula is the Teast affected with strengths for
only six joints predicted to be dependent on local brace
buckling. This compares with 17 joints and eleven joints,
respectiveiy, in the case of the {SA and API formulae.

results detailed in Table 4.2, indicate that at ]

2 0f Kurobane's dataset (Kurchane, 1986) where all
re reported to have fatled by Tocal brace buckling. predictions
ased on the API and CSA formulae incorporating Kurobane's model
governad by Tocal brace buckling for most of the data. This
15 an encouraging finding which supports Kurcbane's model. In
addition. Figures 4.9 1o 4.11 show that application of the mode?
rarrows the differences between the predicted and actual failure
loads conservatively.
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Reference {1} (2 (23 {3}
APT CSA CIDECT
Ochi 7 Z Z none
Kurobane 5 4 5 3
Togo UNKTOWN 5 i 3
Tota! - 11 17 &

(1) Number of Joints reported to have failed by local brace
buck1ing.

(23 MNumber of joints where local brace buckling is predicted fo
determine Joint strength.

Table 4.2 Effects of application of Kurobane's local brace
buckling model

4.6 Recommendations

The substantial uncertainties which surround some parameters in
the overlapping Joint database and affect interpretation of the
data, reguire further attention before improved design guidance
can be recommended. Finite element studies such as those
reviewed in Section 4.3 offer great potentials for providing
vaiuable data.

The formulae of the API, CIDECT or CSA may be applied for the
design of axially loaded joints. However, limitations relating
to effects of local brace buckling should be considered. It is
recommended that the model proposed by Kurobane to allow for
tocal brace buckling is applied as described in Section 4.5.

With regard to in-plane moment loaded joints. it s recommended

that the guidance proposed by Healy (Section 4.3) are adopted at
Teast until further data are available.
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Through
brace

QOverlapping

brace
o .
{Negative as drawn)
N

<< L >

Distance between end restraints or points of contraflexure

a=2L/D B=d/D y=D/2T (=g/D t=YyT

Figure 4.1 Geometric notation for overlapping joints

psinf = { Vp Tof) + 20y« t, « 4,) YHERE
ALLOW - PUNCHING SHEAR MEMBRANE SHEAR v _ = ALLOWABLE PUNCHING SHEAR STRESS
ABLE OH MAIN MEMBER @ OVERLAP WELD P EQUATTION FOR THE MAIN MEMBER

T = FAIN MEMBER WALL THICKNESS

11 = CIRCUMFERENTIAL LENGTH FOR THAT
PORTION OF THE BRACE WHICH CONTACTS
THE HAIN MEMBER

v, = ALLOWABLE SHEAR STRESS FOR THE
COMMON WELD BETWEEN THE BRACES

t, = THROAT THICKNESS FOR THE COMMON
WELD BETHEEN BRACES

£2 = THE PROJECTED CHORD LENGTH {ONE
SIDE} OF THE OVERLAPPING WELD,
MEASURED IN THE PLANE OF THE BRACES
ARD PERPENDICULAR TO THE MALN MEMBER

Figure 4.2 Simplified 1imit analysis
- transverse load check (Marshall 1992)
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THROUGH\x

BRACE

Figure 4.3 Detail of overlapping joint (API RPZ2A, 1993)
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THROUGH BRACF {TH)

N

3

OVERLAPDING
BRACE{OL)

y . .
( Lﬁg linecative)
(l

In the absence of precise measurements L;. L
the following formulae:-

P 2 g} sin 851
Ly = doL K; cos -1

doe

and Ly may be approximated by

Lz = K dOL Ka

2 gl 20
Ly = + D(I-a-8%7)
cotan By + colan Qg
I+ 1/sin 84
Where K, =

2

Figure 4.4 Definition of intersection lengths for
overlapping joints (HSE, 1990)
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Figure 4.5-a

and exactly balanced loading conditions

(through brace in compression, hidden intersection sliding)

Strength-overlap results for approximate
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Figure 4.5-b Strength-overlap results for hidden weld presence and
absence {(through brace in compression balanced axial load)
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600
—-x-- thru brace compression
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Figure 4.5-c Strength-overlap results for foading hierarchy reversal
(hidden intersection connected, chord in compression)
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Figure 4.5-d Strength-overlap results for different failure modes
(hidden intersection connected, through brace
in compression, chord in compression)
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Figure 4.6 Load hierarchies and BCs for IPB analyses (Healy, 1994)

double BCs

= == =

TBR compression OBR compression

singe BCs VA
| ; é J

TBR compression OBR compression

Figure 4.7 Load hierarchies and BCs for ATL analyses (Healy, 1994)
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Figure 4.8 Results of the balanced axial load analysis (Healy, 1994)
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Figure 4.9-a Axially loaded overlapping joints (API RPZA)
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Figure 4.9-b Axially loaded overlapping joints,
local brace buckling effects (API RPZA)
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Figure 4.10-b Axially loaded overlapping joints,
local brace buckling effects (CIDECT)
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Figure 4.11-b Axially loaded overlapping joints,
local brace buckling effects (CSA)
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5. STATIC

5.1

C6060R07.21

STRENGTH OF MULTIPLANAR JOINTS

General

Multiplanar joints are defined as joints with brace members in
more than one plane. They can have overlapping or non-
overlapping braces. An example joint is illustrated in Figure
5 1 which also shows the nondimensional geometrical parameters.

Multinlanar joints are an avoidabls
structures. They are required to
foundation system. Commonly accepted offshore design codes do
not provide specific guidance for quantifying the static
strength of multiplanar joints. Historically, with regard to
both static strength and fatigue, multiplanar joints have been
treated as a series of uniplanar cornections with no reference
to the influence of out-of-plane braces and/or loads in such
braces. This approach can yield conservative or unconservative
solutions depending on the geometric configuration and attendant
Toads. This can be readily appreciated given that many tubular
joints in offshore structures are more complex than the simple
cases. having more than two intersecting braces within a plane
often in conjunction with other planes of braces, Typically
these nodes are subject to complex multidirectional loading.

fpad paths

t

As confidence in the level of understanding for simple joints
has grown, so there has been an increasing recognition that a
detailed assessment of multiplanar effects represents the
Jogical step forward. The need has been highlighted recently by
the findings from preliminary studies which have shown the
effects. in some instances, to be considerable.

The nature of multiplanar influences on tubular joints can be
appreciated from the simple diagrams in Figure 5.2. 1t is clear
that the compression load in the horizontal brace in the second
case will restrain chord deformations compared with the first
case. Conversely the tension force in the third diagram will
add to the chord ovalisation. As a first step in assessing
multipianar influences, the X joint (or double-tee joint) shown
in the last diagram may be considered. In effect the second
brace is in a different plane at 180° to the first. This
transition from simple, single-sided uniplanar Joints. to
complex planar joints is an essential Tink to the multiplanar
joints being considered here.

The first step to incorporating multiplanar effects in design
guidance was taken by the American Welding Society in its 1985
Edition of the Structural Welding Code (AWS D1.1. 1985). An
ovalisation parameter denoted n was adopted to account for the
ovalising effect of loading in out-of-plane Draces demonstrated
in Figure 5.2. The formulation is given in Figure 5.3. This

approach is described and assessed in the following sections.
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APT RPZ2A (WSD and LRFD, 1993) gives no guidance on the
interaction effects due to braces and loads in different planes.
Clause 4.3.3 (APLI-WSD) gives gquidance on detailing congested
joints and in the case of spherical joints gives parameters for
which planar punching shear concepis may be used. Dasign is
permitied on the basis of a plane by plane assessment for both
static strength and SCF evaluations gnoring multiplanar

effects.
CIDECT (1991)

This code gives specific guidance for the static strength design
of multiplanar joints. A correction factor for various loading
and geometric configurations is given as shown in Figure 5.4,
These have been derived directly from the work on V joints by
Mitri (1987), DT joints by Paul (1988) and double K joints by
Makino (1984), all of which are included in the multiplanar
joint database (Section 5.3}.

Although this guide is aimed primarily at onshore structures the
recommendations are based on tests of a reasonable scale and can
be considered in relation to offshore structures. Particulariy
important is the fact that they are related to ultimate (non-
linear) data whereas the AWS criterion (based on the ovalising
parameter «). has a purely elastic foundation.

CoA (19923

No specific guidance on muitiplanar joints is given.

