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ABSRACT: A thin layered element method is formulated to compute the dynamic
response of submerged soil. The formulation is based on Biot's equation describing the
dynamic behavior of fluid-saturated elasto-porous medium. The dynamic response of
submerged soil is computed for various cases by using the developed formulation. The
effects of submerged conditions are examined for submerged soil deposits with a water
level at and above the ground surface. It is found that both submerged conditions and
water above the ground surface can considerably affect the dynamic response of soil
deposits.

INTRODUCTION

When the dynamic load is applied to saturated soil, pore fluid movement relative to
soil skeleton may be induced. The transient movement and redistribution of pore fluid can
significantly affect the dynamic response soil behavior. Those are generally governed by
the loading rate, soil permeability, pressure gradient and boundary conditions, resulting in
an extremely compléx picture of the dynamic response behavior of submerged soil.

Biot (1962) has made a framework in the formulation of dynamic response of fluid-
filled elasto-porous medium . This formulation has been generally used for dynamic
response analysis of submerged soil and evaluated typically by either analytical solutions
obtained by solving the differential equations or the numerical finite element method.
Considerable difficulty exists in obtaining analytical solutions for Biot's equation in general
and thus the solutions have been developed only for very simple conditions (e.g. Biot,

1956; Jones, 1961; Deresiewics, 1960; Foda and Mei, 1982). Those conditions are

generally far from those commonly encountered in the real situation. The finite element
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method has been applied for the numerical evaluation of Biot's equation (e.g. Ghaboussi
and Wilson, 1973; Prevost, 1982; Simon et al., 1986; Zienkiewicz et al., 1977). Contrary
to the former approach, this approach can account for complex geometry and
inhomogeneity without increasing the degree of difficulty and amount of computation.
However, compared with the finite element scheme applied to a single-phase medium, the
computation effort increases substantially due to the additional degrees of freedom
associated with pore fluid. A thin layered element method has been developed by
combining the finite element method and analytical solution, to compute the responses by
using Rayleigh wave modes (Kausel and Roesset, 1975; Lyswer and Waas, 1972; Tajimi
and Shimomura, 1976). This approach requires computation effort far less than the regular
finite element approach and yet has a capacity of accommodating complex conditions far
more than the approach with analytical solution. It has been applied to the dynamic
response computation of a single-phase medium but not yet to a fluid-saturated porous
medium. For the dynamic response analysis of a two-phase mixture, this approach appears
to be very attractive because a large computation effort is generally required in such

analysis by the regular finite element method.

FORMULATION
The soil medium is assumed to be an elastic porous medium saturated with pore
fluid. The displacement of the pore fluid relative to the displacement of the solid skeleton is

defined as
w =n(U - u) (D

where n = porosity; w = (wy, W) 1 in which wj is relative displacement of fluid in the j
direction; u = (uy, u;)T in which u; is displacements of solid skeleton in the j direction; U =

(Ux,U)T in which Uj is the average displacement of the fluid in the j direction so as to be a



volume of fluid displaced through a unit area of the mixture perpendicular to the
displacement; and x and z = Cartesian coordinates in horizontal and vertical directions,

respectively. The total normal stresses acting on a unit area of mixture is
G = (1-n)C; - MmN = ¢' - mnx® (2)

where Gs = (Osx, Osz, Txz) | in which Ogj 1 a normal stress in the j direction acting on the
solid skeleton averaged over the unit area; ¢ = (Gx, Oy, Txz) ! in which oj is a total normal
stress in the j direction; ¢' = (Gy', 07, Txz)1 in which Oj is an effective normal stress in
the j direction; Tx, = shear stress; T = pore fluid pressure; and m = (1,1,00T.

