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INTRODUGTION

The general objectives of this project were to improve the
understanding of hydrodynamic loading on offshore structures and to improve
tehniques for computing loads on offshore structures. The loads are
primarily due to waves and currents. The project included efforts on both
topics. The body of this report consists of two graduate student theses
and three professional papers. Thé theses address the topics of time and
frequency domain representation of ocean waves and the three papers address
the subject of current induced vibration of marine risers and cables. The

remainder of this introduction defines the topics in more detail.

Wave Forces: Time Domain Simulation

Wave loads can be described and computed in the time domain or the
frequency domain. ‘In the time domain the computation of forces.for the
purpose of designing offshore structures requires knowledge of the wave

kinematics over a three-dimension grid of points which usually also define

- the geometry of the sfructure of interest. The kinematics required ére

usually the wave surface elevation and the water particle velocities and
accelerations. The pressure at each grid péint is also useful at times.
The results of this research project include a significant advancement in
the methods of computing wave kinematics for time domain simulation. The
results are applicable to deep and finite water depths, can account for the
actual position of the free surface, and do not require the approximation
of a random sea by a finite number of sinusoidal components, but in fact
allow for modelling of a smooth continuous wave spectrum. This work is

described in detail in the first report to follow thivantroduction and is



entitled "Time Series Analysis of Ocean Waves". The results, as presented,
allow the time domain calculation of wave kinematics over a large grid of
points due to the passage of random waves from a single direction. The
wave time history can be synthesized or can use measured wave data. The
extension of the results to the simultaneous arrival of waves from many
directions is simple. The waves are assumed to be linear. A
multi-directional sea can be builﬁ up by superposition of individual wave
time histories originating from several independent directions. At each
grid point vector sums of velocities and accelerations are computed and
then used in calculating forces. The greatest weakness in the simulation
of multi-directional random seas has been in the author's opinion in the
area of measuring and understanding real multi-directional seas. This
requires improved methods of calculating directional wave spectra. This

topic is addressed in the next paragraph.

Wave Forces: Frequency Domain Representation

Whereas time domain simulations are important for non-linear modelling
of extreme events, such as the 100 year wave, linear frequency domain
modelling is usually adequate for fatigue life estimates. Linear
superposition allows wave spreading to be accounted for relatively easily
in fatigue life estimates for offshore structures. However, knowledge of
directional wave spectra is difficult to obtain because the measurements
are expensive and difficult to make, and are usually far from optimum from
the point of view of the person who must process the data into directional
wave spectra. To make up for deficiencies in the data requires powerful

‘multi-dimensional spectral estimation techniques. The second manuscript in



this report addresses the problem of multi-dimensional spectral estimation
from non-optimal data sets, with particular application to wave number

spectral estimation.

Current Loads

| Current accountsbfdr a-méjof source of loadiﬁgyon long flexible
cy1inders such as marine risers, mooring dables, aﬁd suspended pipeline
spﬁns;‘/The dominanﬁfloadingkﬁéchanisﬁ\is vortex shedding. Vorﬁex excited
response is‘far from being adequately ﬁndeistodd;‘even fof the ﬁuipééeé 6f
design calculations. The major‘topic of importﬁnée toﬁdésignérs, whicﬁ is
as yet inadequately understood, is the response of a 16ng cylinder such as
riser to a spatially varying (sheared) flow. The principal investigator
has worked on flow-induced response problems for ten years. In the course
of the work of the past year three professional papers were completed.
These are presented in this report. The first is & "state of the art"
analysis of the response'prediction problems in sheared flow. The paper is
entitled "The Prediction of Lock-in Vibration on Flexible Cylinders in a
Sheared Flow". The key hydrodynamic and structural dynamic parameters are
discussed. A significant error in the earlier literature is pointed out
and the areas requiring further work are clearly defined.

The last two papers bear on the problem of the simulation of vortex
excited motions of risers. The phenomena is highly non-linear. Any
attempt to simulate flow-induced motion must account for the non-linear
relation between the fluid loads and structural motions. Most cylinders
such as risers excited by flow exhibit very different response in the

direction perpendicular to the flow (known as cross-flow motion) and



in-line motion. The paper entitled "The Relationship Between In-Line and
Cross-Flow Vortex-Induced Vibration of Cylinders", for the first time in
literature demonstrates and describes the non-linear relationship between
the cross-flow and in-line response. The last paper entitled "The
Identification of the Quadratic System Relating Cross-Flow and In-Line
Vortex Induced Vibration" actually provides the methodology and theoretical
basis for computing the non-linear transfer function between the cross-flow
and in-line motions. Results based on field measurements of flow-induced
vibration are presented. The non-linear transfer functions can be used in

frequency or time domain simulations of response.
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TIME SERIES ANALYSIS OF OCEAN WAVES

by
DOUGLAS GLEN DOMMERMUTH

ABSTRACT

In this paper, the methods of digital-signal processing
are applied to ocean waves. The applications of
differentiation, fast Fourier transforms, and convolution
integrals to time series generation of ocean waves are
developed. - In deep water, the vertical attenuation and
horizontal propagation impulse response functions for ocean
waves are solved analytically. In shallow water, the
vertical-attenuation and horizontal-propagation problems are
solved using the fast Fourier transform. The convolution
integrals used to simulate irregular waves are faster than
sum of sinusoids method.
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CHAPTER 1

ANALYSIS OF OCEAN WAVES IN THE TIME DOMAIN

1.1 THE FREQUENCY DOMAIN VERSUS THE TIME DOMAIN

Time-domain analysis can be very useful for the design
of offshore structures. However, time—domain analysis 1s
not performed very often because the software in use today
is inefficient. Instead frequency-domain analysis 1s used.
A frequency-domain analysis is made efficient by the many
linearizations that are imposed. The motions, exciting and
réstraining forces, and wave kinematics are linearized to
perform a frequency—-domain analysis. But these
linearizations make the frequency domain a worse model of
reality than the time domain because the time domain does
model nonlinearities. Also, physically, the time domain 1is
a better cholce than the frequency domain because natural
phenomena change with time, not with frequency. Both the
frequency domain and time domain_have certain advantages and
disadvantages which ﬁake the proper choice for analysis

extremely important.
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The response of an offshore structure to a storm is
very nonlinear. Since the frequency domain cannot model
nonlinearities, it cannot model response to storms. It
models the response of an offshore structure under normal
operating conditions. It is best used during preliminary
design, in the early stages of the design spiral, when there
are many possible solutions. It is an efficient and
inexpensive way of eliminating poor design choices. Unlike
the frequency domain, the time domain can model the response
of an offshore structure to a storm. It‘is best used during-
final design, near the end of the design spiral, wheh only
one or two designs are being considered. Poor design
choices that are not found by a frequency-domain analysis

can be found by a time-domain analysis.

Together with model tests, the time domain can be a
valuable method of design. If it is used properly, it will
certainly help to avold accldents such as befell the Ocean
Ranger and Glomar Explorer. This is éspeciallly important
as the search f§r oil is extended into deeper and harsher

environments.

Time—-domain analysis will become more attractive as it
becomes more efficient. Its 1inefficiency leads to vefy
expensive and extremely long computer simulations. One of
the leading contributors to this 1inefficiency 1is the

algorithm which models irregular seas. This paper will
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demonstrate an efficient method for modeling irregular seas.

1.2 APPLICATIONS OF TIME-DOMAIN ANALYSIS

Time-domein analysis"of an offshore structure’s

"response to ocean waves can 1dentify poor design choices.

Specifrcally, the ocean engineer is most interested in
preventing structural fallure. Other design objectives
include flood prevention, station-keeping ability, and good
seakeeping characteristics. Time—domain analysis can help
meet all of these design objedtives. Useful applications of
time-domain analysis include dynamic response of jackets,
hybrid towers, guyed towers, and risers. Other applications
include seakeeping response of semisubmersibles and
tension-leg platforms. As seen in figure r.1, all of these
structures are made of slender cylinders. In general,
Morison's equation can be used to model the dynamic response
of a cylinder to an ocean wave when the cylinder's diameter
is smaller than the wave's length. The applicaﬁion of
Morison's equation is controversial. Yet, for the problems
we want to solve, Morison's equation gives results which are

in good agreement with experiments.



ANALYSIS OF OCEAN WAVES IN THE TIME DOMAIN Page 1-4
1.3 MORISON'S EQUATION

For forces normal to a cylinder's axis, Morison's
equation can be expressed as (figure F.2)
o 7—\ ;-’A -;-\ annde —.A’ — ‘:\
2= CapVl =)+ o7y * Gy LoA il [l -Ky)  (1.2)
where the variables have the following definitions:
=
1) 7» 1s the vector of hydrodynamic forces
normal to the cylinder's axis,
2) Co is the added-mass coefficient
and C4/ 1s the viscous-drag coefficient for flow
normal to the cylinder's axis,
3) j) is the mass density of water,
4) 7' is the volume of the cylinder,

S) A 1is the projected area in the direction
of the normal,and

- —

6) ﬂb . Xy a . and A? are normal
components of the water—particle velocity, the
cylinder's velocity, the water—-particle
acceleration, and the cylinder's acceleration

respectively.

The first term in the equation is called the added;mass
force. This term models forces proportional to
acceleration. The second term models forces proportiocnal to
the gradient of pressure. The last term models viscous
forces. Morison's equation does not model diffraction.
However, Morison's equation can be a good model of the
hydrodynamic forces acting on cylinders with diameters less

than one~quarter of the wave length. Furthermore, unlike
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viscous forces.

most potential flow models, Morison's

of the total force acting on offshore structures.

Page 1-5

equation does model

These forces can be the greatest proportion

Similiarly, the hydrodynamic forces acting in-line with

a cylinder's axis can be expressed as (figure F.3)

-

= = - = R, —
Fp= G ldy=ty)+ BAT 7 Cud-phfts=, flts ~77)

where the variables have the following definitions:

1) 7+ is the vector of hydrodynamic forces
in-line with the cylinder's axis,

2) C, is the added-mass coefficient of an
equivalent sphere having a cross-sectional area
equal to the area of the end of the cylinder

and (g 1s the viscous drag coefficient of an

equivalent disc that has the same area as the end
of the cylinder,

——
3) # 1is the unit vector in-line with the
cylinder's axls,

4) A is the dynamic component of pressure,
5) J/ 1is the volume of the equlvalent sphere,

6) A 1s the area of the end of the cylinder,
and

- T T =
7 Uy » Xp » Uz and Az are in-line
components of the water-particle velocity, the
cylinder's = veloclty, the water—-particle

acceleration, and the cylinder's acceleration

(1.2)

/
i respectively.
The water-particle velocitles, accelerations, and
* pressures are required in Morisen's equation. Furthermore,
the free-suface elevation must be known so that the
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hydrodynamic forces acting on all submerged cylinders can be
calculated. Presently, the algorithm used to compute these
qdantities ils very Iinefficient. In this paper, a more
efficient method for computing these quantities will be

developed.

1.4 SUMMARY OF CHAPTER ONE

The response of offshore structures to ocean waves can
be analyzed 1in either the frequency domain or time domain.
Frequency-domain analysis is best used during preliminary
design, whereas time-domain analysis is best used during
final design. Tlime—domain analysis is not used as often as
it shoﬁld» be because it is inefficient, but it can become
more efficient.\ For certain offshore structures, Morison's
equation can be used to model the hydrodynamic forces.
Presently, the algorithm used to compute the wave properties
required by Morison's equation is very inefficient. A more
efficient method will be developed in this paper. First,
Airy wave theory will be reviewed. Then a theory of
irregular waves will be developed which is based on Airy
wave theory. This theory is more efficient than what is

‘used today.