Dnv_(1993)

DnV States that multiplanar joints may be assessed according to
the planar formulae, but care must be taken to use these in a
conservative way. The code notes that the designer should take
care where loads in a second plane add to the deformations in
the plane under consideration and ensure that this situation is
treated conservatively.

in Clause AZ1.2.4.¢C
given.

NPD (1990)

No specific guidance on multinlanar joints 1s given.
! 3 p J
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A Ffirst step towards accounting for multiplanar effects was
taken by Marshall (1982 and 1984) who proposed a general
equation to encompass both single and multiplanar non-overlapped
Joints. Whiist few fest results (and none with moment loading)
were available against which 1t could be calibrated, its general
form was sufficiently encouraging for the equation to be adopted
by AWS in its static strength and fatigue provisions in the
Structural Welding Code in 1085

The ANS formulation centres on the evaiuation of an ovalising
parameter @, which is calculated in accordance with the

i

procedures in Figure 5.3, Considering each brace as the
‘reference brace’ in turn, the influence of all other braces is
quantified via the summation term. Within this, the cosine 2¢
function accounts for the out-of-plane influence. Figure 5.5-a,
and the exponential decay term expresses the Tessening effect as
Ly, the distance between brace centre lines increases, Figure
5.5-b. These terms are both unity for the reference brace which
appears again in the denominator.

In general, the AWS philosophy has been established from
recognition that, for non-overlapping and unstiffened joints,
the severity and direction of chord cross-sectional ovalisation
plays a major part in governing Jjoint behaviour. The direction
of ovalisation is determined from consideration of brace and
load type. 1.e. axial compression or axial tension. The
severity is established from the magnitude of the brace loads
and the proximity of all braces with respect to the reference
brace. The chord ovalising parameter o accounts for both these
aspects. A larger value implies a more severe ovalisation of
the chord cross-section. and hence a reduction in the joint
strength.

Figure 5.2 presents the results of some example calculations for
a for T Joints, corner T joints (multiplanar joints with T
braces at orthogonal out-of-plane positions) and DT joints to
demonstrate the ovalisation severify indicated by these
criteria. Tnis suggests that compression Toaded 0T joints have
a 45% increased severity in ovalisation over compression loaded
T Jjoints, a difference which is not unexpected in Tight of
evidence from simple joint data. For corner T joints with equal
but opposite loads. the degree of ovalisation severity is
comparable to a compression lpaded DT Jjoint.  However, for
corner T Joints with egqual Toads of the same sign, the o value
is 1.3, indicating that the ovaiisation tendency of one brace
Toad is counteracted by the other brace such that the reference
prace joint has a greater capacity than the capacity of 2 simple
T joint.

Before assessing the AWS provisions, a number of specific
comments on the ovalising parameter may be mad

L Initial support for the formulation is found from the
examination of SCF data on multiplanar joints which
indicates similar trends to those identified in Figure 5.2.
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L] The length L, in Figure & 3 represen
adjacent planar brace centre lines,
parameier, Qx e, oo “e?gf““ﬂ with distance:
ends  (app inﬁa@ij non-dimensionaiised). Fav he more
U

re?e‘ant thaﬂ the exponential decay function adﬂwtmd by
A4S, in tine with planar K joint perfchcﬁﬁe impiied in
both API RP2A £1J93) and the HSE Guidance Hotes (1990).
berFmrm@rv the ap parameter is specified in design and
stipulated on fabrication drawings making it a more
sensible choice for adoption in analysis.

® The out-of-plare effecls are essentially Giivﬁ?ﬁdabyz in o
tne cosine Z¢ term.  The use of out-of-plane non-
Gamensigﬁaﬁ gap terms may provide a wmore appropriate
representation of capacity variations. For example, a
reduced interaction between the same braces at the same
angle ¢ would be expected for a larger diameter chord than
a smali diameter chord.  The current AWS formulation
implies an identical interaction.

S

ﬁ? L] The o parameter is derived purely from considerations of

s axial brace loads so the capacity of multiplanar Jjoints
subjected to in-plane or out-of-plane moment loads i3 not
treated in any rigorous manner in AWS.

. In addition to being a pioneering attempt at quantifying
multiplanar joint capacities the w« approach is attractive
for its independence from joint classification. The
geometrical parameters embodied within the eguation are
intended to ensure that simple joint eguations emerge when
all ¢ angles are zerc and thus the designer is not required
to make subjective decisions regarding joint type. This
must he considered a significant advantage in the
refinement or development of new (multipilanar) joint
equations.

. It should be noted that the o approach is based entirely on
elastic considerations. Since the ultimate strength is
fargely infiuenced by the elasto-plastic joint behaviour,
this approach could result in unsafe designs since
information is lacking for a deformation/rotation capacity.
More detailed knowledge of the strength and stiffness of
multiplanar Joints is an essential prereguisite for
reliable designs and pushover analyses,

Nevertheless the AWS represents Such a major advamce over
eariier approaches that 1t is worthy of further detailed study
and from its snortcomings g more refined approach may emerge.

5.3 Database on Multiplanar Joints

5.3.1 General

Table 5.1 shows that a considerable amount of data covering
several multiplanar joint conf .guratzcns has become recently
available. A substantial proportion of this data i1s on the
axially loaded K-K configuration {(experimental). whiie fewer
data cover the axially loaded T-T and DT-DT configurations
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fexperimental, and FE and experimental
Joint tests performed for comparison witl ,
peen included In the table providing a useful b
multiplanar effect assessment. The database is
Appendix A3.5.

Planar
r tests have
58 gase for

e
P
S
E—
o
omnd
]

Joint Mullinianar | ¢ between Reference
type No of tests planes
K-K 20 60° Makino et al {1984)
4 180° Akiyama (1974)
96 60°/90° Mouty & Rondal (1990)
4 60¢ Makino et al (1993)
18 60°/9G° Paul et al (1992)
T-T 8 (5) 60°-120° Mitri (1987)
12 60°-120° Paul (1988)
OT-DT 7 (2) 90° (FE) Paul (1989)
2 (1) 90° (FE) Sakharov (1989)
9 (3) 90° Vegte (1991)
Note: Numbers in brackets refer to planar tests undertaken
in the same test serfes. FE = Finite Element results

Table 5.1 Summary of tests on multiplanar joints.

K-K Joints

Five sets of data exist all of which have 0.20 < 8 < 0.50 and ¢,
the angle between the planes, equal to 60° or 90° except for the
Akiyama data where ¢ 1s equal to 180°. These joints are planar
but they are sti1l useful to include in order to assess the AWS
formulation for multiptanar brace interaction.

ATT Joints but one were loaded under the symmetric loading
regime shown in Figure 5. 4. The exception, Makino (1993). was
Toaded asymmetrically.

The series of tests undertaken by Mouty and Rondal (1999) gave
sirengthns that were considerably lower than those tested by
Makino and Peul. The testing arrangement used by Mouty and
Rondal induced sizeable secondary moments into brace members
curing testing cue to the boundary conditions. This has led %o
screening these results out of the database.
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1-T Joints

exper E%taé data are available, those of Mitrd

(1987 and Paul (1988, eﬁe Joints have ¢ equal to 60°, 90°

and 120° with both bra s loaded in compression. Mitri also

undertook a series of Qéawar T Joint fests against which the
multiplanar Jjoints Can be compared.

T 5
fwo sets of

i T
o

[
Cad
I
e
u—-«'i
1
-
i
L
L
oo
i
ot
s

r ed on FE analvses, those

it g J where The joints were 3&3*86?
to axial lcading. : ; ta set contains three sets of
four joints tested (experi menfa$1v} by Vegte (1991), each ssat
containing a planar X joint for reference. “The in- p]ane loading
was varied in each of the three sets, one set having axial
compression applied. the second in-plane bending and the third
out-of-plane bending. Brace lcads in the out-of-plane braces in
each of the three test series were varied from zero (Lo assess
the effect of addition of the ocut-of-plane braces) fo axial
tension and cempression thus enabiing the effect of g range of
multiplanar loads to be assessed. The 8 (= 0.6) ratio and other
geometric properties were maintained the same for all joints in
this series.

€D ey

5.4 Analysis of Published Formulae

5.4.1 K-K Joints - axial loading

The ratio of the ultimate capacities of the K-K joints compared
to the HSE mean formulation for planar K joints is shown in
Figure 5.6.

