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Numerical Modelling of Ice-Structure Interaction
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INTRODUCTION

The interaction of an ice sheet with a vertically faced (and
usually rigid) indenter is an important loading condition for
cylindrical structures and for conical structures with grounded
rubble pile or accreted ice foot. 1In general, this indentation
phenomenon is characterized by the simultaneous occurrence of
viscous (rate-dependent) and fracture behavior.

Several theoretical models based on approximate methods of
analysis that idealize the ice sheet as a continuum have been
proposed for predicting global ice forces. These include: (1)
the upper and lower bound, plasticity type solutions of Michel
and Toussaint (1977), Croasdale et al.(1977), and Ralston
(1978), (2) the reference stress, power law creep solution of
Ponter et al.(1983) , and (3) the upper bound, power law creep
solutions of Bruen, (1984) Vivatrat (1985) , and Ting and Shyam
Sunder (1985) . The plasticity tvpe ‘models require empirical
definition of an average strain rate measure to account for the
viscous behavior of ice, the reference stress approach accounts
for the effect of variability in material constants in an
approximate sense, and the upper bound, power law creep
solutions require accurate specification of ice sheet
kinematics. No equivalent theoretical models exist for the case
where either pure (linear elastic) fracture or combined viscous
and fracture effects dominate.

:

Theoretical predictions of interface pressures are not generally
available. However, Ting and Shyam Sunder (1985) have applied
the (approximate) strain path method of analysis, originally
developed for deep penetration problems in soil mechanics by
Baligh (1984), to study Iinterface pressures during plane strain
indentation. Their results for a power law creep model of ice
showed that normal interface pressures may be 0.5-1 times the
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global pressure. They also found that interface adfreeze and
friction stresses can significantly influence ice pressures.

The "continuum"” predictions of ice pressures may in many cases
be too high by a factor of 2-10. Four major factors can explain
this uncertainty: (i) incomplete modeling of the mechanical
behavior of ice, including temperature and fracture effects,
(ii) empiricism in the theoretical models resulting from the use
of approximate analysis methods, (iii) inadequate modelling of
contact forces at the ice-structure interface, and (iv) ignoring
the effects of size on material strength.

A study of ice indentation in the creeping mode is important for
two reasons: (a) creep is the predominant mode of deformation
for artificial islands in the Arctic nearshore region during
"breakout" and/or steady indentation conditions occurring in the
winter, and (b) stresses, strains, and strainrates within the
continuum resulting from creep are necessary to predict the
initiation and possibly even the propagation of cracks when
viscous effects influence fracture behavior.

This paper is concerned with the development and application of
a finite element method of analysis for studying global and
local pressures generated on a rigid, vertical surface during
sea 1ice deformations in the creeping mode. Numerical
simalations are performed under plane stress conditions to asess
the influence of interface adfreeze and friction on predicted
pressures. The results are compared with those based on
approximate methods of analysis.

FINITE ELEMENT FORMULATION GOVERNING EQUATIONS

For general viscoplastic behavior, which includes creep, it is
convenient to work with the time derivative form of the

governing equations for a solid. They are written here in
matrix form:

Equilibrium Lo+b=0 in

p=g¢ onr
Strain-displacement ¢ = LT u in g
Strain-stress e=f (g, 0, T) in @ (1)

where g, & are stress and strain vectors; u is the displacement
vector; p, b are surface and body force intensities; L is a
rectangular matrix containing partial derivatives with respect
to the spatial coordinates; T is the temperature; the dot
superscript denctes differentiation with respect to time; 2
denotes the volume and I the surface domain,
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Weighting the equilibrium equations with a virtual velocity and
integrating by parts results in the requirement
Jé’rs_é_dn= JéTagdn + JéTsﬁdr (2)
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time point, ‘cw,1+1 using the integrated form of (5):

D —
Lyt = “Brxr

¢




Bryy = | £7apan + | ¢Tapar (6)
2

With (6), owr task is to find 4aU = U U such that the
n+i1 n

corresponding stress increment, 40, satisfies the incremental
equilibrium equation.

