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Comle

The algorithms for the kriging and conditional simulation are quite straightforward
once the covariance matrix is developed. . The main task to be completed is the
developnient of a rapid procedure for computing the covariances. The major part of the

report will be concerned with this problem.



THE SPATIAL-TEMP L COVARIANCE FUNCTION

Let (x1, y1) and (%3, y2) be any two locations and (ti, t2) be any two times. The
water level elevation above mean water level at (x, y, t) will be denoted by 7(x, 3, t).

The covariance between two random variables U and V is defined as the statistical
average of (U - pa)(V — ptv) where pq is the statistical average of U and gy is the statistical
average of V. It is convenient to denote the statistical averaging process with E [ ]. Then

the covariance definition may be expressed in symbols as
Cov(U, V) = E{(U — pu)(V — piv)]
where

B(U] = pu
E[V] = py

Now replacing U with 7(xy, y1, t1) and V with 7{xs, y2, t2), and noting that, by definition
of 7, the average of 7(x1, 1, t1) and 7(x2, y2, t2) is zero, the covariance between the two

can be written as

Cov[n(x1, 71- t1), (X2, F2, t2)] = Bln(xy, 71, t1) 7(x2, 72, t2)]

That is, the covariance is the expected product.
- 1t will be asusmed that the sea surface is a stationary, Gaussian process. Then the

covariance defined above will only be a function of the differences in position and time. Let
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T=tg—1t
X=x2—X1

- Y=y—-7
be these differences, and define the covariance fanction as C(X, Y, 7) where

C(X, Y, 7) = Cov[n(xy, y1, t1), K x2, 72, t2)]

It can be shown that (Borgman, 1969, p. 723) the spatial, temporal covariance

function can be expressed in terms of the directional spectrum as
2r .
O(X, Y, 7) =2 Jm j S(£,6) cos[wk(Xcosd + Ysind) — 2xirldadf
0°0 ,

where

+1, if dis the direction toward which waves travel
—1, if §is the direction from which waves travel

k = .wave number
= function of { defined by (27f)’ = gk tank (kd)
d = water depth

g = acceleration due to gravity.

The functions involved can be defined for negative frequency by‘

(-4, 9) = 5(1, 6)



k() = ()
Then, through the complex—valued definition of the cosine as
cos ¢ = [exp(i ¢) — exp(—i $]/2

the formula for C(X, Y, 7) can be tewritten as

27 '
oX, Y, 7) =_r J (1, 8) exp[—iwk(Xcos + Ysin6) + i2nir}d &t
-7y _



A POLAR FORM FOR THE COVARIANCE F TION

Suppose (X, Y) is re—expressed in polar coordinates (p, a), with
X =pcos a
Y =psin a
then
X cos § + Y sin 8= pcos acos §+ psin asin 8;.pcos(9—a)

With these definitions
2r | A
C(X, Y, 7) = r J 5(£,6) expl<iwk p cos( 6—a)] expli2xirld di
-9
Without loss of generality, S(f,6) can be expressed in the product form

- 8(f, 6)=5(1) De(6)

where D¢{ 6) is the spreading function defined so that
27 |
J D 6)dd = 1.0
. : 0

| Df(ﬁ‘)ZO'.



The spreading function gives the distribution of wave energy or variance with direction at

frequency f. The covariance function can be written in terms of the product form as

CX, Y, 1) = r’ 5(f) { f” D( §) e WEP 08 (B—G)da}
- 8

* 27745 = C¥(p,a)

(where * denotes multiplication).

In summary, the covariance can be expressed in rectangular and polar form as

CX, Y, 7) = zr s(f) { f’ D(8) cosfwk(Xcosf + Ysind) — 2xfrd 9}df
0 0 .