The data generally 1ie slightly above the mean line for planar
K joints indicating that the muitiplanar braces and loads do not
have a significant effect upon joint strength where the loading
remains symmetrical. The Akiyama data where the angle between
the bracing p?anﬁs was 180° can be seen to lie above the HSE
mean line. as aiso can the data point for which asymmetrical
Toading was applied (Makino, 1993).

The dataset is analysed with respect to the AWS multiplanar
formula with the 1.8 safety factor removed in Figure 5.7. As
can be seen most of the data lie above the AWS strenath
prediction with the Towest ratic being equai to 89% of the AWS
strength estimate.

o

ffect of the CIDECT factor for muitiplanar K-K joints of
s shown with respect to the HSE mean fit line in Fzgurp
étnﬂmah this factor was applied specifically to account
multi planar effects on the CIDECT K qgap formuéa its
parison to the HSE mean Tine is informative. As can be seen
' ; ppl i ) e data that originally lay
Tow The HSE mean 1ine, now 112 above the modified line

LT e () by {1 €0 =

B - 0. -
WS MDD
:5 et
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T-T Jdoints - axial Ioading

(4}
o
%)

Tn Figure 5.8 the T-T joints ar

formulation af@ itocan
Gi tre multiplanar data fal
data may be assessed on the basis of the pi

by Mitri as part of his progra (fab%e 5.27.

analysed with respect to the
1 sign ?i“Ccﬂ proportion
AWS prediction. These

anar T joints tested

& ¥ Planar g = 507 ¢ =90 g o= 1207
§.ack 22.2 {7ij 118.2 (Vi) 1315
6408 13,4 7y 3305 Vi3 333.7
G645 7.7 {13} 328.7 {(¥3; 452 9
6272 17.2 T4y 122.3 (v4) 1Z2.C
5.405 17.2 7o) 208.6 5 2388 V73 205.3 (Ve 177.4
0.75% 7.5 (vgy 488.1

Table 5.2 The Mitri T-T joint data. ¢ = out-of-plane angle

The first noticeable trend in relation to the § = 0.405 joints
{(T5, V5, V7 and V6) is the increase in strength as the cut-of-
plane ang?e {¢) decreases. Where ¢ = 90° capacity of the
muitiplanar T-T joint (V7) is approximately the same as that of
the planar T Jjoint. Where ¢ is kept constant at 90° it can be
seen that increaszng the B ratio increases multiplanar
enhancement over the planar capacity (V4/T4 . V7/T5 ; V3/T3).

Although the Mitri data are mostly above the AWS predictions. it
can be seen that much of the Paul data are on the low side when
compared to the AWS in Figure 5. 8, the two nigher B ratio joints
in this series are the only date with strengths above the ARS
predictions. The Mitri data have short chords (fypically « =
4.8y and this may be the cause of the apparent capacity increase
gegﬁeen the two sets of data (the Paul data chords have ¢ =

For T-T Joints under Compresséan loading 1in Dboth braces.
significant multiplanar effects dngending on both the out-of-
plane angle ¢ and the # ratio exist. These can be seen to be
beneficial or detrimental when compared to planar joint
capacities. Furthermore although no test data are available, it
can be imagined that where one brace is in compression and one
brace in tension in a T-T Jjoint then capacity may be reduced
below the planar case., aithough the S?””?f}CB“C@ of this will

depend on # ratic ang 9.

The CIDECT modification t r for this joint configuration is
1.0, thus predicte d c&p& jes would be the same as those of
compression Tloaded pianar T joints.  This s c¢iearly not
universally the case here. although availadble evidence confirms
that this is conservative with perhaps the exception of ¢ = 1207
in the Mitri data.

C6060R07.21 Rev A February 1996 Page 5.7 of 5.18



L
Ko
Ll

(6]
Eey
X
-

C6060R07.21

DT-DT Joints

The data on this configuration suggest that multiplanar effect
are more significant than for the K-X and T-T configurations.
Since there are data on DT-OT joints subjected to moment as well
as axial loading (Vegte, 1991}, the data are analysed separately
in two sub-sections covering axial lcading. and the combination
of axial and moment Toading.

Axial loading

A non-dimensionalised strength plot of the purely axially Joaded
OT-OT Joints is shown with respect to the AWS formulation with
the factor of safety removed in Figure 5.9.

Most data (including all the experimental data) for the
multiplanar joints lie above the AWS formulation indicating that
this formulation is conservative. Examination of the database
reveals the addition of an extra plane of braces increases joint
strength above that of planar joints and addition of compressive
forces to this plane of braces (ie. in the same sense as the
uniplanar loading) adds to capacity further. The non-
dimensionalised capacities along with § ratio and Toading ratios
(2nd plane to 1st plane) are shown in Table 5.3.

Joint B Fao’Fig Can/ F\,T‘Z & DT-Oo7/07 or-pi/ CIDECY
unicaded X

prT-om slanar

Ti 0.4 - 15.49 gg° - - 10.49

12 0.4 8 4.5 90° 1.00 1.06 10.49

S G.4 1.8 13.91 95° 1.32 1.32 13.9%

T8 4.4 -1.4 6,83 a4° (BB 0.65 £.99

T2 0.6 i 13.73 94° - - 13.75

T4 b6 g 15.53 H 1.13 1.00 13.75

E) 0.6 1 40,10 gg° 2.492 Z.58 18,28

17 0.6 §.78 34,80 957 2.24 1.98 17.13

T3 0.8 -6 1008 o .73 G865 3.17

Ti 0.83 - 1235 A - - 12.16

o1 .53 1.0 3450 as 7,85 - 16.23
07z 8,53 -1.4 12.490 (® 1.0 - B.14

¥1 0.6 - 12.4% a0° 1.00 - 12.49

152 b8 ¢ 15 45 itk 1.24 1,00 12 49
Xi2 4.8 $.35 ?1.48 qu7 1.72 139 13.83
x4 3.8 - 58 3.7 ag° .08 388 1010

Fop = out of-plane Fp = in-plane force

Table 5.3 Axially loaded DT-DT joints

Table 5.3 shows that the greater the £ rati
enhancement due to the addition of an extra p?
the greater the enhancement in strength due t
loading in the same sense in these braces.

o the larger the
ane of braces and
o the aadition of

nowever where loading of the opposite sense is present, the
reverse occurs. The Ft analyses undertaken by Sakharov indicate
that the capacity of such a joint is approximately that of an
equivalent planar joint (at § = 0.53 and F, = -F}. while the
corresponding FE work by Paul indicates that for the same
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reduced below that
id 35% (at B = (.47,
leading configuration indicat

T
L
&
e
[

loading ratio, capacity
Joint by 27% (at B = 0.6)
experimentai resylt on thi
capacity 6% greater than th
g = 0.8) but the loading

5 4
e correspending planar joint case (at
ratic between the planes is not as
severe (F, = -0.58F;). Should the magnitude of this ratio
increase then it could be reasonably expected that capacity
would fall below that of the corresponding pilanar doint.

e ot o

Table 5.3 includes the planar capacities adjusted according to
the CIDECT multiplanar factor given in Figure 5.4 {planar
strengtn * (1. 0.33 Fo/F 7} in order to assess the ability
of this factor to predict multiplanar capacities. It s
acknowledged in the CIDECT guide that this would be conservative
for compression-compression joints. The constant (0.33) was
kept the same for both Teoading combinations (compression-
compression and tension compression) to simptify the formulae.
For the Vegte and Sakharov data the CIDECT multiplanar
adjustment factor gives conservative strength estimates.

Moment loading

Two sets of data are available on multiplanar DT-DT joints with
one plane under bending 7Toads, the other being unloaded or
loaded axially. These comprise the only data on the effects of
moment loading on multiplanar joint capacity. No guidance is
available currently on the effects of bending on multiplanar
Joint capacity in either the AWS or CIDECT Codes. Details of
these two series of joints are shown in Tables 5.4 and 5.5.