CHAPTER 2
REGULAR AND IRREGULAR WAVES

2.1 AIRY WAVE THEORY

Subject to certain limitations, Alry wave theory can be
a very useful model of ocean waves. To understand those
limitations, we must review the theory's derivation. Our
final objective will be a model for irregular waves. ‘Since
irregular waves are a superposition of regular waves, we
will use many Alry waves to simulate Iirregular waves.
Therefore, the theory of Iirregular waves which we will
develop will have 1limitations similiar to those of Airy

waves.

We will define our coordinate system such that the
Z~axls 1is positive up and the X-axls positlve to the right.
Furthermore, we will fix the origin at the mean waterline

(figure F.4).
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The first assumption we will make is that the fluid 1is

inviscid or ideal.

r=o. (2.1)

where )~ 1is the kinematic viscosity. Since we have assumed
an ideal fluid, there will be no energy dissipation due to
viscous damping. This 1is valid because we are only
interested in waves that travel short distances in the
neighborhood of the offshore structure. For these short

distances, we do not expect that the viscous damping will

have a significant effect.

The second assumption we will make is that the fluid is

incompressible.
odp = 9F° — af - : : (2.2)
5w &<

where ( 1s the density of the fluid. Intuitively, this
seems to be a reasonable assumption. However, it is
possible to model the compressibility of the fluid. In
fact, even for water, compressibility can significantly

affect added-mass and wave-damping calculations.

The third assumption we will make is that the fluid is

irrotational.

—
7y | (2.3)
: N :
where }7 is the del operator and %/ is the fluid particle
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velocity vector. This important assumption enables us to
express the velocity field in terms of the gradient of a

scalar function §5 o

——
Vv =g (2.4)
where _é5 is defined as the velocity potential. - Le

Mehaute 1in his book An Introduction to Hydrodynamics and
Water Waves, gives a good discussion of irrotational motion:

A deep water swell, i.e., wave generated by
wind traveling out of the generating area, is
probably the motion which most closely approaches
the condition of irrotationality. But under wind
action the free surface shearing stress induces
rotationality (and turbulence) in the direction of
wave travel... Also, in shallow water, the bottom
friction 1induces rotationality.... Rotatlonality
at the crest in the direction of wave travel will
reduce the limit wave steepness... Rotationality
in the oposite direction will theoretically
increase the limit wave steepness.

Using these arguments, we expect our theory to become less
valid as the wave becomes steeper and the water shallower.
These are limitations to the theory we propose. However, as

we will soon discover, they are not very strong limitations.

By the continuity principle, equal .amounts of fluld

must enter and exlt a control volgme. Therefore,
727 = o in the fluid. (2.5)

This equation is called Laplace's equation. It 1is the

governing differential equation.
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We must solve Laplace's equatién and also satisfy the
free—surface and bottomjboundary conditions. The
bottom-boundary condition is that no fluid can move across
the bottom - the normal component of fluid velocity must be

Zero.

%é = Q. on z=-h, (2.6)

where h is the water depth. This boundary condition does
not allow for sloped bottoms. However, in the neighborhood
of the offshore structure the bottom will be horizontal.
For rigid, hard, horizontal bottoms, this boundary condition

is exact.

The kinematic boundary condition on the free surface is
that the fluid particles near the free surface can only move
tangentially to the free surface. The nonlinear boundary

condition is

DY)z =Y -399Z » IF =0, _ -
7 2 4 = onz= 7 , (2.7)

where Z% is the substantial derivative, and 7 is the
free—-surface elevation. This equation can be linearized if
we assume that that the product of’éﬁ? and ég?-is very small
compafed to the cother terms in thérequation. (This is the
fourth assumption we have made.) This is a limitation on the
steepness of the waves we can model because‘ég? and é%z:are

measures of the slope of the wave. It 1Is a much stronger
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limitation on steepness than that due to irrotationality.
The linearized kinematic boundary condition on the free

sur face becomes

_gg.-: 'g"z‘l on z=0. (2.8)

Unlike the fully nonlinear boundary condition, .the 1linear
boundary condition 1is satisfied on the mean waterline.
Since the steepness of the wave 1s small, the potentlal, the
free-surface elevation, and their derivatives evaluated on
the free surface can be expanded in a Taylor series

expansion about the mean waterline.

The dynamic boundary condition on the free surface 1is
that the pressure must be continuous across the free surface
- the water pressure immediately below the free surface must
be equal to the air pressure immediately above. We can use

Bernoulli's equation to show

_@’+47507§'+yﬁ=0. | on z=7 ., (2.9)
o7 2

where ¢ 1is the acceleration of gravity. Since it 1is
consistent with our earlier assumption that the slope of the
wave 1s small, we can neglect the nonlinear terms. Then the
linearized dynamic boundary condition on the free surface
becomes

7= -?/_éz_é on z=0.  (2.10)
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This boundary condition 1is also satisfied on the mean .

waterline.

The kinematic and dynamic boundary conditions on the

free surface can be combined into

272_.5 # y&é-_— o. on z=0. (2.11)
A =3

This is called the free—surface boundary condition or the

wave equation.

A solution of Laplace's equation which satisfies the

bottom and free-surface boundary conditions is

= e —=jewA cosh(K/EHH)) LKA~ Z)
g é’? SW24/57) £ (2.12)

whére &) is the wave frequency, A is the wave
number, A4 1s the wave amplitude, and 7 is time. (In
equation (2.12) we have used complex notation. Throughout
thls report we will use the symbol A2 to indicate that the
real part must be taken.) Furthermore, the wave frequency

and wave number must satisfy the dispersion relation.

w* = Kyfwiﬂ’é/ (2.13)

‘We can use the dispersion relation to find the speed of a

wave crest.

| y= /k £ar/5K%) (2.14)

where ( 1is called the phase velocity. The phase
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velocity is a nonlinear function of frequency and wavelength

because

K: 2/7-/)- (2.15)

where A is the wavelength. In general, for the same water
depth, longer waves wlll travel faster than shorter waves.
This phenomenon is called dispersion, and it explains why

equation 2.13 is called the dispersion relation.

The derivation of Airy wave theory requires us to

assume:

1) the wave's amplitude is much smaller than the

wavelength.,
2) the fluid is irrotational,
3) the fluid is ideal, and
4) the fluid is incompressible.

These assumptions 1imit the type of wave motion we can model
well. Basically, Airy wave theory is not a gocd model of
stéep waves or waves traveling Iin shallow water. In
general, Airy wave theory 1s a good model of long ocean
waves in a region slightly below the free surface and
slightly above the bottom. Le Mehaute has suggested a range

for which Airy wave theory would be suitable (figure F.5).
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The results of Airy wave theory for finite and infinite
water depths respectively are summarized in tables G.1 and
G.2. Airy wave theory 1is the basis for the theory of

irregular waves which will be develcped in this paper.

2.2 THECRY OF IRREGULAR WAVES

Presently, a finite number of regular waves are
supefposed to model irregular seas. Each regular wave has a
distinct frequency and random phase. For example, the free

surface elevation in two dlimensions is given by

lﬂﬁbr‘d@bﬁ)

V4
7= ,;»eg 4y e (2.16)

where N 1is' the number of regular wave components, Ah is a
complex wave amplitude with random phase, d; is a wave
number, X is the distance propagated, 4q7 is a wave
frequency, and Z is time. Other wave properties can also
be represented in this manner. This technique is called sum
of sinusoids. It is Dbased on the principle of

superposition. It is inefficient because it requires many

multiplications and additions. Another, less cbvious,
and undesireable characteristic is thre discrete
representation of the seastate. Consequently, the

distribution of wave energy is not continuous. Furthermore,
this method does not allow for wave breaking. When a wave

becomes too steep, it will break. Sum of sinusoids can
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create  waves that are so steep they are physically
impossible. This papef will demonstrate an alternative
method to sum of sinusoids whcih is more efficient and gives
a continuous distribution of energy. However, it also does
not allow for wave breaking. Furthermore, since it is based
on Airy wave theory, it is subject to the same limitations

as that theory.

2.3 SUMMARY OF CHAPTER TWO

Subject to certain limitations, Airy wave theory can be
a very useful model of ocean waves. In general, Airy wave
theory is not a good model of very steep waves or waves 1in
very shallow water. Airy wave theory is a good model of
long waves in deep water. Since Alry wave theory is linear,
many regular waves ' can be superposed to model irregular
seas. As the number of regular waves approaches infinity,
the distribution of wave energy becomes continuous, and the
Fourier series becomes a Fourier transform. In the next
chapter it will be shown how Fourier transforms and
convolution integrals can be used to model waves more

efficiently than sum of sinusoids. |



CHAPTER 3
THE CONTINUOUS SPECTRUM OF OCEAN WAVES

3.1 FOURIER TRANSFORMS AND INVERSE FOURIER TRANSEORMS

To begin this problem, the Fourier transform and its
inverse will be defined. This will not be a rigorous
analysis, but it will be a good introduction to the
applications of the Fouriler transform. For exémple, suppose
we know a function in the time domain. The fourier
transform of - this function can be used to find its

expression in the frequency domain as follows:

» _
) = % £y e T o (3.1)

where f%ﬁ/is in the time domain and‘F%Q)is in the frequency
domain. 7%%/might represent the free-surface elevation, the
water—particle velocity or acceleration, or the water

pressure. The inverse Fourlier transform is defined as

_ o -2y,
FAE) = :7%_4 Fre) € z (3.2)
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Therefore, equation 13.1) can now be expressed as
o
(02 )~
)= L. 4 e e a/dd (3.3)
#) ”‘{_4 A7) 4

In certain cases the order of integration can be

changed.

<@ (4.7] _
)= [ ST AL [ o E=2) (3.4)

Since the second integral 1s a delta function,
(7]
A = ({ vr £/5) SE-T) =) (3.5)

Therefore, it has been shown that the inverse fourler
transform ‘of the transform of,ﬁéﬂ’is ;4é7. This is very
convenient because the wéve properties we know 1in the
frequency domain, as a result Airy wave theory, can also be
expressed in the time domain. However, there are
limitations to this theory. In general, the Fourier
transform of a function will exist if the absolute value of
the function integrated over the range from —» to <D
exists. This rather modest beginning leads to a very

important result - the convolution theorem.
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3.2 THE CONVOLUTION THEOREM IN THE TIME DOMAIN

Having defined the fourier transform and its inverse,
the convolution theorem can now be derived. For example,
suppose we know a transfer function in the frequency domain
which will convert the  horizontal component of
water-particle velocity 1into the vertical component of
water-particle velocity. This relatlonship can be expressed

as

W)= #rw) Drew) (3.6) -

where }%%9&s the vertical component, Z%@}is the horizontal
component, and é%@ is the transfer function. All of these
functions are in the frequency domain, and in general, they

are complex.

But A%Q/and Zﬂ@/can be expressed 1in terms of their

Fourier transforms. Therefore, equation 3.6 becomes
& &
LT
77//,0/: ///2')0/27/ A=) @ 0/0’ (3.7)
- —®
where ,ﬁég) and AQé?’are real functions in the time domain.

This equation can be rearranged.

@ & g
)= y é 47=) _4 HED) @ <46 /a/a—o/Z’ (3.8)
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Now let 0#Z2=7Z . Then equation 3.8 becomes
@ > wZ 2 :
V)= [ 4lz) [ wit=%)e Wt Lld 7 (3-9) .

" Under certain conditlons the order of integration can

be changed. Then equation 3.9 becomes
& @ cw?
Jtwe)= é { 4IZ)L(Z-2 )y F e " 7 (3.10)

But this 1is by definition the Fourier transform

of ##/. Therefore,
w
we) = [ AD Tz (3.11)

The final integral is <called the convolution
of,éég/with ﬁZéf& The convolution integral enables us to
generate a time series of the vertical component of
water-particle velocity directly from the time series of the

horizontal component of water-particle velocity.