C*p, a, 1) = J: S(f)'{ fr D¢(9) —iwkpeos(8—a) e} el27174¢

Bither form can be used as a basis for computaitons. In practice, it is usually best to pre

compute a table of the Covariance function values for a gifen 5(1, 4) and a grid of values,

or



" It is only necessary to compute these for positive time lag because, from the definitions
C(-X,-Y,-n=CX,Y, 7
c*(P: a+ 7, '-'r) = C*(Pf o, T)

For the Navy application, where the S(f,#) function is estimated from a buoy, further
simplications are often appropriate. It is often satisfactory to take D¢(9) as only depending
on §. When this happens, the spreading function will be denoted by D(8). Three common
formulas for the spreading function that are used as approximations are

The ggneralized cosine—squared model,
D(8) = ¢ cos%((6-4)/2]
“The von Mises inodel,
D(8) = {expla cos( 6]}/ {271o(a)}
where Io{a) = modified Bessel function of order zero.

and the wrapped—normal model

D(6) =,§_mexp['~—'[f’-=‘“r%ﬂ]jﬁ ]/(ﬂ? .

All models have about the same shape and are unimodal and symmetfic about s

Approximate equivalent values between 5, a, and o2 are given in the appendix to the
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report.

Since all three models have very nearly the same shape for most typical wave
spreading conditions, it is just a m.atter of mathematical convenience which is used. If one
is a reasonable a.pproxima.ti.on, then any other of the three will also be a reasonable
approximation. |

In the polar covariance faunction with the spreading function independent of

frequency, it is particularly convenient to use the von Mises model,

C*(p,a, = Em 5 { J2w éacos( 9“1‘;’;02:1;#608( =) 40 } ST

0
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A BESSEL FUNCTION SERIE PRESENTATION

"There is a nice series approximation of

(acos( 6p)
in terms of the modified Bessel functions given by Oliver (1964, p. 376, eq. 9.6.34) as
o
gacos(fp ) = In(a) + 2 Elln(a.)cos[n( Gps)]
n=

After a little algebra, the formula for C* can be expressed in series form as

| 2r . . *
o=z [ s A Dgg Myt

o 2 o - | . .
+ nzl -]infoa'(l)'a Em S(f) Jo"r cos[n( 3._#)] e—kapCOS( 9—0) dé elQﬂ'f‘r af

The integration over (0, 27) is really just an integration over the full circle of 360°.
The full circle integration could just as well range over (a — 7, @ + 7). I the limits of
integration are changed to this new choice and the variable of integration is changed to

Yy=0—a .

the formula simplifies to

' r ] . .
C*p, o, 7) = é;r S(f)J' —iwkpcosgy, i2xirg
. — -7
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+ ngl 1;’1‘%% J:o S(f) :r cos[n( Yyt Q)]e-iwkpc 03¢d¢ RELEPT,
The cosine in the second exp;'ession can be expanded to
conln o] = on(a)icin( =) —sn(asnla( o)
With this,

T .
C¥p, a, 7) = %‘;r () 1.e_.l-‘;vkpcos1[,"1y,; 1277 g
-y p—

+ § Inoaa cos[n(o—p)]r S(f) ergos(mb)

n=1"%

. . m - T
s miwkpoosyy, 27i7ge 3 In(a) i g r s [ sin(ne)
n=] Tola ) -
* e—iwkpcosgifd " ei21rf'r i
The last expression is zero since the integré.nd

sin{ny) e—iwkpc 05y

is an odd function of ¢ integrated over (—x, r). The other two integrands

' eéiwkpcoszp
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and

~ cos(ny) g—iwkpoosy

are even functions of 1, so the range of integration can be changed to (0, 7) with a

multiplica.tioﬁ by 2. Thus

| . ‘
o*p o =1 [ s(t) [ oy s
~0 0

2 nil 14(2). cosfa(cmp)] J:, (6) j: cos(a )

* e—iwkpcosqbd " ei21rfr gy

The reason for all these manipulations will now become apparent. the integrals over

# can be expressed as Bessel functions. Oliver (op.cit., p. 360, eq. 9.1.21) gives
I & IWEPCOSY g g)d g = inTa(—wkp)
0 -
x . .
J IWhpCoSYy ey wkp)
0