Joint Fop B M, ip/F,T?d
X5 Planar 0.6 17.00
XXe 0 0.6 17.12
K7 242 0.6 20.54
XX8 -213 0.6 16.37

Fop = OUt-0f-plane axial force

Table 5.4 DT and DT-DT joints subject to IP moments and axial
loads

. o2
Joint Fop & MJOp/F, T d
X4 - Blanar 8.6 /.44
XX10 0 0.6 12.13
xx11 Z213 0.6 11.39
XX1i2 -258 0.6 9.54
Foo = out-of-plane axial force

Table 5.5 DT and DT-DT joints subject to OP moments and axial
loads
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From Ta that addition of an unjoaded
second p n-plane bending foaded joints has
ittie e pending capacity  (U5-XXE),

Addition of a ZX}QPESSzQﬂ pre-ioad to these braces in this
second plane increases ra&a”“ty by 20% while a tensile pre-load

acts to reduce in-piane @ﬂrdwﬁg capa cw;y sTightly. The effect
of multiplanar bracing and asgﬁ jated ipads is c]ear?y not as
significant as  Tor  axial oads  Tfor the DT-DT  Jjoint

conti «saﬁfﬁtt G

he ubJect to out-of-plane bending (Table
b.h) slight ren ds emergs. ”ﬁrw the addition of
out -of - plane bracing can be seen 1o enhance joint capacity. the
addition of axial loading 1nto these being detrimental (6.1% for
the compression case, Z1.3% for the tension case). All
multiplanar cases however, have capacities above those at which
the corresponding planar joint fails.

o
e
o)
-
Ty
)
m .
D
o8
8
”I" x:""‘?' 4_,}

Therefore 1t can be seen that the effect of the presence of a
second bracing plane and axial loads within such & plane is not
as significant on the in-plane and cut-of-plane bending strength
of multiplanar Jjoints as it was for the axially loaded DT-DT
Joints.

Implications for other multiplanar doints

Axial Toading

The aim of this section is, in Tight of the information
contained in the previous sections. to indicate where potential
non-conservatism (ie. multiplanar capacities may potentially
fall below planar capacities) could occur in the design and
assessment of muitiplianar joints on the traditional plane by
plane basis. The most tikely scenario is where the addition of
an exira plane of braces, alongside the associated loads acts to
increase the deformation induced by the initial plane loading.
This is 1ikely to be most severe where such joints are under
axial compression in one plane and axial tension in the second
as fTor axially loaded DT-DT joints.

Similar such scenarics can be envisaged in the T-DT and T-T

Joints in Figure 5.10. However these effects as noted will also

depend on the oubt-of-piane angle, ¢. For exampie i1 can be

perceived that where 2 is reduced towards 0° then the tensile

and compressive toads act largely to balance each other, perhaas

increasing ;e:H; capacity. or at ? 2ast not reducing 1T below
i

that of a pianar joint,

For K Joints under balanced loading the tendency 1s for the
chord to ovaliss 1?@ two perpendicular directions under the
tension an compr ession brace respectively. The effect of a
second plane of bracing of @1+h@“ T or OT con figuration on such
a K Joint is therefore unlikely to be as great as on the DT
configuration, Qﬁ§115u1851y if such braces intersect the chord
at the centre-point of such a C&ﬁ?iguraiian. as shown in
Figure 5.11. ﬂe effect of a second set of K braces on a X
joint has been discussed already in light of the considerable

volume of fest data on K-K joints.  That agrees with the
quatitative analysis here thal multipianar effects on the KK
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Moment Toading

From the evidence on DT-DT Joints discussed above, a second
piane of braces with or without axial Toads generally increases
the capacity over that of the planar configuration, the oniy
reduction in strength to below that of the corresponding planar
configuration is 4% {Joint X¥8 of the Vegte data).  This
evidence would suggest that addition of multiplanar braces and
associated forces has Tittie *muuhu on in-plane or out-of-plans
bending strength compared 1o the planar case. Where the impacu
is of significant magﬁntade the multiplanar effects generally
increase the capacity over that of planar configurations.

The possible geometries and Toading scenarios are limitless and
guidance fTor all cases is difficult to develop. However by
using qualitative analysis the designer may become aware of
potential problems and take measures to ensure design of
multipianar connections 1s conservative.

Conclusions and Recommendations

The available experimental evidence and design recommendations
have been reviewed Tfor axially Toaded K-K Joints. The AWS
multiplanar formulation gives largely conservative results
(safety factor removed). The most under-conservative prediction
is approximately 12% (one test). Most of the multiplanar data
1ie above predictions based on the mean HSE formula for planar
K joints. The 0.9 reduction factor recommended in the CIDECT
Code can be seen to siightiy over-penalise the data.

For axially loaded T-T Joints 1t can be seen that the AWS
formulation over-predicts most of the Paul date and under-
predicts the majority of the Mitri data. The Mitri joints have
short chords (x = 4.8) which enhance the capacity in comparison
with Jjoints having longer chords. The AWS formulation is
slightly under-conservative for this multipianar joint. CIDECT
proposes a modification factor of 1.4, based on the Mitri data.
With the more recent Paul T-T data (o = 8.9) showing lower
capacities, this factor could lead to under conservalive
predictions of static strength for this joint and Toading type.

For axially Toaded OT-0D7 Joints. the AWS gives conservative
pradictions which reflect the increase and decrease in capacity
caused Dby the muitiplanar loading in the available FE and
experimental data. Similarly the CIDECT modification factor can
be seen to reflect conservatively the multiplanar loading
effects (Table 5.3). For the case of compression loading in
both bracing planes the CIDECT modification 1s somewhat over
conservative. Therafore. the AWS and CIDECT formulae may be
seen to refisct the multipianar behaviour of D7-07 joints in &
conservative and realistic wayv. Both may be considered more
suitable for assessment and ées1gn of this joint type than the
traditional plane by plane approach.
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alern ] ase. where muitipianar capacity Tal
Low ; - nt this is only by a small magnitude
(4% Joint XX8). In the absence of more comprehensive

information the traditional plane by plane assessment is
considered appropriate for design of moment Toaded multiplanar
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Figure 5.1 Multiplanar overlapping joint: Geometric notation
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Figure 5.2 The influence of out-of-plane braces and Toading
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Figure 5.3 The a formulation in AWS D1.1 (1994)

correction factor to uni-pianar

Type of joint joint (limits according to Fig. 8)
60° < ¢ < 90°
TT
@ 5 t 10
} t
XX

4 0.33 22
+ 0.33 N,
N Nz Note: take account of the sign of

g 1 Noand Ny (Ny = Nyj

KK

A /‘; 4 0.9

Figure 5.4 CIDECT correction factors for multiplanar joints (1991)

Co060R07.21 Rev A

February 1996

Page 5.14 of 5.18



(a] =4 3
3 *'\ 200ex4.5WT g & /G/
2o . S
21 - P

] /

19 - /
/

1.8 ‘\ o
/

1.4

.5 ~
T4 -
1.3 -4
12

1.1

(b) Ly -

1.8

2009 x4.AWT

- /

1.3
1.2 -

= 1,1 -

Ly {m)

Figure 5.5 Variation of « ovalisation with
out-of-plane angle., ¢, and brace separation, L,

C6060R07.21 Rev A fFebruary 1996 Page 5.15 of 5.18



Effective Qg

Psin{theta)/FyT2

C6060R07.21 Rev A February 1996

25
+ i
2 ot
05 bt Makino 1984 ¢ Akiyama A Makino 1993 |
x Paul 1992 — HSE mean - 0.9HSE mean
0
0 0.2 0.4 0.6 0.8 1
g/D
Figure 5.6 Comparison of multiplanar K-K joint dataset
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Figure 5.7 Comparison of measured to predicted strengths
of K-K joints with the AWS vs g/D
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Figure 5.8 Comparison of measured to predicted strengths for the
multiplanar TT joints with the AWS vs out-of-plane gap ratio (go/D)
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Figure 5.9 Comparison of axially loaded multiplanar XX joint
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Figure 5.10 Multiplanar TT and T-DT joints subject
to axial loads of the opposite sense

y

Figure 5.11 A multiplanar K-T joint
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6. STATIC STRENGTH OF RING STIFFENED JOTNTS

6.1 General

Internally ring stiffened Joints are defined as those with
compiete annular stiffeners welded internally into the chord, in
the region of the brace/chord intersection. An example of a
ring stiffened K joint and definitions of relevant parameters
re illustrated in Figure 6.1, S5tiffeners may be of any uniform
ross section and may be of complete diaphragm configuration,

[R5

Ring stiffeners incresse the resistance of chords to radial
deformation and any change in ovaiity. Therefore, they may be
used to enhance the static strength of some joint types such as
L Joints and highly loaded leg Taunch runner Joints. They are
particularly efficient for large diameter thin wall chords where
excessively thick cans might oftherwise be required. In addition
ring stiffened joints have generally lTower stress concentration
factors than simple joints.