3.3 THE FOURIER TRANSFORM AND CONVOLUTION INTEGRAL

The Fourler transform and the convolution integral will
be used 1in this paper to develop efficient algorithms for
modeling ocean waves. For instance, the vertical
attenuation and horizontal propagation of ocean waves can be

modeled by Fourier transforms.
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A time series represents a history of events at a

single point in space. A time series can be transformed so

that it represents another time series at the same point in

space or at a different point iIn space. Some operations
which do not "move" a time series of ocean waves in space
include differentiation, integration, and Hilbert
transforms. (A Hilbert transform 1is a phase shift of
ninety-degrees in the frequency domain.) The operations
which do "move" a time series through space include vertical

attenuation and horizontal propagation.

A time series of the free—-surface elevation will be
convolved with transfer functions to generate time series of
the dynamic water pressure, and the horlzontal and vertical
components of water-particle velocity and acceleration.
Transfer functions will also be developed to model the
vertical attenuation and horizontal propagation of ocean
waves. The six time series that are required for a
wave—-force analysis will Dbe known everywhere in space and

they will be generated from one time series.

3.4 THE TIME AND WAVE-FREQUENCY DOMAIN

As the number of discrete waves N goes to infinity

while the difference between neighboring wave frequencies

and wave numbers goes to zero, the summation in equation

2.16 approaches its integral representation,

i
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@ L= Z)
_ / 3.12
V= e o4 [ A € o (3.12)

where 4%@)15 a complex amplitude which varies continuously
with wave frequency and has a random phase. Equation 2.16
is a Fourier transform Iin the time and wave-frequency
domain. As long as 4%@Vhas certaln properties, we are now
free to use the very powerful tools of Fourler transform
analysis. Specifically, we will be most interested in the
convolution of equation 3.12 with the inverse fourier
transforms of transfer functions which we will develop in
the frequency domain. Those transfer functiocns will be

based on Airy wave theory.

3.5 THE SPACE AND WAVE-NUMBER DOMAIN

Equation 3.12 can alternatively be expressed as

o .
LAY - 2 3.13
V= e L [ AK) e 7 (3.13)
7
where,4w%/is a complex amplitude which varies continuously
with wave number and has a random phase. Therefore, we can
also express equation (2.16) as a Fourier transform in the

space and wave—number domain. Both equations (3.12) and

(3.13) have certain advantages and disadvantages.

The disadvantage of equation (3.13) is that its inverse
Fourier transform requires an integration along the X-axis.

Physically, this 1s a very difficult thing to do because it
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would require many samples of the ocean wave along a
straight line. However, this method is used to solve the
Cauchy-Poisson problem. The advantage of equation (3.12) is
that it represents the free-surface elevation at a single
point in space. In the real world, wave-rider buoys have
been doing this measurement for a 1long time. But this
method dces require long time records to model the
horizontal propagation of Irregular waves over long
distances. However, time-domain analysis of offshore
structures will not require us to simulate the propagation

of irregular waves over long distances.

3.6 SUMMARY OF CHAPTER THREE

Given a time series of the free-surface elevation at
one point in space, time series of water particle velocities
and accelerations, and pressure can be generated at other
peints 1in space. The given time series can be either
measured or simulated data. The generated time series can
represent wave Kkinematics at points in a g;idﬁ During a
time-domain simulation, the wave kinematics required by
Morison's equation can be interpolated from the grid. The
convolution integrals necessary to perform this analysis'afe

usually more efficient than sum of sinusoids.



CHAPTER 4
TRANSFER FUNCTIONS FOR ANALYSIS OF OCEAN WAVES

4.1 EEFFICIENT MODELING OF OCEAN WAVES

For very complicated offshore structures, calculating
the wave kinematics at grid points is more efficient than
célculating wave kinematics for every finite element. This
would be éspecially true for offshore platfdrms. (However,
for risers, it is probably more efficient to calculate the
wave kinematics for every finite element instead of a mesh
of points.) In particular, the methods of digital-signal

processing are well-sulted for a grid.

The coordinate system we,willvgdopt for the grid 1is
given 1in figure F.6. The X-axls is positive to the right,
and the Z-axls is positive upwards. The number of grid
peints along the horizontal is é. . and the number along
the vertical is 6/‘ . The free—-surface elevation at the
upper-left corner of phe grid is given. It is required to

know the wave kinematics at every grid point at each time

step.
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To move from one grid point to another grid point
parallel to the mean waterline will be called horizontal
propagation. To move downward will be called vertical

attenuation.

There are numerous ways to calculate time series of the
‘wave kinematics at all grid points when the the free-surface
elevation at one grid point is the only known time series.
waéver, there are very few good methods. For instance,
using one convolution integral to generate the time serles
of the horizontal-water particle acceleration at the
bottom-right corner from the time series of the free—surface
elevation at the origin is not Q;ry efficient. It 1is not

very efficient because evaluating the convolution integral

would require many multiplicatlons and additions.

A far more efficient method is to do the convolution
integral 1in steps. For instance, use an impulse response
function that models horizontal propagation to move the
free—surface elevation at the left side of the grid to the
right side. This is a very good first step because the
impulse response function that models horizontal propagation
requires many sample points. It 1s best to do the the"
convolution integrals that require the most effort first.
Even though the ultimate goal 1is to find the horizontal
water—-particle acceleration at the bottom-right corner,

there are many time series that can be calculated at
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intermedliate steps. This 1is what makes tﬂis particular
method so efficlient. Now that the free-surface elevation is
known at the right side of the grid, the horizontal
water-particle velocity at the mean wateriine can be found.
The 1impulse response function that performs this operation
requires fewer sample point; than the Impulse response
function for horizontal propagation. Then use an impulse
response function that models vertical attenuation to move
the horizontal water-particle velocity at the mean waterline
down to the bottom of the grid. This impulse response
function requireé very few sample points. To find the
water—-particle acceleration, differentiate the
water-particle velocity with respect to time. This
operation requires only two sample points. Therefore, in
addition to calculating the horizontal water-particle at the
bottom cornér, three other time series were calculated at
intermediate steps. Those three other time series were also
required, and they can also be used to generate other time
series within the same column of grid points. This is what
makes this method much more efficient than using one impulse
response function to do horizontal propagation, vertical
attenuation, etc. Figures F.7 and F.8 give the algorithms

used for generating time series in this paper.
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4.2 THE TRANSFER FUNCTIONS IN DEEP WATER

The dispersion relation in deep water is

W= Ay (4.1)

where 4 is the wave frequency., A is the wave number,

and J? is the acceleration of gravity.

The transfer function for modeling  horizontal

. propagation is

L) = & Ady | (4.2)

where J44 is the distance propagated to the right. This
transfer function is used to move the free-surface elevation

at the origin horizontally.

The traﬁsfer function for modeling vertical attenuation

is

| /K/dZ
w/= €

il (2.9

where 4&? is the negative distance below the mean waterline.

This transfer function 1is used to find water-particle

velocities and pressure below the mean waterline.
The transfer function for differentiation is

)= s (4.4)

This transfer function 1is used to find the vertical
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water-particle velocity on the mean waterline from the
free—surface elevation. It 1s also used to convert

water—partlcle velocities into accelerations.

The transfer function for converting the free-surface
elevation into the horizontal water-particle velocity on the

mean waterline 1is

who) = [ (4.5)

This transfer function is similiar to a differentiatof, but

it does not induce a phase shift.

4.3 THE TRANSFER FUNCTIONS IN WATER OF FINITE DEPTH

The transfer functions in water of finite depth are
similiar to those in water of infinite depth. However, one
major difference is the dispersion relation. The dispersion

relation in water of finite depth is
W= Ayzers (£4) (4.6)

where & is the wave frequency, A is the wave
number, J7 is the acceleration of gravity, and /4 1is the

water depth.

The transfer function for modeling horizontal

propagation ls

Ve
H/w/: e LA _ (4.7)
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where 4L¥ is the distance propagated to the right. It is a
positive number. This transfer function is used move the

free-sur face elevation at the origin horizontally.

The transfer function for modeling vertical attenuation
of the horizontal water—particle velocity and the dynamic
pressure is

Yho) = coSh KUZ+L)) (4.8)
CosH kL)

where 4Z is the negative distance below the mean waterline.

The transfer function for modeling vertical attenuation

of the vertical water—particle velocity is

) = Sinh [AAEAL)) (4.9)
S5 (#4)

The transfer function for differentiation is
Mw)) = ¢ (4.10)

This transfér function is used to find the vertical
water-particle velocity on the mean waterlline from the
free—surface elevation. It is also used to convert

water—particle velecities into acceleratlons.

The transfer function for converting the free-surface
elevation into the horizontal water-particle velocity on the

mean waterline is
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#le) = s (4.11)
220/ (1K /15)

4.4 SUMMARY OF CHAPTER FOUR

An efficient algorithm for calculating wave kinematics
in a grid has been discussed. The transfer functions in
water of infinite and finite depth have been presented. The
resulting impulse response functions will now be discussed

in detail.



CHAPTER 5

DIFFERENTIATING TIME SERIES OF OCEAN WAVES

A time series of the free-surface elevation can be
differentiated with respect to time to generate a time
series of the vertical water particle velocity. This 1s
true for both infinite and finite water depths. Physically,
there is no justification for performing this operation.
However, according to Alry wave theory differentiating the
freé-surface elevation with respect to time 'gives the
vertical water—particle velocity. Similiarly, time series
‘of the water particle accelerations can be g;herated from
time series of the . water particle velocities by

differentiation with respect to time.

5.1 THECRY OF DIFFERENTIATION OF SINUSOIDAL WAVES

The equation for a sinusoidal wave in complex notation
is

Fe)= o T (5.1)
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where &/ 1s the frequency and % represents time.

Differentiating this function with respect to time
gives
w

A= e X (5.2)

where,/ﬁz/is the first derivative of }Qﬁ/.

In this manner, time series of the vertical
water-particle velocity on the mean waterline can be
generated from time serles of the free-surface eievation.
Similiarly, the horizontal and vertical water-particle

accelerations can be generated from the horizontal and

vertical water—particle velocities respectively.

5.2 NUMERICAL DIFFERENTIATION OF SINUSOIDAL WAVES

The approximate derivative of‘fﬁbjas given by the

central difference method is

A )~  AHrdE) = S e )
247 (5-3)

where /7 is the time step and /) 1is an index.

As discuséed in appendix A, there are two types of
errors assoclated with this approximation. The first type
of error is due to truncation. The truncation error is
reduced by taking smaller time steps or by using a higher

order differentiator. The second type of error is due to
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roundoff or noise. This type of error 1s best eliminated by
a filter. Furthermore, this method becomes less accurate as

the number of sample ponts per wave ls reduced.

5.3 SUMMARY OF CHAPTER FIVE

Numerical differentiation is a very efficient method
for generating time seriles. However, 1t must be used

carefully because it does amplify nolse.



CHAPTER 6
THE HORIZONTAL WATER-PARTICLE VELOCITY

A time serles of the free—-surface elevation can be
differentated with respect to time to generate a time series
of the vertical water-particle velocity on the mean
waterline. This 1s true 1in water of either infinite or
finite depth. A time series of the Thorizontal
water—particlé velocity can be generated in a similiar

manner.

6.1 HORIZONTAL WATER-PARTICLE VELOCITY - DEEP WATER
The dispersion relation in deep water is
w*=Ay (6.1)

where «/ 1is the wave frequency, A 1is the wave number,

and 57 is the acceleration of gravity.
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The transfer function for converting the free-surface
elevation into the horizontal water-particle velocity on the

mean waterline is

)= Jef (6.2)

This transfer function does not have a Fourier
transform, but it does have a fourier series. The
coefficients of the impulse response function have been

derived in appendix B, equation B.6.

hindt )= o. For 77 evern (6.3)
-2 AT
) Z?WaJZ/Z' ¢90ﬁ(

where Aﬁf is the time step.