The equilibrium condition of forces acting on the soil skeleton in a unit soil volume

is described as

(1-mL "o, + (1-n)p,b + nk W = (1-n)p, ii 3)

where W = 0w/ot; u = 02u/0t2; b = (by,b,)T in which b; is body force in the j direction per

unit mass; ps = density of a unit volume of the solid material in the skeleton; and
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L = 3 0 (4)
0 Jdz  ox

The equilibrium condition of the forces acting on the pore fluid domain in a unit volume of

soil is given by
nVr - K nw + npb =p.W+ np;ii (5)

where pf = density of unit volume of pore fluid; and V = (9/0x, 9/0z)T. Combining Egs. 3

and 5, the equilibrium condition of the pore fluid and solid skeleton mixture is expressed as



Lo+ pb = pii + p,¥ (6)

where p = density of unit volume of mixture = (1-n)ps + npf. Since linear elastic
conditions are considered, body forces will be neglected hereafter.

The rate of the fluid stored in a unit volume mixture is equal to the summation of the
rate of the volume change of volumetric strain in the solid, the rate of change due to
compression of the solid by pore fluid pressure, the rate of change due to compression of
the solid by the effective stresses, and the rate of change due to compressibility of the fluid.

According to Simon et al. (1984), this is expressed as

Viw=- amTe + Q'x @)

where € = strains = (g, &, Yxz)1; and o and Q are related with material properties through

K 4
o=1--9 and Q =2 +%0 8
X, K, K, ®

where K = elastic volumetric modulus of solid; K¢ = volumetric modulus of fluid; and Ky
= elastic volumetric modulus of solid skeleton. Substituting 7 in Eq. 7 into Eq. 2 and
using the stress-strain relationship, ¢’ = De, the total stresses, &, can be correlated with €
and w. With € = Lu, this expression and pore fluid pressure given in Eq. 7 can be written
in a matrix form such that

{c} (D +c2Qmm"L  aQmV’ {u} "

= T T

QV

W

Using © and ¢ defined in Eq. 9, Egs. 5 and 6 can be rewritten in the following

matrix form after using the relationship € = Lu :



b,

M{g} ¥ C{:»lv} e {8} (10)

{p Pf} {o 0] L'+ o2Qmm )L QL 'mvV"
Py Pg/n “lo k! | «QVmM™L Qvv!
(11)

Consider horizontally layered submerged soil. The displacements of the medium in
the wave field is expressed in the form of (u(x,z,t), w(x,z,t)) = (u(x), w(z))e-i(@t-hx) in
which @ = circular frequency and h = wave number. Using a shape function in z direction
and omitting the time facor, the displacements of the jth layer in the wave field are

approximately expressed by using the displacements at the upper and lower ends of the jth

layer as
u.(x,z) . Uj
{wjj(x,z)} = Z(Z){w} (12)

where e-ihx ;T = (uj(x,0)T, uj(x,H)T) and eihx W;T = (wi(x,0T, wj(x,H)T), in which
z=0 and Hj indicate respectively the upper end and lower ends of the jth layer; ; and Z(z) =
matrix containing shape function . When linear variations of the displacements are

assumed along z, the shape function matrix Z is

z z
2(2) = (LHJ.’ HJI (13)

where I = 4x4 identity matrix. It is noted in Eq. 13 that the factor (1-z/H;j, z/H;) is simply
multiplied to the numbers in I and thus Z is a matrix with 4 rows and 8 columns. The time

facor, el®t will be omitted hereafter.
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After substituting Eq. 12 into Eq. 10, Galarkin's procedure applied to Eq. 10

results in
H.
T ]
Z J.ZT(Kj +iC -0.)2MJ Z{ }clhx dz
=1 ¢ y o . U B
2 Z Kj +ioC -0 Mj Jz{“;‘}e"hx |0 =0 (14)

where J = numbers of layers; and (K', C', M") = (K, C, M) dz. The inside of the

second summation in Eq. 14, S, can be rewritten as

H '
(K +ioC - M b L 3(K +i6C - M Y
= 3 ( i 1 j'(’J JJZ W et de-I—JAZE( j+10) j_(D JZ W dz
] s ]

0 (15)