MATERTAL MODELLING

In general, the strain rate can be written as the sum of elastic
and inelastic terms,

E =€ +¢ (7)

We consider in this discussion the elastic component to be
linear,

e =Cg (8)

€. =&+ e {9)

Combining (8) and (9) and integrating é between tn and tn+
results in

1

4o = D(de - e

)

p=g* (10)
Noting (4),
4 = B 4U (11)

The inelastic contribution,

has to be evaluated in an approivate manner since these strain
rates are generally nonlinear functions of stress and stress
rates. We discuss this aspect in more detail later.
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AN ITERATION STRATEGY
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The problem with (13) is the e term; it is a nonlinear

I

function of o, é and one has to resort to an iterative scheme.
Assuming A_e_I is known, we can determine 4U, then de with (11)

and 40 with (10). With this estimate for 40, we can generate a
new estimate for A_I and repeat the process. There are two

levels of iteration:

Level 1 ~ Iteration on ay

(i+1) _ T (i)
Eart™ = apon 4 [ B’ aca

Level 2 For a given 4U, find A_e_I

. t
AEI(1+1) - Jn+1 ,e + g- | )
t BTyl

dt

The latter step, i.e., evaluating (15) presents a major
difficulty when the inelastic strain is significantly greater
than the elastic strain. This is usually the case for ice. In
what follows, we discuss how (15) is evaluated.

EVALUATION OF THE INCREMENTAL INELASTIC STRAIN

To establish the hbasic approach, we consider first the case
where the material is linearly viscous and write

c c ('16)

where C gc are considered to be constant. Integrating (18)

P 1,
results in
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se. =Cp 4o+ C J nHloee (17)

To proceed further, we need to approximate the integral. A
convenient choice is the generalized Crank-Nicholson rule,

t
'[ B+l £igyat = 4t [(1—a)fn + chl]j (18)

t
n

where o is a parameter. applying (i8) to (17) and rearranging
leads to:

0 g =4t (Cp - (1~x)4tC )o (19)

(Qp + aAth)o

Qur objective is to determine A“I‘ However, (19) shows that we
mist also f£ind 1’ The solution is to cambine (19) with {10},

(11) expressed as

AgI=Ae—CAOq

B4U - Cdo (20)

The final result is

(c + Qp + Mtgc)gn+l = BaU + (C + Qp - (I-G)Atgc)gn
A§I=BAQ—Q (241 - g, (21)
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Given AU , we find Se1 ! then Af._I , and using

AgI(_l+1), cvaluate 4ut3t2) with (14). A stebility apalysis of
the first order scalar differential eguation,
¥ + Ay = £(t) (22)

shows that the numerical integration is unconditionally stable
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case, they cannot be moved outside the time
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This strategy 1is efficient when creep deformation is not
dominant. Experience has shown that a=1 vyields the "best"
results when 4% is large. For small 4t, «=0.5 is more accurate.

Convergence degenerates as the creep strain becomes more
important in comparison to the elastic strain, and an alternate
iterative scheme is necessary. The "next" level scheme is
generated by expanding the left hand side of (25) in a Taylor

series about o, 9;) and corresponds to the Newton-Raphson method.

The equations for this scheme have the general form:

3 (k+1) _ (k)
o (Egpey) ) o1 T il (28)
ntl %n+1
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c
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In order to evaluate the derivative of E, the form of Qp and C -

are required. This is treated in the following section.

Iteration is necessary at each integration point of an element.
Convergence is considered to be achieved when the maximum
absolute value of the relative change in integration point

stresses is less than 10—3. With the successive substitution
scheme, 10-12, jterations. are typically required for a creep
dominant behavior. This effort is reduced to about four
jterations with the Newton-Raphson approach. Allowing for the
increased effort per cycle, the net reduction is approximately
50%.

CONSTITUTIVE RELATIONS FOR THE CREEP MODE

We present in this section the strain rate relations for creep
based on a wmi~-axial power law model and orthotropic material
behavior. Our starting point is the scalar uniaxial relation
for creep strain-rate,

3 =boN=.a_f.
o) o0
_ b N+1
=1 ° (27)

The extension 10O the multi—dimensional stress state is
accomplished by introducing an effective stress measure, Opr

taking ¢ to be a function of GE’ and requiring
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as _B.Jé.doE_gC do (28)
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One determines QC by expanding af/a_q and d¢/ch.

is orthotropic and each direction

We suppose the material
The “"orthotropic" form for f

follows the power law for creep.

is
T 1/2
o = £l2) = [e"2 o]
g = [04: 95 Fgs Typr T23’ 731!
0o O ]
1+a3 -1 —ag 0
-1 1~4—a2 -3,
-a -a a, +a 0 0
A= 3 2 2 3 (33)
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Teking
b
_ E N+1
¢ = —-;TGE (35)
results in
_ N-1
QC = onE A (36)
This form satisfies the incompressibility condition, év=0.