A plot of this function is given in figure F.9. It 1is
a symmetric function which rapidly approaches zero és the
time becomes large. In fact, the coefficients of the
impulse response function are inversely proportional to the

square of time.

When the convolution integral is évaluated numerically,
the range of integration should not extend beyond the time
when the amplitude of the impulse response function becomes
less than a certain tolerance. The time at which this

function is less than a certaln tolerance is
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m———

7 B

where & 1is a fraction of ééﬂf/at =0,

The corresponding number of sample points 1is

> 2z L
77 = YVl (6.5)

where 7 = /4% .

6.2 HORIZONTAL WATER-PARTICLE VELOCITY - FINITE DEPTH

The dispersion relation in water of finite depth is

where ¢J 1s the wave frequency, A is the wave
number, ¢ is the acceleration of gravity, and /4 is the

water depth.

The transfer function for converting the free—surface
elevation into the horizontal water-particle velocity on the

mean waterline is

i) = L/ 6.7)
P lT))

This function does not have a Fourier transform, but it
does have a Fourier series. But even the Fourier éeries

solution cannot be expressed 1in terms of elementary
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functions. However, the fast Fourier transform can be used
to evaluate the Fourler coefficients. Figure r.10 compares
the impulse response functions for infinite and finite water
depths. Even though the water depth is very shallow, the
two functions are very similiar. Therefore, the behaviocur
of the function for infinite water depth case can be used to

size the function for the finite water depth case.

6.3 SUMMARY OF CHAPTER SIX

The impulse response function for transforming a time
series of the free—surface elevation into a time series of
the horizontal water-particle velocity on the mean waterline
in deep water has been derived. The impulse response
function for water‘ of finite depth must be evaluated
numerically. However, the theoretical solution for deep
water can be used to size the numerical solution for water

of finite depth.



CHAPTER 7
THE VERTICAL-ATTENUATION PROBLEM

A point far below the free surface does not feel a
wave's disturbance as much as a point near the free surface.
This phenomenon is called vertical attenuation. According
to Alry wave theory, the vertical attenuation of waves
varies exponentially as a function of the distance from the

free surface.

7.1 VERTICAL ATTENUATION IN DEEP WATER

The dispersion relation in deep water is
W= Ayg (7.1)

where 4/ 1is the wave frequency, /A~ is the wave number,

and ¢ 1s the acceleration of gravity.

The transfer function for vertical attenuation in deep

water 1s

) = e WAE

(7.2)
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where <Z1is the negative distance below the mean waterline.

The inverse Fourier transform of this transfer function

has been derived in appendix C, equation C.15.

/Z‘/ _L /"' E/t;o/ / (7.3)

A plot of this function is given in figure Fr.11. It is
a symmetric function which rapidly approaches zero as the
time becomes large. In fact, the function converges

exponentially.

When the convolution integral is evaluated numerically,
the range of integration should not extend beyond the time
when the aﬁplitude of the function in equation 7.3 becomes
less than a certain tolerance. The time at which this

function is less than a certain tolbrance is

JT/= 2/'_‘%_2/06’ (7.4)

where & is a fraction of the value of 4%&) at #=0, .

The corresponding number of sample points is

//7/ éé/ﬂﬁ (7.5)

where 7= ndE .
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7.2 VERTICAL ATTENUATION IN WATER OF FINITE DEPTH

The dispersion relation in water of finit;-depth is

w?= Ky tans (K1) (7.6)

where «) is the wave frequency, A4 1is the wave
number, j is the acceleration of gravity, and /4 1is the

water depth.

The transfer functions for vertical attehuation in

water of finite depth are

Hu) = cosh (K/Zh))
cosh (x4)

M) = SR ELY
' - SWARA)

(7.7)

where the first transfer function models the vertical
attenuation of the dynamic pressure, and the horizontal
water-paticle velocity and acceleration. The second
transfer function models the vertical attenuation of the
vertical water-particle velocity and acceleration. These
transfer functions cannot be expressed in terms of
elementary functions. However, the fast Fourier transform
can be used to evaluate their l1nverse Fourier transforms.
Figure F.12 compares the impulse response functions for
infinite and finite water depths. Even though the water
depth is very shallow in these examples, the two functions

are very similiar. Therefore, the behaviour of the function
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for attenuation in deep water case can be used to size the

impulse responsé functions for the finite water depth case.

7.3 SUMMARY OF CHAPTER SEVEN

The inverse Fourier transform for vertical attenuation
in déep water has been derived. The impulse response
functions for water of finite depth must be evaluated
numerically. However, the theoretical solution for deep

water can be used to size the numerical solutions for water

of finite depth.



CHAPTER 8
THE HORIZONTAL-PROPAGATION PROBLEM

A single wave moves horizontally at a rate equal to its
phase velocity. A wave's phase velocity is a function of
the wave's frequency and fhe water depth. This phencmenon
is called dispersion. The front of a wave group moves at a
rate equal to its group velocity. For waves travéling over
short distances, the phase velocity is a gocd measure of a.
wave's speed. (The model proposed in this paper does not
simulate group effects.) Given a time history of the
free—surface elevation at a point in space, the free-surface
elevation at neighboring points can be found by convolving
the original time series with the impulse response function

of the appropiate transfer function.

8.1 HORIZONTAL PROPACATION IN DEEP WATER

The dispersion relation in deep water 1is

@ =Ky (8.1)
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where < is the wave frequency, A 1is the wave  number,

and J? is the acceleration of gravity.

The transfer function for horizontal propagation in

deep water is

) = o 4/64ﬂr

(8.2)
where Aﬂ’is the positive distance propagated.

The inverse Fourier transform of this transfer function

has been derived in appendix D, equation D.10.

ﬁ/a‘)=/2%r./(2L - c/é;;z; f//car_gi/
4 (L KK/Z:};Z.‘//W/?/ }/

where 67}7 and 52%7 ~are the cosine and sine Fresnel

(8.3)

integrals.

Figure F.13 shows that for this function the period of
oscillation becomes smaller while the amplitude of
oscillation remains constant as the time goes to positive
infinity. As time goes to negative infinity, the function
approaches zero very rapidly. The method of asymptotics

will now be used to explain these phenomena.
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The cosine and sine Fresnel integrals approach 0.5 as

their arguments go to infinity. ' Therefore,

Se)—> [ 3 cos/ 9L = 7 — .
e 0/‘%'7 7] O fpr TP

The amplitude of oscillation is constant and the period

of oscillation becomes smaller because of the the argument
of the cosine function is an nonlinear function of time.

This is in agreement with figure F.13.

In fact, if one is given the apparent periocd of

oscillatlion, the time at which it occurs is given by

It ) — 9552 op
7y Iy (8:)

where 22 is the apparent periocd.

Now solve for the time in terms of the apparent perliod.

7. o= 27dX _ 7 | (8.6)
9% Z
In particular, if, the apparent period is chosen
as zuhfwhich is the period of ocillation of a wave sampled
at the nyquist rate, equation 8.5 becomes
7 = Z7dx - 4% (8.7)
747

Therefore, the time at which the apparent periloed

equals Zﬁfis directly proportional to the distance

propagated and inversely proportional to the time step. As
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the distance of propagation increases, the amount of effort
reqﬁired to evaluate the convolution integral increases
linearly. For very large distances, the effort required to
evaluate the convolution integral could become enormous.
But this particular model is not meant for simulating the
progagation of waves over large distances. For very large

distances wave group effects would become important.

When the convolution integral for horizontal
preopagation is evaluated numerically, the range of
integration for positive time should not extend beyond the
time when the apparent periecd equals two times the time
step. Therefore, the number of sample points of the impulse

response function for positive time is

A2 jfjﬁ ~/ (8.8)

where ):; ==,4L“42ﬁ

Since the first term 1s much greater than_one,

Tp = ZPdX (®.9)
97>
For negatlve arguments, the cosine and sine Fresnel
integrals behave like
= -1 - V2 k4 = 2
Cl2) £ -AHE)sZ )+ FE) cos L 2 /

_ . o (8.10)
SIZ) = e AE) co.r/ZZ 7 * /0/2”/574.2{_ =2
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where the functions ﬁ%ﬁj and_ gvéi)are defined in chapter

seven of Abramowitz and Stegun.

As time goes to negative infinity the cosine and sine
- Fresnel integréls approach -0.5. The leading order
behaviour of equation 8.3 is
A1) —> 24 45 /P pf— - ‘ (8.11)
7723 274y
Therefore, the .amplitude of the function 1is directly
proportional to the distance propagated and Iinversely

proportional to the time cubed.

When the convolution integral is evaluated numerically,
the range pf integration for negative time should not extend
beyond the time when the amplitude of the Iimpulse response
function becomes less than a certain tolerance. The time at

which this function is less than a certain tolerance is

7Z < _2/_,/,}

where & 1is a fraction of the value of Aﬂéﬁ/at “=0 .

JX//L (8.12)

The corresponding number of sample points is

g > 32 /45) 2_y
7 / ZZ (8.13)

where 7. =-/7 47 .
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Equations 8.9 and 8.12 are very useful for evaluating
the convolution integral when the inverse Fourler transform
is given by equation 8.3. However, equation 8.3 1is only
‘applicable when the cut-off frequency is infinite. But the
impulse response function for finite depth will be evaluated
numerically. Its cut-off frequency will be finite. For
deep water, the inverse Fourier transform of equation 8.2

for a finlite cut-off frequency is (equation D.11)

éﬁ/r%/c/%’z%—%f/% C/é%/ fj/w.fé%f/
,A/f%*'@—é}_%f//-f%f//ﬂﬁ/;%y/

where 4J, is the cut-off frequency.

(8.14)

Figure F.1l4 shows that the behaviocur of this function
is quite different from the function plotted in figure F.13.
As the time goes to positive infinity the function
approaches zero. If the time at which the function goes to
zero is less than the time at which the apparent period
equals ;a/z‘ . the convolution integral will give incorrect .
results. The function goes to zero when the argument of the

cosine and sine Fresnel integrals changes sign.
7 = 244 2 (8.15)

where Z;represents the time at which the function

approaches zero.
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When the Fast Fourier trnasform is used to evaluate the

impulse response function,

4y = Z/Z_;_ - (8.16)
Therefore;
75 = i/fl* (8.17)

Consequently, .Z; and %:- are equal, and the error
caused by the finite cut-off frequency affects the

convolution integral very little.

8.2 -HORIZONTAL PROPAGATION IN WATER OF FINITE DEPTH

The dispersion relation in water of finite depth is

w? = Ayg LentA%) (8.18)

where &) 1is the wave frequency, A is " the wave
number, 57 is the acceleration of gravity, and z§ is the

water depth.

The transfer function for horizontal propagation in

water of finite depth is

_ (ALY
) = € (8.19)

where _4%’15 the positive distance propagated.
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This inverse Fourler transform does not have a solution
in closed form. However, the fast Fourier transform can be
used to evaluate it. Figure F.15 compares the impulse
response functions for infinite and finite water depths.
Even though the water depth 1s very shallow, the two
functions are very similiar. At shallower water depths,
Airy wave theorx would not be valid. Therefore, the
asymptotic analysis pefformed for the deep water case can be
used to size the impulse response function for the finite

water depth case.

8.3 SUMMARY OF CHAPTER EIGHT

An aysmptotic analysis has been made of thé inverse
Fourier transforms of the transfer functions for performing
horizental propagation. The function for deep water has a
closed form solution. The impulse response function for
water of finite depth must be evaluated numerically.
However, the theoretical solution for deep water can be used

to size the numerical solution for water of finite depth.