Substituting Eq. 15 into Eq. 14 and performing integration with respect to z result in the

characteristics equation in the discretized form such that

i [hzoaj. +ihB, + YJ{‘I;;} _0

j=1 i

or
(hzoc +ihf + YH‘EV} =9 | (16)
where
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in which A = A + 2G +02Q; and
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Wave numbers, h, and their associated mode shape vectors, (T, 0wT)T, can be

determined by solving the characteristic equation Eq. 16. Since the fluid pressure is an all

round equal pressure, there is a constraintment between the freedoms associated with Wy

and wz and therefore the characteristic equation for J layers results in the number of

eigenvalues equal to 3] conjugate pairs instead of 43. In order to satisfy the wave

scattering conditions, only those with the plus sign in the imaginary part are selected among

the conjugate pairs. Then, the displacements of the submerged layered-soil is expressed

along x at the nodal points as

3, 4. [
{x[i(:)} =§e'lhs O‘S{m}s



and thus the displacements within the jth layer as

u;(x,z) } S inx {q)uj }
=7 s 19
{WJ (X,Z) (Z)gc > (I)WJ s ( )

where (9yT, oy T)sT = sth eigenvector in which ¢y, and ¢ = vectors of size 27 ; ¢y and
Ow;j = vectors containing the values at the locations corresponding the jth layer in ¢y and
Ow, respectively; hg = sth eigenvalue; and o = sth mode participation factor. Then, using

Egs. 9 and 19 together with Eq. 13, the stresses and pore fluid pressure at the middle of the

jth layer are
o.(x, 0.5H;) 3] , 0. 3] o .
] _ -ihgx u -ihx LY (20)
{ﬂj(x, O.SHj)} - lAj;hse as{q)Wj}s * nge as{q)wj}s
where
A A 0 0oQ oaQ 0 0
A - 1 A2GA2G0 g aQ aQ 0 O
) 0 6 GG 0 0 00
oQ aQ 0 0 Q Q 0 O
(21)
0 0-(A-2G)(A2G) 0 0 -aQ oQ
110 0 -A A 0 0 -0Q oQ
B=2w| GG o o 00 0 0
P10 0 -aQ oQ 0 0 Q Q

A vertical cut is considered at x=0 in a layered soil. After substituting Egs. 13 and
19 into Eq. 9, the nodal forces acting on the vertical cut of the jth layer for x>0 can be

obtained as




Xj 33 b, 31 (.
) IR W "
z-‘, =1 E'zhsas{(waj}s-k Fjg‘as{¢wzj}s (22)

] s=1
’ where

B; o q(0,2) ’

sz = - NT{szj (O,Z)} dz

Pﬂ_j 0 J‘E} (O,Z)

H. | Aa 0a aQa 21
E =_1]| 0Oa Ga QOa with az[l 2} (23)
b6 LaQa Oa Qa
Ob (A-2G)b Qb 1 -1

F.=1[Gb Ob Ob with b=[1 _J
I 2[0b ab Qb

Therefore those of the entire layered system for x>0 are

B,
{Pz} =i Eih&s{j::,x}s +F ias{guy} :

E s=] s=1

or

P,
P,r —(IE¢' +Fp") (24)
PTC .

where ¢' and ¢" = 3] x 3] matrices containing the vectors hg(OuT, 0wy )sT and

(¢uT, 0wz )sT at the sth columnn, respectively; and o = vector containing o at the sth
location. Given external loads at x=0, (Qx, Q, Qx), the participation factors, ¢, can be
detcrmined fI'OI'n Eq. 24 With (Px, Pz, PTE) = (Qx, Qz, Qﬂ;)/z and (Px, Pz, Pﬂ;) = (Qx,

Q2. Qp) for the soil medium extending respectively through -eo <x< 400 and 0 X< +oo,



With those participation factors, the displacements can be determined from Eq. 19 and the
stresses and pore pressure from Eq. 20.

It is noted that , when the layer is made of fluid only, Eq. 10 and all other
formulations can be rewritten withu =0,k =0, n =1 and Q = 1/Ks. The undrained

condition corresponds to w = 0 and k = () in the above formulations.