It should be noted that since the welding of stiffeners inside
some chord members is difficult and time consuming, the criteria
for use of internal ring stiffeners should be assessed from both
the fabrication and design points of view. Further information
is given in Chapter 2.

E 6.2 Review of Existing Design Codes

Apart from general statements. none of the design codes give
direct or definitive guidance on static strength computations
for ring stiffened joints. This is consistent with the almost
complete lack of data on such joints.

API-RPZA (WSD and LRFD. 1993)

A general paragraph entitled Other Complex Joints’ (in both WSD
and LRFD versions of API-RP2A) states that such Joints (includes
internally stiffened joints) may be designed on the basis of
éppropriate experimental or in-service evidence. In the absence
of such evidence, an appropriate analytical check is recommended
as follows:

"This check may be done by cutting sections which isolate groups
of members, individual members. and separate elements of the
Joint (7.e. gussefs. diaphragms. Stiffeners, welds in shear.
surfaces subjected to punching shear;, and verifying that a
aistribution of stress can be assumed that satisfies equi tibrium
without exceeding the allowable stress of the material".

Further reference to stiffened J0ints 1s made in the Section
entitled "Load Transfer Across Chords’ where the codes states:
‘Special consideration is required for more complex joints. For
multipie branches in the same plane, dominantly loaded in the
same sense, the relevant crushing load is 2P Sin ¢, An
dpproximate closed ring analysis may be empioyed, including
plastic analysis with appropriate safety factors, using an
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effective chord length as shown in Figure 4.3 4-]1 (Figure

Any reinforcement within this dimension {e. Taphragms. rings

beSEia or the stiffening effect of out of e memﬁersi'mayjﬁe
considersd in the analysis, although its ef Cr?ven@ss decreases
with distance from the branch foolprint’. It is further
recommendad that no chord check is necessary for ioénas which
have ‘'two or more appropriately located diaphragms at each
branch’ at least as thick as fh@ wall *hiﬁfﬁ@Sa of the
ﬂgrrwggﬂpﬁ* ng b L““FC” member; such joints need only be checked
§@ﬂ locat capacity. The Co e rec mm;nu& znaL, f@* Cross Joints
with diaphragms, tn@ sJ@a capacily may be Calculated using the
yf0V1biQPS for simpie joints (Section 3) with 4, taken as (3.4
+ 198).

AWS (1994)

This codes recognises the use of stiffeners by stating that
‘general collapse is particularly severe in cross connections
and connections subjected to crushing leads. Such connections
may be reinforced by Tncreasing the main member thickness. or by
use of diaphragms. rings or collars’. However, no design
guidance is given. The statement draws attention to leg launch
runner  Jjoints, which, although not of DT/X geometric
configuration, behave as cross Joints and should be designed
accordingly.

CSA (1992

Guidance on complex joints, defined as those in which internal
or external stiffeners are employed 1s resiricted to the
following statements:

{3
art

"t:w:

*;

s

1Yy In cases where stiffeners must be introduced to increase

the chord strength. the minimisation of local stress-
raising effects should be considered in the stifrener
design and positioning.

11)  Resistances of complex joints shall be calculated by Tower
bound analysis or other rational methods of analysis. or
shall be determined by experimental tests.

CIDECT (1991)

The CICECT code makes no reference to the static strength design
of internally ring stiffened joints.

bn¥ _(1993)

with refer e ice Lo joints stiffened by gussets, diaphragms, ring
stiffeners or by grouting, Clause £ 105 states that such joints
may 1 be used to obtained an enhanced pertormance. Such enhanced

perd Qﬁ%&f e 1s to be cocumented by detailed analysis (FEM-
analiysis ) model tests or parametric formulae, where aﬁaﬂgpfiate
In addition, Q?auce £ 500 on tne static strength of complex
joints, not covered by explicit design guidance, centains a
"Guidance ﬂotm on performing approximate analytical checks
which is effectively similar To that of API-RPZA.
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Referring to Joint types such as stiffenad joints, cast joints,
ited Joints, Clause 21.2.4 states that a combination of
t a, analytical technique fve estimates of

ength may be adopted for desig such joints. subject to
Certifying Authority approval. It aiso recommended that care
must be exercised when designing such Joints on the basis of »

]
H

Vimited test programme.

a2
J(Qﬂ

NPD_(1990)

ks £
e e o et e

Guidance on the design of complex joints are restricted to
general statements broadly similar to those in DnV (1993).

Review of Published Information

Marshall (1992)

In his thorough design guide entitled ‘Design of welded tubular
connections™. Marshall (1992). describes in some detai] a
practical design procedure for ring stiffened Joints using as an
example Jjoints in the Bullwinkle Jacket. Eariy design
calculations that can thicknesses of nearly 7 inches would be
required for simple unstiffened joints. Since this exceeded the
cold forming capacity of most fabricators. an alternative
stiffened design was investigated, which allowed the reduction
of joint can thickness to around 4 inches. The design procedure
s reported to include consideration of the following:

1} Punching shear in shell: Application of the punching shear
concept (derived for simple joints) to stiffened joints.

11) Membrane loads in shell: Checking the capacity of the
cylindrical shell to carry axial membrane stresses.
égcludéng the interaction of these with punching shear in
the shell.

111) Demand/Capacity in Ring/Diaphragm: Design of the ring
stiffeners to carry the applied loads.

~ith regard to the design of ring stiffened Joints in general,
Marshall states the following: ' Stiffening can be designed with
clearly identifiable load paths, so that the designer 1is not
Cependent on finite element analysis or empirical formulas, with
their potential for latent errors and mis-application. Being
able to conceptualise also helps the formulation of design
strategies. as opposed to a trial-and-srror approach. A
stiffened Joint can be a challenging structure itself. A design
approach which consists of cutting sections and taking free
bodies may be Toosely justified hy the Tower bound theorem of
piasticity, provided that material selecticr and detailing are
such that yielding can occur without premature failure by local
overstraining. brittie fracture, or local buckling. Success of
the method depends on the perceptiveness and thoroughness with
which each part of the cornection is examined. It follows that
stiffened joints reguire more engineering attention than simpie
Joints. Also stiffened joints usually end up being more
conservatively designed’.
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6.3.2 Sawada et al (1979
Tnis paper reports static and fatigue tests on T joints
stiffened using one ring welded inside the chord along the brace
centreline Static strength deta are reported for *wo

unstiffensd joints and seven ring stiffened doints (Table 6.1) .

The authors suggest that the strength of the stiffened joints

may be estimated using the ‘cut and fry’ method based on the

fower bound theorem of plasticity. The static strength of a
stiffened joint is expressed as the sum of the strength of the
Joint in the unstiffened condition (ie. as a simple joint) and
the shear strength of the ring siiffener |, assuming that the
ring shears in two planes. The method is {1lustrated in Figure

6.3 and may be expressed as follows:
pu,siéffened = Pu,unstiffeneci + zémgsts}:y,sf\/g

where H,. t., and F,, are the width, thickness and yield strength
of the stiffener.

Appiication of this method with P, menss Dased on an empirical
equation for simple T/Y joints proposed by Akivama et al (JSSC,
1974), 1is reported to result in predictions in good agreement
with the measured strength of the stiffened joints. Therefore
the authors suggest that the above method is sufficiently
accurate for engineering purposes.