CHAPTER 9
CONCLUSIONS

An alternative to sum of sinusoids has been presented.
Instead of a discrete sum of sinusoids, the Fouriler
transform and convolution integrals are used to represent a
continuous distribution of sinusolds. In some cases the
method proposed in this paper 1s much faster than sum of

sinusoids.

9.1 LIMITATIONS OF THE PROPOSED METHOD

The proposed model of ocean waves 1s linear. It will
not model wave breaking and other nonlinear phenomena. Wave
grouping is also not modeled. The proposed method could be
used to simulate wave spreading, but it would require
assembling many two-dimensional problems. The proposed
methed is not good for propagating waves over large
distances. Sum of sinusolids also has these same

limitations. For risers, the proposed method for simulating
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ocean waves may not be very efficient because the wave
kinematics would be evaluated at too many points. Sum of
sinusoids would probably be more efficient because the wave

kinematics could be evaluated at fewer points.

9.2 ADVANTAGES OF THE PROPOSED METHOCD

Unlike sum of sinusoids, the proposed model of ocean
waves glves an continuous distribution of wave energy. 1In
fact, data taken from a waver-rider buoy can be used
directly. Alternatively, data generated by an ARMA model
can be used. For very complex offshore structures that
would require the wave kinematics at many points in a grid,
the proposéd method is much more efficient than sum of
sinusoids. Figures F;16 and F.17 show a comparison of the
two methods for different size grids and for different
numbers of discrete waves used by sum of sinusoids. For
very large problems, the proposed method 1is significantly
faster than sum of sinusoids. Typically., the proposed

method is ten to twenty times faster than sum of sinusoids.



APPENDIX A
DIFFERENTIATION

Differentiation with respect to time 1s used to
generate time series of the vertical water-particle velocity
and acceleration, and the Thorizontal water—-particle
acceleration. The differentiation 1is done by using the
central difference method. Whenever differentiation 1s
performed numerically, the accuracy and noise amplification
should be carefully investlgated. The central difference
method 1is

L)~ AL = Ft~d2E) | (A.1)
7 -

where 752%/ is the derivative of the function 4%/ at

time 7 . 4% 1is the time step.

1f A#+4¢)and Af-42)are expanded in a Taylor series, the

truncation error can be found. Then

LW = fltrdd) - fre-dZ) - dz‘z,t@')/f/ (A.2)
24F -3

where # /':’%’ / is the third derivative of 772/ evaluated
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anywhere in the interval from 7z-4Z to #»4Z% ,

Therefore, the truncation error is inversely
proportional to the square of the time step. Furthermore,
functions which do not have smooth second derivatives will
have first derivatives that are not well predicted by the

central difference method.

In particular, let us investigate the accuracy of the
central difference method when it is applied to sinusoidal

functions. Suppose the sinusoidal function is given by

)= € WL (A.3)

where «’ 1is the frequency. Then the derivat_ive of this

function is simply

. Wz
F1E) = we . (A.4)
where the above equation is exact.
The approximate derivative as given by the central
difference method is

7{‘%‘) _ 'eg'w-/f-/-ﬁfj_ 2 l&d(z‘f"df) (A.5)

24z

This can be expressed as

) r
FHE) ~  simtwar) ' | (A.6)
47 '
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- Now calculate the ratio of the approximate derivative
to the exact derivative
) = So77 (wdZ) (A.7)
WAt
where #/») is the relative error. When Al)) equals one, the
approximate solution is exact. As ¢<J approaches zero, the

central difference method becomes a very poor approximation.

The relative error is plotted in figure F.18. There is
nc error as the frequency goes to zero. But as the
frequency approaches two samples per wave period, the
relative error goes to zero. This is called the nyquist
rate. In theory, the highest wave frequency that can be

.modeled by the methods of digital-signal processing is the
nyquist frequency. In practice, the sampling rate should

never become lower than eight samples per wave perilod.

The derivative of a function contaminated with noise
can have very large errors. In fact, the error can go up as
the time step decreases. For instance, suppose ‘f/%*dfy
and 79?ﬁ4é)are contaminated with noise. Then

fpadt) = FOErd ) + 10 (#442)
(A.8)

-

Lppdd) = Flb-d2) + 7/2-A L)

where /)/¢«1¢)and /I/-dZ)represent noise. The formula for the

first derivative then becomes
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p1) = lpadt)=FlEdE) L it s dd) = pfeed ) (A.9)
247 247
—_A.é.z /‘l /;j/;)
&

Therefore, noilse leads toc an error 1in the derivative‘
that 1is inversely proportional to the time step. (Figures
F.19, F.20 and F.21:show a time serles contaminated with
noise and the.derivative that time series for two different
time steps.) For the second derivative, the additional error
term would be inversely proportional to the square of the
time step. This 1s a very undesireable phenocmenon.
However, there are two relatively easy ways of avoiding this
problem. The first way is to filter the noise out of the
§rigina1 time serles and then differentiate. The second way
is to create a differentiator that removes the noise as it
differentiates. Of the two méthods, the first method is
more desireable for our purposes because it only requires .

that the preventive measures be taken only once.



APPENDIX B
THE HORIZONTAL WATER-PARTICLE VELOCITY

The free—surface elevation convolved with an impulse
response function gives the horizontal water-particle
velocity on the mean waterline. The convolution integral

has the following form:
1%
Wit) = [ 46) 7= )2 E . (B.1)

where #/%) represenfs the time series of the horizontal
water—-particle velocity, 7/;4/ represents the time serles of
the free-surface elevation, and /%) is the inverse
Fourier transform of the transfer function. 1In fact, the
1nv§rse Fourler transform 1is not defined. However, the

Fourier series solution does éxist.

This integral can be evaluated numerically as
o
Limgr) = > AU Vil =247 (B.2)
= -
where JZ—} is the time step, and /~/ and / are indices.

U/¢/ and 7/&/ are both sinusoidal functions of time. In
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fact, in deep water #4#%) and 7/#) can be expressed as
w)= fuf 2 e

V)= &€ 4 (B.3)

where 4/ represents the frequency of the sinusoid.

Now equation B.2 can be expressed as
&
2 7742 ) — 2%
/W/def = Zé/ﬂ/f)é 417 7).t ){Zz" (B.4)
7=-Q

But the above equation is a complex fourier series.

Therefore, >
Pa+
w .
boat) = £/ /U/QMAZ 2% (B.5)
’ 277 _%z‘

The evaluation of this integral gives

_Z , ZFErD
Z442
Alpdd] = o. For 7 Sver (B.6)
-2 00/61/
Vi 7k

It is now clear that the impulse response function 1is
inversely proportional to the square of time. This is a
more rapld convergence rate than some other alternatives
that could have been used to generate time series of the
horizontal water-particle velocity on the mean waterline.
For instance, a Hilbert transform could have been used to

transform the vertical water—-particle velocity into the
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horizontal. But the Hilbert transform is only inversely

proportiocnal to time.



APPENDIX C
VERTICAL ATTENUATION

For very deep water, the transfer function in the

frequency domain is

Hrw)= exo (/4 Z) (C.1)

where 4 1s the wave frequency, £ is the wave number,
and 4Z is the change in water depth (measured positive
upwards). Since the transfer function 1is a real and
symmetric function of frequency. the impulse respénse
function will be a real and symmetric function of time. The

inverse Fourier transform of the transfer function l1ls gives

by

w s
)= g 4 e (4HE) e " (c-2)

where Z represents time. The dispersion relation for

infinite water depth has been substituted for A .
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As expected, the lmaginary part of the integrand is an
odd function of frequency, and it will not make a
contribution to the inverse Fourier transform. The Fourler

transform can now be expressed as

w :
St) = %_{b ézi;ﬁ/w;/f}ca_{/wf/p/w (C.3)

Now integrate by parts.

4lE)= é,;,o/zd"dZ/ _r//)/wé)/

C.4
~Z jf /wexp/wzﬂ'Z/ swt)dw (-4
Since the first term is zero,
14)
ple) = =2 AE  [Swero (WHZE ) sipdZ)in (C.5
#)= R 5E e ‘

The derivative with respect to time o¢f equation C.3

gives
@
4 12) = -77/__0/ édé/yz‘/__fd}dz./ f/ﬁ/évf/'oéd (C.6)

Therefore, the impulse response function and its

derivative are related to each other as follows:

w) = JE sl (€.7)
472/ 24?_” )
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Integrate this expression with respect to time.

4H) = C ex/o/_!if'_"_f) (C.8)
Az

where ¢ 1is a constant of integration.

To find the constant of Iintegration, evaluate A/Z/

at #=¢& . Therefore,

#7]
= bo)= /[ exo /[ WAZE Jow )
2 %2 /O/f / (C.9)

A change of variables gives

e/
<= A4 -'-4 f exp/-u?)an | (C.10)

-~ The quu.ar'e of this integral is

c2= =9 / erp/- 4/2/7/41/;0,;3//%/// (C.11)
7UZ °

This quantity can be expressed as

c2= =9 // exo/ -2+ 2 oo H (C.12)
J24Z °
Now introduce polar coordinates.
» 72 |
c2= =7 0/ S /‘Expo/-f/o/é'fo//' (C.13)

TYE
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Therefore, the constant of integration is

c= L/ -9 - (C.14)
Z ) 4= -

Furthermore, the final expression for the 1impulse

response function is

A4 )= —Z—/_‘ e/z;o s / (C.15)



APPENDIX D

HORIZONTAL PROPAGATION

For very deep water, the transfer function in the -

frequency domain is
#w) = exp (i£dX) ‘ | (D.1)

where & is the wave frequency, A 1s the wave number,
and 44t is a positive distance over which a wave 1ls going to
be propagated. Since the real part of the transfer function
is even and the imaginary part is odd, the impulse response
function will be a real funétion "of time. The Iinverse

Fourier transform of the transfer function is give by

pE) = £ e /c;:/_za 52”/”/4’7 (51774 ‘;7/7 @/42 éwgé/(n 2)

where Z represents time. The dispersion relation for

infinite water depth has been substituted for A .

The integrand can be expanded as

4/‘7‘ / /ﬁf /M’V oSt # ZCDS/,(JZ{O/’ /Jy,y 1y 0T

-

_Z'_;//y/{d 2:/0/7//,0/'4/%’ /‘ oS W +://,2.f;r/‘sa/z%J;} SryT aéu (D.3)
j i
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As expected, the imaginary part of the integrand is an.

odd function of frequency, and it will not make a

contribution to the inverse Fourier transform. The Fourier

transform can now be expressed as

@ .
’ééﬂh=;5:é: czs/ﬁ%%QZf.-ax%/céZ/

(D.4)

This integral is similiar to the Iindefinite integral

given below.

Zoy= S cosfax*r 268 )ik

This integral can be arranged as

0= Jeas (440" - thzpz)) o
The expansion of the integral ls
e Sl i)
745v7744§§2‘é}f>)sv07/f?5§£<2fj/ X

This integral can be expressed as

jnﬁyzaééf; /?é;égz cagé?;éé%;_AZ%ﬁﬁ&iﬂazﬁéﬁégzéégy
R 2

(D.5)

(D.6)

(D.7)

(D.8)



HORIZONTAL PROPAGATION Page D-3

Now express this integral in terms of FEresnel

integrals. ’

ZHh)= ég. /( /'é_% /a!;{/ co;//é’ ;——éc y
- S (2178) ://7//42. cc y/ | (D.9)

where C/4) and S/%/ are defined
4
as a/ cos ﬂg z‘z/a_/zé and 0/ yf //7/.22 z 2/62/2‘ respectively.