By Oliver (op.cit., P. 360, eq. 9.1.20) if the éxgument, Z, is real—valued

Ju(~2) = (1) Ja(z)



Combining all these results

C*p, o, 7) = r S(f) Jo(kp) eiz?rffdf + 2 ngl (—Wi)rl %%%}cos[n( a—u)]

[ 500 Takp) 27 ot

14
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COMPUTATION-QF THE BESSEL SERIES FORM

The last equation is in a form appropriate for approximation with the fast Fourier
Transform. Let N and Af be chosen so that 3(f) Jn(kp) is essentially zero for f > NAf/2
andn=20,1,23,4, ---. Thisis equivaleﬁt to choosing a frequency beyond which S(f)

will be treated as though it is exactly zero. Then define
Ar= (NAD)™
A(:) = S(mAf) Ta(kn p)

where kp, is the wave number corresponding to f = mAf, and set

(n) 2 ala)
ANem = A :
Then, introducing a new function, Ra(p, 7)

. . N-—1 cm e
Ra(p a7 = [ () Slep)e 208742 a0 3 Alg)et2am/N

-0 _ m=0

the function Rn(p, 7) can be computed quite rapidly for a selected list of p—values to
develop a matrix whose rows are the p—values and whose columns are the 7 = jAr
time—lag values.

An algorithm for the rapid computation of Jn(z) for real—valued z is given by Oliver
(op.cit., bottom of page'_ 385). An exactly parallel procedure can be applied to compute‘
In(a) with eq. 9.6.36 ( Oliver, op.cit.)
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In terms of the function Rn(p,7) defined above

CHp 1) =Rolp ) +2 3 (i BEPRRRT) contos)]

The nature of values of Ra(p, 7) can be combined with any a to compute rapidly the value

of C¥p, o, 7}
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THE COVARIANCE MATRIX

Let Cy; be the M by M matrix whose (ny, n2) element is the covariance between i,

and i, for the water level elevations in the series
{qﬂyn=1:‘21 "';M}

defined in the introduction. Similarly let Ca9 be the (Mg — M;+1) by (My — M +1) matrix
whose (j;, j2) element is the covariar.xce between r,rc.(tMl +i|—1) and 731'0(1:M1 +j2—l)’ in .the
series {no(tn), 0 = My, My+1, - --, Mo} defined in the introduction. Finally let Cz be the
M by (M; — M;+1) matrix whose (n, j} element is the covariance between 5, and

r;o(i:MI _H-_l). With these definitions, the covaraince matrix of (7, m)T is
n Ci:C
2 Ct2Co

All of the covariances in Cy;, Cy2, and Cys can be computed by first determining X,

Y, and 7 for the pair of locations and times involved, then getting p and o from
p=y X% + 12
a = arc tan (Y/X),

and finally interpolating for Ra(p, 7) and computing C*(p, a, 7).
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CONDITIONAL SIMULATION OF gz,

The ma_l.trik formula for conditional simulation of 7,, given the values of 7, was

derived previously by Borgman (1984, p. 533, eq. 85.). The following steps are involved.

(1) Compute the eigenvectors and eigenvalues of

Ci Cie
C=
Ci2 Ca2
Let A; be the eigénva.lues and v; be the corresponding eigenvectors. Define V as a matrix

whose columns are the eigenvectors and L as the diagonal matrix whose main diagonal

elements are ); and whose off—diagonal elements are zero. Then
¢=vLvT

in the well known eigenvector, eigenvalue decomposition (Jennings, 1977, p. 32, eq. 1.130).