Jotnt properfies Ring properiias Strengths Strength ratios
Speo,
{13 (27 | (& {4;
T v FY Hf) ts Fv.s ?meas Pared ?pmg HSE" + {13/ :41) /
HSE | HSET [2H 2 FLA] ) {1
B Neem? | omm | [N/medl kN L RN ki
N
H-0-1] 9.83135.8] 38% | Na ] NA | NA [ 385 491 § 8% HA KA KA
A-G-2110.38[34.2] 363 {HA] HA | NA | 308§ 581 | 2932 NA NA NA
R-1-1 431 363 g78 | 501 | 383 2849 2.23 1.08
R-1-2 L5] 388 798 1 497 | 290 805 Z2.05 0.99
#-1-3 7.7 394 806 | 450 | 353 B77 Z.28 113
R-2 G B &0 495 1 3492 £e7 1.55 1.87
R-2 T G031 487 ¢ 9% 712 2.32 1.27
g-4 L 7l ] 491 | 3 718 2.05 1.10

Table 6.1 Experimental results for ring stiffened T joints
subject to axial compression (Sawada et al. 1979)
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Table 6.1 shows predic
401 nts : ?u,sti.‘fa&,ed . "’ﬂ e unstiffenad
cguation for compression loaded Joints, correct:
pasis of the measured strengths of the two unstiffened joints.
It can be seen clearly that the predictions are in good
agreement witn the measured strength of the stiffened Joints.

with regard to the strength enhancemant
P

o

[

oy

%)

o

Y

G ]

faay
a0

6.1 shows that The strength ratio of stiffen é
(unstiffened) joints is in the range 1.55-2. this impii
strengtn enhancement between 55% and 146%

CFy
(]
T

Murtiny et al (1992

ihis paper reports data on the effects of ring stiftfeners on the
stetic strength. fatigue and stress concentration factors of T
and Y joints. The stiffened joints had three ring stiffeners
welded inside the chord under the saddle and two Crown
positions. Four static strength tests were performed on
compression loaded two stiffened T joints (8 =0.7: y = 13.5 and
16.9) and two nominally identical unstiffened Joints.  The
measured strength enhancement due to stiffening is &67% for the
y = 16.9 joint and 73% for the y = 13.5 joint (Table 6.2). A
number of important parameters are not reported including:

- The yield stress of the chord. brace and rings

- The failure criterion used in determining the capacity of
the stiffened joints and the corresponding load deformation
data. It is reported that the stiffened Jjoints were “stili
intact even at failure load and can still have a residual
strength’.

fhe Tack of important information precludes further evaluation
of the data.

Ring
Bing
Jotnt propertiss orogerties Magsured | Measurad
Spec, Strength | sirength
! T f H fy i
h d ' L A ¥ Fy I I A B Prs, )
it i e R Rimt | mm o] omm [N/ -
Kk
TRl 7226 497 1 58 [0e7i15.8) oo [RAT 8 | wa 5a7? KA
TS 2 219 112049 8.2 [0.88(13.5] --- | ¥ NA | NA 1024 NA
FES I By 226 1 57 P BB ORI - 170 0 ] - 278
= 324 130 I2.0] 87 §0.8B13 5 -.- P iz ). 1765

Table 6.2 Experimental results for ring stiffened T Joints
subject to axial compression (Murthy et al, 1992)
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Failure Modes

Typical Joad-deformation characterictics for axially Toaded
stiffened and unstiffened Joints are reported by Sawada et al
(1979, These indicate that internal ring stiffening can
increase the static strength significantly. In addition. the
maximum loads the joints can sustain are reached at roughly the
same deformation levels, 1 dicating that carefully selected ring
stifferer size and position may not affect the ductile
properties of the joint.  Failure usually occurs either by
elastoplastic buckling of the chord section following flexural-
torsicnal buckling of the ring stiffeners, or jocal buckling of
the brace wall in the vicinity of the joint. The second failure
mode would suggest that for heavily stiffened joints, brace
buckling could be the Timiting criterion in design.

No ultimate load tests have been carried out for moment loaded
ring stiffened joints.

Conclusions and Recommendations

stiffener positions

The following stiffener positions are recommended for axially
loaded joints:

1) One ring stiffener: Locate.at the saddle position

11)  Three ring stiffeners: Locate at the saddie and two crown
positions.

111) Greater than three ring stiffeners: Locate three of the
rings as in configuration i1},

The rings may be positioned at some characteristic distance
apart within the brace footprint provided that some valid
evidence on their benefit is available.

No data are available on moment loaded Jjoints for the
development of any detailed guidance on stiffener positions.
Based on simple engineering Jjudgement, it is recommended that
the position of stiffeners should reflect the principal load
paths for the transfer of moments from brace to chord:
stiffeners should therefore be located at the crown and saddle
positions for in-plane and ocut-of-plane moment loaded Joints
respectively.

Joint desian

Insufficient data are available to develop design guidance. I
is recommended that in the absence of experimental or numerica
evidence, ring stiffeners should be gesigned to transmit al
brace jcads. Formulae presented oy Young (Reark's formulas for
stress and strain, 1989) for ring analysis may be used for this
ourpose.  The appropriate elements of ring stiffened joints may
be designed on the basis of the allowable stress approach.
Procedures discussed by Marshall (1992) may be particularly
usefui. Alternatively, the use of nonlinear finite element

t
1
i
M
i
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in particular finite 9?
sensitivity studies to
parameters such as the &w@
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Etavation View A~A

Figure 6.1 Internally ring-stiffened joint: Geometric notation
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7, J /‘3
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Figure 6.2 Definition of effective chord length (API-RP2A, 1993)

O-O-&

ULTIMATE STATIC ULTIMATE STATIC SHEARING STRENGTH

STRENGTH OF STRENGTH OF OF STIFFENING RING
STIFFENED JOINT, UNSTIFFENED JOINT

Figure 6.3 Method for estimating the ultimate static strength
of a stiffened joint (Sawada et al, 1979)

C6060R07.21 Rev A February 1996 Page 6.8 of 6.8



7. STATIC STRENGTH ASSESSMENT OF CAST JOINTS

7.1

C6060R07.21

General

Cast joints are formed using a casting process as 11lustrated in
cigure /.1, They can be of any geometry and of variable wall
thickness. An example of a multiplanar cast joint is given in
Figure 7.2

Cast Joints are a recent development of foundry practice in
offshore activitiss. These developments have been
made possible by dimprovements in  stee) processing, micro
alloying and casting design which allowed steel manufacturers to
produce sound castings of suitable quality and composition for
use in offshore environments.

Boped

There are two basic design methods:

Direct substitution of a welded joint using a casting. The
basic joint geometry is retained with slight modifications
fo take advantage of some of the aspects of casting
technology. Therefore. the basic design approach may be
considered broadly similar to that of welded joints.

J—

2. Optimised cast joints (manufacturers’ term). This method
exploits fully the advantages of cast joints by employing
variable thickpesses and geometries to optimise joint
performance. As these modifications to the geometry are
substantial, & radical chenge in design approach from that
of welded joints would be required.

In practice, it is advantageous to combine the two approaches.

Figure 7.3 illustrates some types of casting which have been
proposed by various investigators.

The use of castings for tubular joints offers obvious advantages
such as a homogeneous integral component free from stress
raisers associated with welded joints and with significantly
lower residual stresses. In addition, the thickness of the
casting can be varied to accommodate any areas of high stress.
Castings also offer the opportunity to place padears or launch
rails as an integral part of the joint.

The basic advantages of cast steel joints may be summarised as

follows (Walker at al, 1980):

1. Greatily improved fat
isotropic nature of th

2. Significant reduction in platform construction costs and
greatly reduced in-service inspection and maintenance.

-~

or stiffeners, because of inherant high stiffness

trass conceniration factors,

€
o
=
b
o
C

Ly

=
and Tow

4, improved Joint _efficiency resulting from absence of
fabrication problems, and greater design flexibility.
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7.3

7.3.1
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Review of Existing Desian codes

Some design guides‘énc?ade_genera1 statements on cast Joints
with regard to fatigue design {eg. HSE Guidance Notes, 19903 .
However, no guidsnce is given on static sirength design.

Review of Published Formulae

The two Tollowing alternative methods have been proposed for
determination of the static strength of cast joints. The first,
based on a modified API "punching shear® model. appiies to
direct substitution of casting: while the second, based on a
theoretical approach, is intended for overilapping cast joints.,

Modified API punching shear

This approach account for the enhancement in static strength in
cast Jjoints when compared to equivalent welded joints by the
increase in effective shear area provided by the fillet radii.
A modified APl punching shear equation has been derived by
“River Don Casting Ltd":

fo = (f,51n0/K, + £,/K,) t/[T + (2axT/d)]

where

is the applied punching shear stress

is the applied axial stress

is the applied bending stress

is the included angle of the joint

1s the chord wall thickness

is the brace wall thickness

1$ the brace diameter

1s the Tength from the fillet radii tip to the centre
of the brace wall shel]

K..Ky are constants relating to the footprint of the brace

-

g oo

—4 < —h

[ e S
=

[T should be noted that the above modified API formula is based
on early versions of API which have subsequently been revised.