Therefore, the integral for &/z‘/ can be expressed as

Sy = é/%; ,éé " C/z/'}%zr Z }mfé%f )

e

(D.10)
.,a(%f-f%z_‘//://]éjjz/

For finite cut-off frequencies, aé“/ can be expressed

as |
A/z‘/:.-%//;/éy%@ 'g—%/ f/f C/z/%; zy/cg?yz}{]

— __'.w"( /37 2y
) i T

where (0‘ is the cut-off frequency. This expression is

(D.11)

useful for comparing theory to numerical results generated

by the fast Fourier transform.
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F.1 TYPICAL OFFSHORE STRUCTURES

[ [ ] T]]

ereeR
4RAVETY PLATFORM =

SEMLSUBMERSTIELE



FIGURES Page r-3

F.2 FLOW NORMAL TO A CYLINDER'S AXIS

This figure shows how Morison'’s equation is applied for
flow normal to a cylinder's axis.
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F.3 FLOW IN-LINE WITH A CYLINDER'S AXIS

This figure shows how Morison's equation 1is applied for
flow in-line with a cylinder's axis.
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COCRDINATE SYSTEM FOR AIRY WAVE THECRY
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F.5 RANGE OF VALIDITY OF AIRY WAVE THEOCRY

(Adapted from Le Mehaute, 1969)
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- F.6 COORDINATE SYSTEM FOR THE GRID
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F.7 ALGORITHM FOR GENERATING WAVE KINEMATICS I

This figure describes an algorithm for finding ‘the wave
kinematics on the mean waterline.

7(x=0.t) > 7(x=¢r ,t)

Y

é()c': 44.,z=0,t) U (=4t .z=0,t) _ /j/(x://,z=0,t)

i

* '

/2(x= Jx}’,z=0,t) /V.(x=1/f/,z=0,t)
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F.8 ALGORITHM FOR GENERATING WAVE KINEMATICS II

This figure describes an algorithm for finding the wave
kinematics below the mean waterline.

7(x=zl)(,t) U= 4 .z=0.%) W (= 4F.2=0.%)

Y

(=X .z= 4Z.%)
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FIGURES

F.9 HORIZONTAL WATER-PARTICLE bEﬁOCITY I

This figure shows

an Ilmpulse response

Page F-10

function for

transforming the free-surface elevation into the horizontal
water-particle velocity on the mean waterline in deep water.

The time

step 1is .25

seconds.

Notice how rapidly the

function approaches zero as the time becomes greater than or
less than zero.
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FIGURES

- water-particle velocity on the mean waterline in

Page F-11

F.1¢ HORIZONTAL WATER-PARTICLE VELOCITY II

This figure shows an impulse response function for
transforming the free—surface elevation into the horizontal
finite

The time step is .25 seconds. The water depth
is 25. feet. Even for this very shallow water depth the
behaviour of the function differs very 1little from its
behaviour in deep water.

water depth.
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F.11 VERTICAL ATTENUATION IN DEEP WATER

This figure shows the inverse Fourler transform of the
transfer function for modeling vertical attenuation in deep
water. This function models the vertical attenuatlon over a
change in depth of 25. feet.

B.5@e

R.4002.

B.3Ba.

2.ZRa.

2.180

VERTICAL ATTENUATIQN

BB r7—T 17 1T 1T I 1T 1T T 1 1 1 1 11
-1Q.3 -G.D Q.2 .0

TIME CSETONDSD




FIGURES ' ‘ Page F-13

F.12 VERTICAL ATTENUATION IN WATER IN FINITE DEPTH

This flgure shows -impulse response functions for
performing vertical attenuation in water of finite depth in -
comparison to the same function in deep water. The water
depth 1s 50. feet. The distance over which the time series
are attenuated is 25. feet. The time step is .25 seconds.
The graph on the left is the impulse response function for
the transfer function that contains the hyperbolic cosines.
The graph on the right is the impulse response function for
the transfer function that contains the hyperbolic sines.
The symbols represent the finite depth results calculated by
using the fast Fourier transform. The solid lines are deep

water theory.
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F.13 HORIZONTAL PROPAGATION IN DEEP WATER I

This figure shows the inverse fourier transform of the
transfer function for horizontal propagation when there is
no cut-off frequency. This function models the horizontal
propagation over a distance of 25. feet.

1.2@

RB.6Q- n n H ﬂ * “ ’

HORI2ONTAL PRQPASATTIAN

-3 . €.

el R N T T T T T T R N U TR TR RN DN B M
-5.0 ~-3.Q Q.p 3. 6.0 9.D

TIME CSECONDS)




FIGURES Page F-15

F.14 HORIZONTAL PROPAGATION IN DEEP WATER II C e

This figure shows the inverse fourier transform of the
transfer function for horizontal propagation when there is a
finite cut—off frequency. The cut-off frequency equals 1.
Hz. The distance of propagation is 25. feet.
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F.15 HORIZONTAL PROPAGATION IN FINITE WATER DEPTHS

" This figure shows an impulse responée function for

’performing horizontal propagation in water of finite depth

in comparison to the same function in deep water. The water
depth 1is 50. feet. The time step is 0.5 seconds. The
distance of propagation is 25. feet. The symbols represent
the finite depth results calculated by using the fast
Fourier transform. The solid line is theory in deep water.
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F.16 SUM OF SINUSOIDS VERSUS THE PROPOSED METHOD I

This figure compares the speed of sum of sinusoids to
the proposed method for modeling ocean waves. A 3 by 3 grid
has been chosen. The grid spacing on the horizontal axis is
150. feet, and the grid spacing on the vertical axis is 30.
feet. The wave kinematics at each grid point have been
calculated for 100 time steps. The number of discrete waves
used by sum of sinusolds is plotted on the X-axis. On the
Y-axis, the ratio of the speed of the proposed methoed to sum
of slinusoids 1is plotted. ’
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F.17 SUM OF SINUSOIDS VERSUS THE PROPOSED METHOD II

This figure compares the speed of sum of sinusoids to
the proposed method for modeling ocean waves. A S by 10
grid has been chosen. The grid spacing on the horizontal
axis is 25. feet, and the grid spacing on the vertical axis
is 25. feet. The wave kinematics at each grid point have
been calculated for 50 time steps. The number of discrete
waves used by sum of sinusoids is plotted on the X-axis. On
the Y-axis, the ratio of the speed of the proposed method to
sum of sinusoids 1is plotted.
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F.18 ERROR ANALYSIS OF CENTRAL DIFFERENCE METﬁbD

The relative error of the central difference method
increases as the number of samples per wave decreases. As
the sampling rate approaches infinity, the relative error
error approaches one. As the sampling rate approaches two
samples per wave, the relative error goes to zero.
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F.19 SINUSOIDAL WAVE CONTAMINATED WITH NOISE

SINE WAVE CONTAMINATED WITH NQISE
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F.20 DERIVATIVE OF A WAVE CONTAMINATED WITH NOISE I

Numerical differentiation amplifies noise. In fact, -

the amplification Iincreases as the number of sample points
per wave increases. In this case, the central difference
method has been used to evaluate the derivative of the
function plotted in figure J.19. The sampling rate is 25
samples per wave. The solid line is the derivative of the
function when it 1s not contaminated with noise. The
symbols represent the derivative of the function as
calculated by the central difference method.
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F.21 DERIVATIVE OF A WAVE CONTAMINATED WITH NOISE II

Numerical differentiation amplifies nolse. In fact,
the amplification increases as the number of sample points
per wave increases. In this case, the central difference
method has been used to evaluate the derivative of the
function plotted in figure J.19. The sampling rate 1s S0
samples per wave. The solid line is the derlvative of the
function when it 1is not contaminated with noise. The
symbols represent the derlvative of the function as
calculated by the central difference method. Clearly, the
error at this sampling rate is greater than the error at the
lower sampling rate shown on the preceding page.
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G.1 AIRY WAVE THECRY IN FINITE WATER DEPTHS

Free surface elevation

Horlzontal particle velocity

Vertical particle velocity

Horizontal particle acceleration

Vertical particle acceleratiocn

Page G-2
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yields a spectral estimation algorithm which is a generalized
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of noise. The methods can be used for mode shape and multi-
dimensional wave number estimation.
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CHAPTER 1

INTRODUCTION

Due to the finite length and finite samples of the
correlation function, past research has concentrated on the
subject of spectral estimation in order to achieve high
performance in both resolution and stability. Dﬁe to the
availability of the FFT (fast Fourier transform) for
calculating wunsmoothed spectra and correlation functions,
the windowing methods and adaptive methods [5] are popular
and weil;developeda The variance of the unsmoothed spectrum
obtained by the windowing method can be reduced by a
sﬁoothing procedure, such as averaging over a neighboring
frequency band or over several independent unsmoothed
spectra. The design of a window focuses on undertaking the
effects of sidelobes [4]. The windowing method can not take
advantage of the intrinsic structure of a particular
stationary random process. The adaptive method can
incorporate a model for the data and through that model the
spectrum can be estimated. The adaptive methods are the
maximum entropy method (MEM) [21 and MLM as said in [9].
Both MEM and MLM are capable of high resolution performance.
(See reference [7] for a list of these diverse methods.) The
spectrum estimated by MLM has an additional potential usage.
Since the spectfum estimated by MLM is wunbiased, an
estimated spectrum which has less variance can be obtained

simply by averaging over several independent estimates.
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This averaging procedure leads to an accumulated knowledge
about the true spectrum. These diverse methods have given
much insight into the character of spectral analysis. The
interpretation in reference [13] is a nice example in this
sense and MEM has also been included in [17] as a special
case. In order to make progess in bofh understanding these
diverse methods and exploring new methods we present this

new approach to the subject of spectral estimation.

Mqtivated by the success of sample cases, we start with
a rough intuitive model for the data and increase its
precision through an inference principle. For reasons of
simplicity the stationary Gaussian random processes (GRP)
assumption is made throughout this work. By using a finite
approximation of the cross entropy function, the estimated
spectrum is obtained. The MCE principle [16] states that an
a posteriori probability density function (PDF) Q can be
inferred from an a priori PDF P by minimizing the <cross
entropy function H(Q,P) between Q and P. The roles of P and
Q are reversed in RKullback’s discriminant function (KDF)
[8], which 1is equal to H(P,Q). The prior PDF P for the
samples of a stationary GRP can be formulated using the
available <correlation function. In our approach, the PDF Q
for the Fourier coefficients of the samples can be
formulated [15] ‘according to the GRP assumption. The
variances of those Fourier coefficients form the spectrum of

the samples. Since the available correlation function is
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known only at a finite number of time lags, finite forms of
P and Q are used in the cross entropy function H(Q,P). The
spectrum derived by this method will <correspond to that

given by the windowing method and MLM in special cases.

Chapter 2 provides a general theory with four examples
to demonstrate its usage. Chapter 3 discusses- some
applications in cross spectral estimation, modal analysis,
and wavenumber estimation. Chapter 4 provides a brief
summary of the results. The appendix gives an alternate
technical approach for estimating the power spectrum which

is different from that given in the main text.
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CHAPTER 2

APPROACH

In this chapter we will first derive some basic
formulas and then apply them to the subject of spectrai
‘analyses. The problem statement is as follows.

Let { X ,¢e¢,X ,..,%x } be a set of joint Gaussian random
1 i L

vectors. Where x 1is an Ni dimension column vector and
i

E{x }=mx , Cov{x ,x }=E{(x -mx )(x -mx )"}=Rij .
i i i3 i1 i

E{.} denotes expectation value. A’ denotes the Hermitian of
the matrix A. Where Rij is a Ni by Nj matrix.