COMPUTED RESULTS AND REMARKS

Effects of submerged conditions on the dynamic response of soil deposits are
examined for a homogeneous soil profile shown in Fig. 1. The present formulation
requires dividing the soil into multi-layers for computation. In the first study, however,
only one layer is used in order to avoid cornpléxity in the results and to see the essence of
coupled behavior of solid skeleton and pore fluid. Fig. 2 shows wave number dispersion
curves for various conditions. The imaginary and real parts of h define respectively the
wave length and the rate of decay of Rayleigh waves according to e-PX, The mode 1 and 2
denoted in the dispersion curves for dry soil are associated respectively with S-wave and
P-wave. When the soil is dry, those mode waves are not progressive at the frequencies
below the natural frequencies of the soil deposits associated with S-wave and P-wave
respectively for the first and second modes. Above those natural frequencies, they are
progressive to form waves in x direction. When the condition is submerged and
undrained, the high pore fluid stiffness increases the P-wave velocity and therefore the
mode 2 wave does not propagate until the frequency substantially higher than that for dry
soil. When this mode wave is not progressive, the displacements decay somewhat more
quickly with distance than those for dry condition . The pore fluid stiffness affects the S-
wave velocity very little and therefore the natural frequecies of the soil associated S-
waves. When the condition is submerged and drained, one additional mode exists in this
case as seen in Figs. 2¢ and 2d because of the additional degree of the freedom due to the

fluid motion. In the case k = 10-3 mys, the first and second mode waves are very similar
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to those observed for undraiﬁed condition but the third mode wave is a progressive wave
at any frequency and decays very quickly with x . Asis seen in Fig. 3, the fluid motion
relative 1o the solid motion in the third mode is rather independent of permeability although
those in other two modes decrease with decreasing permeability. When the relative fluid
motions are large, a strong coupling develops between the pore fluid and soil skeleton. As
a result, the dispersion curves associated with the mode 1 and 2 are significantly affected
by the coupling and thus afore-mentioned difference between the two types modes are not
clear as is seen for k = 10-lm/s case.

A completely flexible massless vertical impermeable wall is assumed to be inserted
at x =0 in the ground and subjected to either a vertical or lateral concentrated harmonic
load at the location of the ground surface. Ground displacements are computed along the
ground surface by using the above computed wave numbers and mode shapes and are
shown in Fig. 4 for @H/vs = 2. The horizontal and vertical motions are uncoupled with
each other for dry soil with v = .25 and are governed respectively by the first mode and
second mode waves. Therefore, according to the real and imaginary parts of hg at ®H/v
=2 in Fig. 2a, the vertical displacements monotonically decay with distance x because of
no real part hg in the first mode, whereas horizontal displacements form wave pattern with
the wave length defined by the real part of the first mode wave hs. When the soil is
submerged, the horizontal and vertical motions are coupled each other even with v = 0.25
and thus both horizontal and vertical motions form wave pattern in x as soon as the first
mode wave propagates. The difference in the imaginary part of hg in the first mode wave
between the dry and submerged conditions can be clearly seen in difference in wave
lengths along x. The amplitudes and phase shifts of the displacements of the wall are
shown in Fig. 5a at various frequencies for dry soil and submerged soil in undrained
condition. The first peaks are are due to the first mode wave and are located around the
fundamental natural frequency of the soil deposits associated with S-wave (wH/vg = 7/2).

The second peaks, clearly seen in z direction displacements, are due to the second mode

11



wave and are located around the fundamental natural frequency of the soil deposits
associated with P-wave (@H/vp =r/2 with vp2 = (A+2G+02Q)/p). The difference in pore
fluid rigidity affects not only the amplitudes of the response but the location of the second
peak. Itvey little affects the location of the first peak because of its association with S-
wave. The relative fluid motions generates damping and therefore suppress the peak as
seen in Fig. 5b. As frequency increases, however, the relative fluid motions becomes
smaller and the difference between the undrained and drained conditions diminishes.
Contrary to this, when the motion becomes slow, there is enough time for pore fluid
diffusion and thus the submerged soil behavior is closer to that of the dry soil as frequency
decreases.