Consequently,
- ¢ = (VLT

(2) Let Z*bea vector of independent, standard normal random nuinbers. Then

[ﬂi

L1

] — L2 g

is an unconditional simulation of 7 and 7,.



i alues of g is
(3) A conditional simulation of 7, given the v

) T ""1 —_ ¥ +
{z)o,given_q}zcmcu(n %) /78
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KRIGING FORMULAS FOR g,

The kriging procedure estimates each not;) by a linear combination of the interval of
values of 7y surrounding the time tj. The idea here is to use all values of 7, that are
correlated with 70(tj). A reasonable choice would be to include all 7, measured from the
platform within two wave periods of the time t;. Here a good value for the wave period
would be the inverse of the frequency at the peak of the spectra. The value no(t;) is

estimated by
1o(t5) = S 2n7

where the summation extends over the times surrounding tj. The coefficients, ap, are

computed to minimize
Q = El{n(t) - n(t)} ]
subject to the constraint that
Elnlty) — 2(t)] =0

A full discussion of this procedure is givén by Borgman (1985, p. 14), a copy of which is
forwarded with this report.

The computations may be summarized as follows. Let n; ¢ n < ny be the interval of

values of 7, used.
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'CT, = (ng-n;+1) by (ng—n+1) covariance matrix_of the 7n forny {n {ng
Cig = vector whose {~th element is-the covariance between g ] and 7o(t;)
1 = vector of ny~n;+1 components, all of which equal 1.0
a = vector of coefficients to be multiplied by the 5y in the interval
" The kriging equations which solve the constrained minimization are computed from
- |
Citl]fa Cia
1T o) (2] " 10

where, ) is the Lagrangean multiplier imposing the constraint. Thus

[cT; .1.]“1 [Qm
1T o '1.0]

The mea.n—sﬁua.re—error of the estimate of 7,(t;) is

r——
P -
——
Il

mean square error = Ef{n (t;) - ;70(1‘3')},] =02—-A— QTQ_LQ

where

o2 r S(f)df

0

from the sea surface spectral density..
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MMARY AND CONCLUSION

1. Kriging and conditional simulation algorithms have been developed for estimating
the water level elevation at a fixed reference location from the measured water level

locations on the moving platform.

9. Both kriging' and conditional simulation have straightforward mathematical

formulas, once the appropriate covariance matrices have been computed.

3. An algorithm based on a Bessel function series and the use of the fast Fourier
Transform to compute a subsidiary function, Ra(p, 7), is derived. This is the main work in
the report. Both kriging, and conditional simulation procedures are completely derived in

cited references.

4. Recommendations are given for procedures to compute the Bessel functions in the

formula and the other aspects of the algorithm.

5. The kriging procedure will probably be the best choice of the geostatistical
techniques for use in estimating the water level elevations at. the reference location. A
convenient error measure arises naturally from the computations and the procedure is

relatively rapid to compute.
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APPENDIX

The equivalences between the spreading function models are most easily derived from

the half-peak width of the functions. The half—peak with of D16) is two times the (6—p)

value at which
D(6y) = 0.5D(x)
Let App be this value
App = Absn)
For the generalized cosine—squared model
Diw) =c¢
so the equation becomes

¢ cos?s[( fy—p1)/2] = 0.5¢
cos|( Ox—p)/2] = (0,5)'/ (26}
A%g = A B—p) = 4 arc cos[0.51/ ( 25)]

For the von Mises model

D(p) = 1/{21o(2)}



Hence the equation is

eaCOS( 9*—#) =0.5
acos( Qy—p) = Log-(0.5)

AI‘_]IBPfI = A 0—p) =2 arc cos{ L_ng_%_@l }

Finally, for the wrapped—normal model, in the case most common in ocean wave

work where

AW

D(9) =~
D(p) = 1
(#) o

and the equation to be solved is
e—( By=s)?/(202) = 0.5

Bs )2
O e05)
202

A

(Op—p)? = —202Lo0g(0.5)

AWE = o b,—) = 2/ TP Log(05)



Thus, a reasonable equivalence between parameters is given by

2 arc cos [0.51/(25)] = aIC Cos [L—O-Eig—'él] = o/ =2Log(0,5)

26
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