I4 4

Let x'= [ x° ,x" ,e00,x" ]

1 2 L
/ \
Rll ..OOOOCOORIL
Rx= . . and mx’ = [ mx’ ,mx’ ,...,mx’ ].
e L] l 2 L
RLl ....¢... RLL
\ /
L
x and mx are column vectors with dimension N= > Ni.

i=1
This Rx is a N by N matrix. Assume Rx is full rank
and known. Then P(x)= N(mx,Rx), -where

N(E,R) denotes normal PDF with mean m and covariance R.

Let { ¥y ,¢¢¢,Y 540+, } be a set of random vectors.
1 i P ’

Where each y 1is a Mi dimensional column vector which
i



L
depends linearly om the { x }, y = E Tik x ; i=1,...p.
' i i k=

Tik is a Mi by Nk matrix.

4

Let y'= [ y° ,3° 5¢¢¢,5" 1. Then y=Tx, where
1 2

P
P
¥y is a column vector with dimension M= Z Mi and
i=1- ’
/ \
Tll '.IT].L
T= . o 3 T is a M by N matrix.

Tpl....TpL
/

Assume T has rank M<KN. Then P(y)=N(Tmx,TRxT’)
=N(my,Ry); where my=Tmx and Ry=TRxT’.

We wish to model {y } as independent random vectors, so
i

that the posterior PDF Q will be separable which will
facilitate the computation. Example #1 in the following
context will give us a little bit of sense about how good
this model is. Essentially, the less correlation among the

{y }, the better the model is.
i

Now we can write Q as follows.

Q(y)=q (y J)q (¥ Jev.q (¥ )
1 1 2z 2 P P

In the following two sections we will find the

solution for this model and explain the results.
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Section 2.1: General Theory

With the above problem statement the next step 1is to
find a proper discriminant function which can describe the
difference between Q and P quantitatively. Through
minimizing ‘that selected discriminant function we can fit
our model Q to the a priori P. There are several candidates
for this discriminant function. The one we prefer is the
cross entropy function H(Q,P), essentially because it can
handle the normal distribution and is well-founded [1l6].
Its counterpart KDF=H(P,Q) is also a good function for
handling normal distribution and will be discussed in this

context also. Now we derive Q using MCE principle:

/ Q
{q ;i=1,p} <== min H(Q,P)= min \ Q log— dy
i . Q / P

We now solve for Q by variational calculus:

/ /
H(Q,P)= > Q logQ dy - > Q logP dy

/2 P / 2
=\ 11 q(y)log Il q (y)dy -\ Il q (y ) logP dy
/ i=1 i 1 i=1 1 i /[ i=1 1 i
. /
The constraint for each q 1is: 1=\ q (y )dy
i / i i i
Let ¢ be the Lagrange multiplier for q . Then:
k - k
P /! _p 2
58¢Q,P)= > { \ Tilaq(y) log 11 q (y ) §a (y day +
k=1 /3=l 3 3 i=1 14 i k k
i¥k
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/ p /! _p
+ N\ 11 q (x> jha (x)dy -\ 11 q (y ) logP 4q (y ) dy
/3=l 3. ] k k / i=1 i 3 k k
j¥k j%k
/
+ Ve §a (3 ) day 1}
/ k k k k
)] / p /
SH(Q.B)= > {\ [ > \ q (g ) logqg (y )y +1 +c¢
k=1 / j=1 / i 3 i o3 k| k
jik
/ _P
+ logq (y )=\ logP i q (y ) dy ] 4 (y ) dy }
kK k 3=1 i 3 i k k k
jkk

Since each éq (y ) is an arbitrary function, set its
k k

coefficient to zero in order to get a stationary

function q (y ) and we obtain:
k k

P
q (y ) dy + constant.

/
log q (y )=\ logP(y)
/ b I h

bl
k k j=1
j¥k
Substitute data from P(y) and Q(y) in the above equation.

-1
log q (y )= -0.5(y -fiy )* [ Ry lkk (y -fiy )
k

k k k k k
2 , -1 "

-0.5 > { (y &y ) [Ry Jkj (E{y I-my )
j=1 k k h J
j4k

+(Ely 1-#y > ([Ry 1Jjk (y -fiy ) } + constant
3 k| k k
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The q (y )'s solution of the above equation is Gaussian:
k k
A -1 -1
q (y )=N(my ,{ [ Ry lii } ) 3 where (EQ 1)
i i i

-1 th -1 -1
[Ry Jkj is the (k, j) submatrix of Ry when Ry is

partitioned by {M1,M2,M3,..,Mp} in both row and column.

All that remains is to solve for the ﬁy . Substituting this
i

ﬁy =E{y 1q } in the above equation, multiplying both sides
i i i

-1
by [Ry Jii, and rearranging, gives:
P =1 A
2 [Ry 1lij (my -my )=0 for i=1l,..,p
j=1 ] |

Combining terms into matrix and vector in the obvious way:

-1
Ry (ﬁy-gy)=9

Since Ry is assumed to be full rank:

A =

my <my

When y is a complex vector, the (EQ 2) and (EQ 4) need
to be multiplied by 2.

The value of the minimum cross entropy is:

P -1
It 1l Ry 1ii |
IRy | i=1
H(Q,P)=0.5 log =0.5 log R
p -1 -1 -1
it 1 {[ Ry Jii } | IRy I
i=1
(EQ 2)

which is also a measure of goodness of fit.
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The q (y ) is equal to the conditional density of y,
i i

which is P(y | my ,..my s MY seeesMy )
i 1 i-1 i+l p

where E{ y Iq (y )}= my
h| i 3 J

This result is a consequence of the fact that P(y) is a
natural exponential family of the PDF.

Another approach using KDF=H(P,Q) is:

/ P
Q <== min \ P log dy
Q / Q
/ /
KDF= \ P logP dy - \ P logQ dy
/ /
p /0 -F
9KDF= > N [ —— + ¢ 14 () dy
k=1 / q (y) k kK k
k k

Setting the coefficient of éq (y ) equal to zero in order
k k

to get a stationary q and we obtain:

k
/ t
q (yy ) =\ P(y) dy dy ...dy dy .oody
i i / 1 2 i-1 i+l p
=P(y )= marginal density of y
i i
=N(my , [Rylii ) . (EQ 3D
i ~
IRy |
Value of minimum KDF =-0.5 log (EQ 4)
-2
bt tIRyJii
i=1

When Ry is a diagonal matrix with submatrices {[Rylii} along
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its diagonal, the minimum values of both H(Q,P) and KDF are
zero. Note that the (EQ 1) is a conditional PDF and (EQ 3)
is a marginal PDF. A sharper PDF can always be obtained
from the conditional PDF. This is because the marginal PDF
is obtained by a smoothing integration which smooths some
distinguishable characters of the PDF. So, we expect that
(EQ 1) will give more distinguishable information about its
variables than (EQ 3) will. The above four equations, (EQ 1
to 4), complete the basic theory. The following three

examples will lead to formulas for spectral analysis.

Example #1:

In this example we will test our model for the case

where x is 2 real, jointly Gaussian random variables.

x=[ x1 , x2 ]
/A / \
ml | RI11 R12
E{x}=mx= l 3 Var(x)=E{xx'}=
m2 R21 R22
N/ \ /

P(x)=N( mx, Var(x) )
We will model x1 and x2 as two independent variables.

Let Q(x)=q (x1l) q (x2)
1 2

(i) By Johnson—-Shore’s MCE principle:
Substitute the data from P and Q into (EQ 1) and obtain:
-1

q (x1)=N(ml, R11-R12 R22 R21)
1



Page 15

-1
q (x2)=N(m2, R22-R21 R1l1 R12 )
2 .

[R11]

value of MCE= 0.5 log
JR11-R12 RZ;_-l R21|

When x1 and x2 are approximately wuncorrelated R12=R21°Z0,
the wvalue of MCE is close to O and the independence
assumption is valid. When x1 and x2 are highly correlated,
the value of MCE is large and the separable approximation is
poor. The goodness of the separable model heavily depends
on R12, because the variance of the separable model is
proportional to the quadrature of R12 or R21.
(ii) By Kullback’s minimum discriminant principle:
Substitute the data from P and Q into (EQ 3) to obtain:

q (x1)=N(ml, R11 )
1

q (x2)=N(m2, R22 )
2

In this case the minimum values are the same for both H(Q,P)
and KDF. And the separable variance obtained by the KDF
method is always no less than that obtained by the MCE.

method.

Example #2:
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Now we derive the formula for the special case where

M=N and T is an invertible orthogonal matrix.

By definition: TT’ = T'T = 1 ; I is an identity matrix.

Then Ry 1s : Ry = T Rx T’
-1 -1
Ry = T Rx T’
Let
/ \
tl
T = ti ; where ti is a Mi by N submatrix.
tp
\ /

i.e. y =ti X
i

Substituting the above data in (EQ 1,3), we get:

By the MCE principle:

-1 -1
q (y )=NC my , [ti Rx ti’ ] ) (EQ 5)
i i i
By KDF:
q (y )=N( my , ti Rx ti’ ) (EQ 6)
i i i

Note that the density estimator for y '~ depends only on the
i

linear transformation ti that generated y , not on any other
' i
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tj. This is because T is orthogonal.

Example #3:

In this example we will derive the formulas when the
T matrix in example #2 is invertible but not orthogonal.
When T is not orthogonal,‘tﬁé; o é'
Ry = TRxT’ and

-1 -1 -1 -1
Ry = T Rx T .

Let the inverse of T be partitioned as follows:

-1/ =1 -1 S T
T = 1 t1 | £2 Jeeeo] tp |
\ /
-1 P -1
; where x= T y = > ti yi.
i=1
-1 -1
ti is a N by Mi submatrix of T .
/ -1 \
(el O
-1 . -1
T = . ; where ti ti =1 ,
___________ -1
-1 tj ti =0 for i%j.
( tp )’

-1
ti is orthogonal to all tj for iXj, and has a unit
projection on ti.
Then,

By Johnson-Shore’s MCE:

17
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-1 -1 -1 -1
q (y )=N(Cmy ,l Cti )" Rx ti ] ) (EQ 7)
i i i
By Kullback’s minimum discriminant:
q (y )=N( my , ti Rx ti’ ) (EQ 8)
i 1 i

, th
Note that the Johnson-Shore solution for the 1 variance

-1
depends on ti , which in turn depends on the choice of

all the linear transformations tl, t2...,tp. The Kullback

solution depends only on ti.

Section 2.2: Power Spectrum Estimation

Now we can use the previous results for estimating
power spectra. The physical meaning for all the random
variables is given as following.

Let x = x(t ) be a set of samples at time t of a wide
i i i

sense stationary GRP with zero mean and covariance R(t).

In this case t’'=[tl ,t2 ,...,tD ] and x(t) is a
i i i i

D-dimensional Ni vector GRP.

Each x 1is an Ni dimensional column vector with
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Let x'=[x" ,000,x",000,x" ]
1 i L
The PDF of x is N(O,Rx), where
Rx is a LNi by LNi covariance matrix of x. Let N=LNi.
Let the rows, {tis;i=1,p}, of the transformation matrix T
be a set of disjoint narrow bandpass filters. Then, the

outputs y of the filters are independent random variables
i

according to the GRP assumption. Their variances

can be thought of as the power spectrum when the filters
are very narrow in their pass band. Since the filters
are finite in length, they can not be ideal, narrow,

bandpass filters, and the {y :i=1,p} can not be independent
i

exactly. We now model {y ;i=1l,p} as independent random
i

variables. Assume T has rank pNi=M<IN.
fhen, P(y)= N(O,Ry), where Ry=TRxT’ and
Ry is a M by M covariance matrix.
According to our model

y 1is independent of all others, then we get:
i

(i) By Johnson-Shore’s MCE (EQ 1):
-1 -1
q (y )= DN(O0, [ ( Ry )Hii ] )
i i
If M=N, then we use (EQ 7) and get:
-1 -1 -1 =1
q (y )= N(O, [ (ti )" Rx (i ) ] ). (EQ 9)
i i

If M=N and T is orthogonal, then we get:
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-1 -1
q (y )= N(O0, [ti Rx ti’] ) . (EQ 10)
i i
(1i) By Kullback’s minimum discriminant:

q (y )=N(0, [Rylii ), where [Ry]ii= ti Rx ti’ (EQ 11)
i i

We will discuss more on the above three equations and
look for a good spectral estimator. All the three formulas
fulfil the positive definite requirement and can be spectral
estimators. Since our method can only estimate the power
spectrum at a finite number of frequencies, we  are very
concerned with the spectrum at the other frequencies. An
easy way to do this is to generalize the formula for finite
freqqencies to other frequencies when the fofmula can be
written as a function of frequency. Obviously, (EQ 19) is
not a good choice for spectral analysis, because the
spectrum depends on a particular set of filters in T. (EQ

10,11) are both capable of doing this.