Theoretical parametric equations

Based on theoretical load transfer mechanisms and aliowable AISE
stresses, parametric egquations for the static strength of
overiapping cast joints under axial Toading have been proposed
by Nekamura et al (1985). Jepending on joint configuration.
three modes of failure (membrane. ‘scratching” (defined as a
shear failure between the braces and the chord), and shearing
between braces), were identified and are shown in Figure 7.4,
cint types and geometric notations are illustrated in Figures
7.5 and 7.6, respectively. The design equations for each
failure mode are as follows:
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Mode of Failure Joint Type
Membrane failure K, KT Fy 7004 1c+0.3d) cos™ g
YT F, T00.8 1c+0.6d) cost @
Scratching failure K., KT 0.2 F, t, 1c cost @
YT 0.4 F, t, 1ccos' 8
Shearing failure LOKTYT 1047, 6,1, v, cost o
between braces
where A
F, 15 the yield stress
T is the chord wall thickness
d 1s the brace diameter
ic 15 the projected length of the intersection between

chord and braces (see Figure 7.5)
1s s the effective projected intersection
between braces and is defined as follows:

ls =1, 9F 1 exists
Is =1, 1f 1, is absent (Figure 7.6)

length

Lec Les are average brace wall thicknesses along the
intersections between brace and chord and

between stubs, respectively.

It should be
toading only.

noted that the parametric equations cover axial

Review of Available Test Data

No static strength tests on cast Joints are known to exist.
This Tack of data precludes evaluation of the ahove formulae.

Conclusions and Recommendations

that if cast joints are considered. the
designer should seek specialist advice. This is especially true
for optimised cast Jjoints where radical design criteria are
followed. Alternatively, non-linear finite eiement analysis may
be used but due consideration should be given to the geometric
and material characteristics of cast Jjoints including the
effects of casting geometry. stress-strain characteristics, and
casting defacis.

It is recommended

In addition. it should be remembered that the

-

performance of a
cast joint beyond first yield may not correspond to the load
redistribution which 1s achieved in welded joints.  The post
yield behaviour of cast joints should be investigated in order
T0 ensure that the safety factors against total collapse are
comparable to those of welded joints.
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Figure 7.1 Cast joints: Typical casting process

e

Section 8B

Section A—A

A Elevation

Figure 7.2 Substitution cast joint
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Optirmised cast joint

Figure 7.3 Comparison of welded and cast joints

Failure Mode
* Membrane * Scratching e Shearing
Failure Failure Faiture
chord
, T p—
‘ 1
chord chord
TR P )
buckling break break

Figure 7.4 Failure modes for overlapped nodes
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Figure 7.5 Node types and overlapped ratio
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Figure 7.6 Forces interaction
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8. STATIC STRENGTH OF COMPOSITE JOINTS

8.1 Genera}
Composite joints are defined as those in which the chord member
is either fully Tilled with a cementitious material (eg. grout)
or in which the chord member contains a pile and a grouted
annuius.  Sometimes the pile is filled with grout to provide
additional strength. The nondimensional parameters relevant to
composite joints are illustrated in Fioure B.1,

Composite joints provide enhanced strength due to the restraint
provided by the grout which reduces chord wall deformation.
They offer an additional advantage over internally or externally
stiffened joints in that less fabrication effort is required.
grouting technology s well proven and grouting works can be
executed with confidence.

Historically, composite joints have often occurred in offshore
steel jacket structures not through specific design requirements
but as a by-product of the foundation system. In a shallow
water jacket structure, foundation piles are often driven
through the main leg members. The annulus between the pile and
leg is filled with a cement grout. Brace members welded to such
legs form composite joints which exhibit greater static strength
than simple joints due to the composite behaviour of the cement
grout, pile and chord. Composite joints are also formed in deep
water skirt-piled structures.

When composite joints are formed as a by-product rather than in
order to satisfy specific design reguirements, the enhancement
in strength s often assessed only as part of & re-analysis of
the structure during its service 1life, However, the
incorperation of composite joints in the initial design phase
can result in significant cost savings (Billington and Tebbett,
1983). Filling the tubular chord (and/or brace) members with a
cementitious material results in the efficient use of materials
in applications most suited to their mechanical properties. The
cementitious material s contained and therefore greater
strength and ductility may be achieved. The steel tubular is
the containment medium and is therefore predominantly subjected
to hoop tension, and the cementitious filling minimises any
tendency for buckling of the steel shell. Billington (1981)
summarises the improvements obtained by composite construction
in offshore jacket structures as follows:

1. Axial and bending capacities are greatly enhanced.

2. Increased resistance to external hydrostatic pressure is
proviced., thus reducing or eliminating the need for
internal or externa! stiffeners.

3. Erergy absorption characteristics are greatly imoroved.

4. 5Crs are considerably reduced. Teading to enhanced fatigue
endurance.
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Review of Existing Desian Codes

No definitive guidance or formulas for the stati
design of composite joints are given 1in any code.

include gereral statements mosfly under the genera;
"Complex joints". These are reviewed in Section 6.2

e—)
o €5
D

Review of Published Information

Winpev-BP Programme

This testing programme was undertaken as a part of structural
reappraisals of existing platforms. A total of twenty reduced
scale T shaped Jjoints were tested. The dimensions of the
specimens, grouped in either Series A or W, are shown in Table
8.1. Specimens in series A and W represent existing joints in
the ADMA and West Sole structures, respectively. Each series
contained ten specimens, five were grouted and five remained
ungrouted. A1l grouted specimens contained a centrally
positioned pile and a grouted annulus, but in addition, those in
Series A contained a grout fi1ling in the pile member. In each
series, two specimens (one grouted) were tested under tension,
four specimens (two grouted) were tested under compression and
a similar set was tested under in-plane-bending.

Some data on the Series A tests were published by Tebbett et al
in 1979 and reported in the UEG Design Guide in 1985. Results
of the full programme, documented in two Wimpey reports {Wimpey,
1977), have been recently made available to the Tubular Joints
Group by BP. Data on measured capacities and failure modes are
given in Table 8.2 and discussed in Section 8.4.

Grout
Series | D T d t L i ¥ F, F, Foo T 3| Fa
A SUB | /.94 1368.3) 7.94 1202210.35132.0| 235 | 483 | 312 |17.46)317.5) 571

5t
~d

200y 338 | 452 | 256 [ 7.94{487.7{ 85.7

-
e
e
(o)
bt
[a%]

|
o
W
a3

“d
[
Lo
(2]
=)
Ly
£

2
<Tr
Ly
[543

table 8.1 Geometric and material properties for grouted and
ungrouted T joints (units mm & N/mm®), (Wimpey, 1977)

Tebbett et al (1979). commenting on the results of Series A,
proposed the foliowing approach to design fully grouted Joints
which depends on whether brace stresses are compressive or

tensile:

Compressive brace stresses only:  These result from axial
compression or combined bending and compression where |f,] =
[Tol. where £, and f, are the axial and bending stresses
respectively. For this case it s suggested that "punching
shear” need not be considered for a Tully grouted ioint. and
that the design of the joint will be controlled either by the
permissible brace stresses or by the fatigue performance.
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Partially or wholly tensile brace
axiai tension, pure bending or combi
Lension or compression whers if
suggested that the joint should
shear”.  For joints having the s
Lested, Tebbett recommends that a 60%
design purposes.

De designed against "punching
8 metry as the specimens
hancement be applied for

=

[l
[§R ] -
D

[ J—

Design for "punching shear”, referred to above, appiies to the
procedures of the Seventh Edition of API-RP2A (1978).
Joint | Load (GroutediGrouted] Measured larouted 7 Reported
D Type |Annulus] Pile | Strength |Ungrouted] Failure
Axial: kNIStrength{ Mode
IPB: kN.m
Al | tens. No No 470.3 CwW
AlZ | tens. Yes Yes 815.1 1.73 cw
AlL3 1 comp. NO No 2591 a
Ald | comp. fes Yes 1663.0 |average= B
Al5 | comp. No No 2401 6.73 a
Al6 | comp. Yes Yes 1698.9 8
AL7 1 ipb No NO 36.95 a,cw

Ai8 | ipb Yes Yes 68.33 |average= CwW
Al9 1 ipb No NO 35.94 1.77 a,cw

AZ0 iph Yes Yes 60.74 Cw
Wl | tens. Ne No 1i51.8 a
WZ | tens, Yes NO 1280.4 1.11 CwW
W3 | comp. NO No 668.6 a
Wd | comp. Yes NO 1072.1 |average= a
W5 | comp. No No 668 .6 1.61 a
WO | comp. Yes NO 10791 8
W/ iph NO No /7 .44 a.bB,cw
Wa ipb Yes NG 86.05 |average=| a,B,cw
W9 ipb NO NO 78.96 1.09 a.B.cw
w10 | ipb Yes No 84 02 a,B,cw

Nomenclature of failure modes:

a:  Local plastic deformation of chord wall,
B:  Yield or buckle of brace member, and

cw: Cracks at weld tos.