The parameters a,, 24, and bﬁ sre established by applying three

ncrmal loadings,

‘ (cl,0,0,0,0,0) (O,GZ,O,O,O,O) (0,0,ca,0,0,0)
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and equating’ the “observed" parameters to the corresponding
terms in (36). For (01,0,0,0,0,0) we have

1/2
3l 9

Q
[}

(1+a

.

€

1}

N-1
N _ 1/2
1 bo,” = by {(1+33) 01] (1+a3)c51 (37)

Repeating this operation for the ngn and "3" directions results
in three equations for a,, ag bE‘

M
b1 = (1+a3) 2 bE
N+1
b2 = (1+a2) 2 bE
ML
b3 = (a2+a3) 2 bE (38)

Sélving (38) gives

b1 [b,18 b.1p  [b,18
2 1 2 1
a -1 + + =1 4+ jy— -
2 b [Ps B |Ps
b8

= -1/p
bE = b2 (1+a2)
B = 2/(N+1) (39)

The parameters a,, 25, and ag are established by applying three
shear loadings,

(0,0,0,7,0,0) (0,0,0,0,7,0) (0,0,0,0,0,7)
and procceding in a fashion similar to the one above. This
would vield
N-1
- N _ 1/2
¢, = =g [ A ] a, 7 (40)
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Repeating the operation for "5" and "6", and solving for a,, ag,
and ag yields

by b3

Pe

3)

Using gc defined by (36) we retwrn to the iteration algoritim

for the Newton-Raphson ' method (26), and @perform the
differentiation with respect to ¢. The final result is

(Ee) =C+ (st b0 ) 2+ Ml ag) g (ae)
- o
E

COMPUTER IMPLEMENTATICN

The current implementation is a two-dimensional version for

plane stress problems, while the development of a plane strair
version is underway. A four-noded quadrilateral element is
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currently available. Although an eight-noded quadratic element
is often preferred (and will be included in the future) ,
accurate results can and have been obtained with the four-noded.
element using & finer finite element mesh. The program has the
ability to simulate a free or frictional contact between Two
deformable bodies, j.e., no contact stresses due to adfreeze
bond, by defining the interface as a nglideline".

The accuracy of the computer code has been verified in two ways;
the solution of simple test problems, and by comparing
the variability in predicted global pressures due to identer
diameter, material model parameters, and ice sheet velocity with
that predicted by approximate methods of analysis. In both
cases, the mmerical solutions are accurate to wtihin specified
tolerances typically achievable in finite element analyses.

one of the test problems considred a two—dimensional rectangular
element subjected to 2 uniform compressive stress (oz = ~0)

normal to one of its sides and with normal movement constrained
on the other three sides (Fig. 1}. A simple analysis shows that
for the isotropic poWer law material model, the lateral stress

(oy) is given by:
o, = 0,/2 {(1-2:»){&'c - 1]
A= bov?t (45)

where v is the Poisson's ratio and E is the voung's modulus.
This solution is valid for a constant value of A, which in an
average sense may be defined as its value at steady state.
Under steady state conditions, i.e. large t, Bg. (45) shows that
+the lateral stress is compressive and egual to half the
s-stress. Furthermore, the z-strainrate is the creep strainrate
and equals - arc/2 while the lateral strainTate is zero as it
should be for the given boundary conditions. A model consisting

of two finite elements verified this analysis.

The choice of time increment is made to satisfy the conflicting
requirements of accuracy and computational effort. Experience
with the simulations nas shown that it is appropriate to
consider a time increment which makes the exponent in Eg. (45)
equal to 3 in 20 time steps. For values of A and E typical of
ice, the time increment is approximately 100 s.

A series of numerical simulations for a plane ice sheet moving™

past a rigid circular identer were also carried out. Results
are presented in Chehayeb, F. et. al. (1985).
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CONCLUSIONS

This study outlines the computational strategy for generating
numerical time-history simulation of ice-structure interaction
due to creep. Studies show that the approach is economical,
suitable for an arbitrary structural geometry, and capable of
providing accurate predictions of long term response.
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