Now the soil responses to the wall motions are recomputed by dividing the soil into
10 layers (see Fig. 1), in order to see the distributions of responses along the depth. The
computed amplitudes of displacements and pressures at the wall are shown respectively in
Figs. 6 and 7 at wH/vs = 2 for various permeabilities of the soil. It is noted that the
displacement responses for k = 10-1 m/s and 10-5 m/s are very little different respectively
from those for dry case and undrained case at the frequency considered. The lower the
permeability is, the higher the pore fluid pressure is induced due to more difficulty in pore
fluid diffusion. In addition, free drainage at the ground surface affects the distribution of
pore fluid pressure giving further complexity in the porewater pressure in the soil. The
pore fluid is far stiffer compared with the soil skeleton stiffness and thus the soil
responses along the depth are affected by the difference in permeability as seen in those
figures.

Three different conditions are considered as shown in Fig. 8 for an identical
nonhomogeneous soil profile shown in Fig. 1: they include dry soil (case A), submerged
soil with water level at the ground surface (case B) and submerged soil with water level
above the ground surface (case C). The shear wave velocities of the inhomogeneous soil

are defined so that its fundamental natural frequency is identical to that of the
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homogeneous soil. Similar to the previous study, a completely flexible massless vertical
wall is assumed to be inserted in the soil and is subjected to a lateral harmonic motion at
the surface of the soil. Both of the soil and the water above the soil is divided into 5
layers each for the computation. The computed displacement amplitudes of the wall are
shown in Fig. 9 at the ground surface. Clear peaks can be observed around the
fundamental natural frequency of the soil associated with S-wave in all three cases. Itis
interesting to notice that one additional peak exists below this frequency when the water
exists above the soil. Again the submerged condition reduces the response significantly.

The water body above the soil affects the soil response significantly.

CONCLUSIONS

A semi-analytical method is developed for dynamic response analysis of fluid-
saturated porous medium. The method uses the ﬁnite element discretization only along
depth and analytical form in lateral direction. The method is found to be numerically very
efficient particularly for two-phase mixture problems. The pore fluid in the soil mass
affects the dynamic response of the soil deposits by not simply increasing the stiffness of
the soil but also by coupling the soil skeleton motions with pore fluid motions. All those
effects are affected by the loading rate relative to the pore fluid diffusion rate, boundary
conditions and stress gradient. The coupling effects are more predominant for higher
permeability soils. When the permeability is low, a mode wave transmitted primarily to
the fluid is distinctly different from those primarily transmitted to the soil skeleton and
decays very quickly with distance. Under the static and drained conditions, the
submerged soil response is identical to the dry soil. Under the dynamic condition,
however, the transient pore fluid redistribution depends on the rate of loading and
permeability of the soil. The response of submerged soil is closer to the undrained
conditions when the combination of those are less favorable for pore fluid movement. The

larger the pore fluid motions relative to the soil skeleton are, the higher the damping
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generated. When the soil is submerged below the water table, the water above the soil
deposits can affect the dynamic response of the soil significanly and thus has to be taken

into account in the dynamic response analysis of submerged soil under the water.
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Fig. 7 Pressure response amplitudes at soil-wall interface along the wall
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0.4

Q
e
b
o) 0.2
=
[+
1.6
3]}
g
8
2, 0.8
g
(1]
0
4
(3]
g o]
B )
A
g
[av4

sl |

Wz((l))/llx((ﬂ=0, dry)

- uz(w)ux(w=0, dry)

T N = T

: ux(®)ux(w=0, dry)
5 H
= Case A
g
B CaseB CaseC

frequency wH/vg

Fig.9 Lateral displacement amplitudes at the top of the wall subjected to lateral vibration