Table 8.2 Strengths of grouted joints subject to compression,
tension and in-plane bending loads (Wimpey, 1977)

8.3.2 Jebbett (1982)

In this paper Tebbett discusses the reappraisal of steel jacket
structures atlowing for the composite action of grouted piles,
highiighting the benefits of the associated composite Jjoints
with regard Lo static strength, stress concentration factors and
fatigue. Tebbett also reports that a major testing programme
(over 70 tests) was underway at Wimpey Laboratories o produce
design guidance on composite Jjoints. Findings from this
pregramme remain confidential, but Tebbety presents a set of
ive graphs produced in the preliminary stages of the programme
providing information mainly on the static strength of fully
grouted Joints. These graphs are reproduced in Figures 8.2-8.6
and discussed in Section 8.4.
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This paper resorts some findings from 2
programme  whicn  included  experimental  an
énvest?gaticns into the static and fatigue
composite joints (grouted annulus only). A total ﬁf Five static
strength tests were performed on two T and three OT joints. One
T “Qéﬁz was tested urd%r én~gian€ bending and ﬁ%@ other under
@gt f-plare bending, while two of the DT joints were subjectad

te ston end one to compression. The g@@wﬂtrlc ané material
oroperties, reported in the paper, are reproduced in Table 8.3,

The observed ultimate atﬂen“iﬁs are reported to be much higher
than predictions of ungrouted strength based on the ARSEM
parametric formulae {19 ), which are effectively the equations
of EurcCode 3 and QESECT. Predictions of grouted strength were
also evaluated by substitution of an equivalent chord wall
thickness, T,. 1in the aforementioned formulae. This
modification resulted in higher predéctiﬁns {Table 8.4) but the
authors suggest that the wse of "specific” design formulae
(undefined in the paper) would be more appropriate to take full
advantage of the composite technique. T, was estimated using
a formula based on Lloyds recommendations and reported in Part
F of the UEG Design Guide (1985). Since the formula does not
account for strength of the grout (F.). 1t is not clear how its
application could result 1in different predictions for the
tension loaded DT joints (Table 8.4).

Grout
o 7 ¢ P L i 20 PR T Y A F e
508 ] 8.8 210 A W0 0 AL 6.7 - -e- b --- ] BB 40541304 78

Table 8.3 Geometric and material propertwes of grouted T and DT
joints (units mm & N/mm?), (Le Meur, 1994)

A number of graphs showing comparisons of the recorded ‘oad-
deformations curves and those predicted using nonlinear finite
element analyses are given. It is suggested that such numerical
simulations could be an effective tool to complement data from
experiments, provided that the numerical modeliing is carefully
performed. However, it is noted that the analysis of a large
number ¢of grouted joints within the context of a design project
would reguire a skilful team wi t“ vast computer resources. In
this respect. it is suggested that numerical simulation seems at
present at the bounds of engineering feasibility. and that the
development of Lu;vamtzsﬂaé daségﬁ formulae or simplified
numerical approaches would stit! be of great interest.
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JointiF,, off Loading | txperimental | Predicted Predicted
grout faiture load i ungrouted grouted
Axial {kN; strength strength
N/mm? Moment (kN.m)|{ARSEM 1987)|(ARSEM 1987)
with T,
DT} 30 | Comp. 1278 Bo6 793
o 20 jTension 1100 655 /93
07 1 75 ITension 1696 £56 1180
T 30 IPB =103 e =83
T 30 0P8 =66 - =45

Table 8.4 Measured and predicted strengths of grouted T and DT
joints (Le Meur, 1994)

Review of Available Test Data

General

As reported earlier, a major test programme was undertaken in
the early 1980s at Wimpey leboratories to produce design
information on static strength, stress analysis and fatigue of
composite joints (Tebbett, 1982). In addifion, it is stated in
the UEG Design Guide (1985) that another programme was underway
(probably in the early 1980s) at Det norske Veritas. This is
reported to include some 24 tests on double-skin grout-
reinforced joints. Results from both these programmes and from
the recent French Programme (Le Meur, 1994) remain confidential.
Since the limited published information does not allow a
comprehensive design approach to be formulated, it is intended
in the following section to review the broad design aspects for
composite Joints witn reference to the data summarised in
Section 8.3,

Failure modes

Composite joints can fail in a number of medes depending on lcad
type, infill material type and Joint configuration. In the
absence of brace member failure, the failure modes described
below mav occur.

Typical load deformation curves for axially loaded grouted and
ungrouted specimens are given in Figure 8.7, The increass in
strength under compression or tension Toading is governed by the
load transfer mechanism. Compression loaded joints show a very
large enhancement due to load transfer in bearing to the grout
through the chord wall at the brace/chord intersection.  For
some compression ioaded T joints an overall bending failure of
the grouted chord may occur.
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Comments on available data

The available data. summarised in Section 8.3, allow the

following general comments to be made:

Fulily agrouted T joints: Compression

- Strength enhancement of specimens Al3-Al6 (8 = 0.33, vy =
32) s 1in excess of 500% (Tabie 8.2). Strength of the
grouted specimens Al4 and Al6 1s limited by the brace
member capacity.

Fully grouted T doints: Tension

- Strength enhancement of specimens Al1-AlZ (8 = 0.33, y =

32) 1s approximately 73% (Table 8.2).

- Figure 8 2 suggests that for 0.33 < B < 0.5 and v = 20,
Pu /F,T? may be aaproxamat ed bj the linear relationship:

(1!53 - 30).

- Figure 8.3 suggests that for 8 = 0.
P/ FyT? may be approximated by the

33 and 20 < y < 472,
Iinear relationship:

(0 8uv + 02.5).

Fully grouted 7 Jdoints: 1PB

- Strength ennancement of specimens Al7-A20 (8 = 0.33, y =
32) 1s approximately 77% (Table 8.2

iy arguted T doints:  0PB

- Figure 8.4 suggests that for 0.35 < f < D58 and v = 32,
M,./F.T%d may be aporoximated by the 1 inear F@*ﬂ??ﬁr ship:

- Figure 8.5 suggests that for § = 0.33 and 20 < y < 47,
MuﬂnyTzd may be approximated by the linear relationship:
(0.44)y)
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Annulus only arouted T doints: Compression

£ 4 . + L A o g pon i
th enhancement of specimens W

roximately 61% (Table 8.2},

reng
S app

Annulus only grouted T doints: Tension

(W]

oy
[

I

[
30
Tromp

et

Annulus onty grouted DT doints:  Tension

- Increasing the grout strength, F_,. appears to resulf in a
substantial strength enhancement of DT joints with 8 = 0.41
and y = 27 (Table 8.4).

Annulus only grouted T dcints: IPB

- Strength enhancement of specimens W7-W10 (8 = 0.38, y = 20)
is only about 9% (Table 8.2). However, strength of the
grouted joints W8 and W10 may have been limited by brace
member failure.

8.5 Conclusions and Recommendations

Published data on the static strength of composite joints are
available for a very limited range of joint configuration and
ioading. These data may be useful for the design of similar
joint geometries and load types. Alternatively, non-linear
finite element analysis may be used provided that the numerical
mode]ééng 1s performed carefully and calibrated using reliable
test data.

In the absence of appropriate data. it is recommended to seek
specialist advice.
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Figure 8.1 Composite joints: Geometric notation
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Figure 8.2 Fully grouted joint under axial tension:
Ultimate strength resuylts given by Tebbett (1982)
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Figure 8.3 Fully grouted Joint under axial tension:
Ultimate strength results given by Tebbett (1982)
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Figure 8.4 Fully grouted Joint under out-of-plane moment:
Ultimate strength results given by Tebbett (1982)
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Figure 8.5 Fully grouted Joint out-of-plane moment:
Ultimate strength results given by Tebbett (1982)
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Figure 8.6 Grouted annulus Joint under axial tension:
Ultimate strength results given by Tebbett (1982)
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Figure 8.7 Typical load-deformation curves for axially
loaded composite joints
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APPENDIX A3.6 FINITE ELEMENT DATABASE
{To be added)
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APPENDIX A3.7 DATABASE ON STATIC AND DYNAMIC YIELD PROPERTIES
(To be added)
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APPENDIX A3.8 LENGTH FORMULAE FOR OVERLAPPING JOINTS
(To be added)
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