If the disjoint bandpass filters are design by TW=I,
where I 1s an identity matrix and W has submatrices

’

ju© t
) i k
Wik= e I ;{i=]—)p;k=1,L}s
(EQ 9) is identical to MLM. With this kind of T (EQ 9) will
be as good as the other two. The reason is that the matrix

T is just a discrete Fourier transform (DFT) matrix, and is

therefore orthonormal for uniform samples, W=T’. The set of
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filters in both T and W are narrow bandpass with 1little
overlap in the frequency domain. Unfortunately, this simple

reason does not carry over for non-uniform samples.

(EQ 11) reveal that we are free to design a set of
narrow banpass filters to get a spectrum, because the
spectrum estimated by each filter will not be related to any
others. When we use an adaptive filter (formula (12) in

-1 -1 :
[91), t=R e/(e’R e); e is a sinusoidal vector, (EQ 11) is

equal to MLM. We now discuss two special cases and the

meaning of (EQ 1).

Special Case #1:

Whenever the finite Fourier transformation can be
thought of as a set of good bandpass filters, we can use the
above equations (EQ 9,10,11) to obtain the following
results. This transformation allows us to rewrite '

the y as follows.
i

Let y =X(w ) be the finite Fourier transform of the known
i i

data samples at specific frequencies fw , w ,.., w },

1 2 P
where w'=[wl ,w2 ,...,wD ]. Then,
i i i i
v’ ot
L i Tk 2
y =X(w )= >zx(t)e 5 3 0= -1
i i k=1 k
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Thus Tik= e 1.
If M=N and T is an invertible orthogonal transformation,

such as uniform sampling in space and frequency, then we

use (EQ 10) and get the following solution by MCE:

-1 -1
¢ (X(w ))= N(O, [ti Rx ti’] ) , where (EQ 12)
i i
jw’ (£ -t )
-1 L L -1 i m n
[ti Rx ti’] =2> 2 [Rx Jmn e .
mn=1 n=1
-1 -1

In this case the [ti Rx ti’] correspond to that of
MLM [9]. Since (EQ 12) is a function of frequency, this
suggests using (EQ l2) to estimate the whole spectrum.
If p=1 and L>p, then from (EQ 1)
-1 -1
ql(z(zl)) = N(O, [Ry 1 ) = N(O,Ry),

where Ry=TRxT’=tl Rx tl’ . Expand Ry and get:

juw’ (e -t )
L L 1 m n
tl Rx £l = > > Rmn e
m=1 n=1
jw’(t -t )
L L l m n
= > > R(t-t)e
m=1l n=1 m n
When {t ,..,t } are uniformly spaced, t = 1is, and
1 L i
jw’ ka
L-1 1
[tl Rx tl17] = > (L-k)R(ka) e

22
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This is the same solution'as that given by Bartlett’s
method (triangle window).

The solution by Kullback’s minimum discriminant 1is:

q (X(w ))= N(O, [Rylii ),
i i

which is also same as that given by Bartlett’s method.

Since the &estimation of spectra by the windowed
periodogram method is popular, we discuss how to incorporate
a window into (EQ 12). Let Tki=Wi Tki , where Wi=hi I ;hi
is a scalar, I is the identity matrix and Tki is the same as
before. {Wi,i=1,L} are the window coefficients.

/ \
Let Wl
w2 - 0
W= . where all of the off-diagonal
0 . submatrices are O.
WL
\ /

Replacing Tki with Tki in (EQ 12) and (EQ 11) gives:

-1 -1 -1 =1 -1 -1 -1
[Ry it = ti W Rx W ti’ = (ti W ) Rx (i W )’
jw'(t -t )
L L -1 -1 -1 i m n
= > > [Rx Imn hm hn e
m=1 n=1
-1

This works poorly, unless we replace hm with hm.

[Rylii = t1 W Rx W’ ti’ = (ti W) Rx (ti W)’

L
>

vie

2 2 [Rx]mn hm hn e
m=1 n=1

-1
Since W is also a diagonal matrix, it has the inverse of
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the corresponding diagonal elements of W as 1its diagonal

elements.

Special Case #2:

When thé i?fegﬁlar sampling time {tn} does not allow
the design of a good bandpass filter, the formulas we
developed will be useless. In order to remedy this defect,
we have to remodel x(tn) to meet the assumption of
independence through some way other than bandpass filters.
Certainly, the context will lose consistency by remodeling
x(tn). However, the new modeling procedure will have the
same spirit as the previous aim. We will use the single
channel on; dimension signal =x(tn) as an example to
1llustrate this new modeling procedure. It is easy to
generalize this exaﬁple to multichannel multidimensional
signals with some notational complexity. In this case we
will estimate the power spectrum at one frequency. The
signal  is assumed to have the form: x(tn)= {term #1} +
{term #2}. We attempt to build a model Q, Q({x(tn)})=
ql(term #1) q2(term #2). Because the MCE principle requires
independence between term #1 and term #2, we must arrange
them to be as 1independent as possible. Since we are
interested in spectral analyses, the two terms in x{(tn) are
arranged in the following ways.

'jwtl jwt2 jwtN
Let e'= [ e , € sesee, € ] and



Page 25

5’: [ X(tl), x(tZ),...-, X(tN) ] .
Arrange the terms as follows:

~

-jwtn

x(tn)={ a(w) e } + { x(tn) } (EQ 13)

=-jwtn _
x(tn)={ [a(w)+3(w)] e } + { x(tn) } (EQ 14)

’

Where 3(w)=e’. x , e’. x =0 and

x(tn) can be represented by a subspace E which is

orthogonal to e. (EQ 13) can be thought of as a signal plus
a correlated noise. (EQ 14) can be thought of as a modified
signal plus an uncorrelated noise. Obviously, (EQ 14) is a
better choice for our model, because (EQ 14) makes
independence of the terms likely. Now we construct the

matrix T:

/ , \
A
Let T= subspace e and tl1'= e’.
orthogonal
to e’
\ /

We formulate the Q for y=Tx. So, yl= tl’x = e’x = a(w)+a(w)
and Ry=TRxT’, where Rx=E[xx’] and Ry=E[Z1f]. The variance
of a(w)+a(w) can possibly represent the spectrum of x(tn) at
frequency Wo Now our model has the form:

Q(y)=ql(yl)q2({yk;k¥1}). Apply the MCE principle and get:

-1 -1 -1 -1
S(w)=Var(y1)=Var{a(w)+g(w)}={£1’Rx tl} = {e’Rx e}

; which is still (EQ 12) and MLM.
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In the above formula we can see that the e vector is not a
bandpass filter. When a vector e is also a good narrow
bandpass filter, this e is meaningfull. This also suggests
that whenever we can not design a good narrow bandpass
filter tl to estimate the spectrum at w, we still can use e

or MLM to obtain the spectrum.

The result of using KDF is:

S(w)=e’'Rxe. Note that this works poorly.

In this case we remodel the x(tn) and the result can explain
why MLM still works reasonably even when the irregularly
spaced sampling does not allow us to design a good Ybandpass

filter tl.

Meaning of (EQ 1):

We now discuss the meaning of the formula (EQ 1), so
that we <can precisely know the relation between our theory
and that for the linear least square estimation (LLSE).
This relation will allow us reach the formula (EQ 1) by
knowing LLSE only. In the following analysis, the Ry has
the following partition form. We assume every yi is a

single random variable for simplicity.
Let y=[yl,y2,...,yN]=[yl, yl] ; where

yi={yl,y2,..,yi-1,yi+1,..,yN]=[{yk;k%i}] and yi=y .
' i
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Let Ry=El[yy’] , y=Tx. If i=1, then

/ ~ \
Ryll | Ryl
|
Ry= | B
~ | ~
Ryl’ | Ryll
|
\ /

where Ryii= ti’Rx ti,
Ryi=E(yi yi’) and
Ryii=E(yi yi’).

Ryll can be thought of as the covariance of noise
and Ryll is the covariance of the signal.

-1 -1
The MCE’s result for qi(yi) is qi(yi)=N(0,{ [Ry J]ii } ).

-1 -1 -~ ~ -1 ~
{[Ry ]ii } 1is equal to Ryii~- Ryi { Ryii } Ryi’, which

can be obtained by manipulating the matrix Ry.
We now discuss the meaning of si, where
-1 -1 - ~ -1 -
si={[Ry ]ii } =Ryii-Ryi{ Ryii } Ryi‘’. (EQ 15)
Obviously, si is equal to the error covariance
Var(error), where Var(error)=Var(yi-%i) and $i is the linear
estimation of yi given {yk;k=%i}. And this error is
independent of the rest of the variables {yk;ki%i}. This
means the si obtained for yi through the MCE is the energy
(variance) which are pefpendicular to (independent of) the

variables {yk;k%i}. (EQ 15) also tells us that the si are
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proportional to the quadrature .of the cross-correlation
matrix E{yi [{yk;k¥i}]}. So, when the GRP x(tn) can not be
separated into independent parts properly, the result
obtained through MCE will deviate from its original meaning.
The above interpretation also shows that we can reach the

MCE result with a common linear least square estimate.

The above idea can be modifed when yi is a vector. In
this case si1 is a positive matrix. We say matrix A is less

than matrix B when v’Av < v’'Bv for any vector v.

From the above discussion and the meaning in case #2,
we may use a well-designed filter/vector g to represent the
appearance qf a signal. For instance, when g is the "vector
(or the signature of a signal) which will make this signal
distinguishable from its background, the energy in g will be
a good indicator for the appeafance of this signal. This
idea plus the idea that the MLM filter can make the Bartlett
method as good»as MLM encourages us to use the MLM filter,
formula (12) in [9], in (EQ 14) to indicate the appearance

-1 -1
of a sinusoidal signal e. This filter is € =(R e)/(e’'R e).

Replacing the §=£l in (EQ 13&l4 or 12) with e, we get:

-1 2
(e’'R e) which shall be defined as the
Var(yl)=s ———————
-3 “indicator’.
(e'R e)

We now compare some results of using this indicator with

those using three other methods. In figures #1 to #6
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we plot results for the following four methods.

They are:
-1 -1 2
-2 1 (e'R @) (e'R &)
N e'Re ; ——— ; ;
-1 -2 -3
e’'R e e’R e e'R e
Bartlett MLM Lagunas([10] indicator

Note that whenever the minimum eigenvalue of the matrix
R is <close to zero, adding extra white noise to R is very
helpful for the numerical computation of Lagunas’s spectra
and the indicator. This extrai white noise should be
subtracted after the computation. In figure #1 the
estimated spectra by these 4 methods are plotted for the the
correlation ‘function sampled at 11 equally spaced 1lags,
{r(t)=5§Ce)+ 5.33cos(0.3t)+ 10.66cos(0.4me); where
t=0,1,2,...,10}. This correlation function is the same as
that wused 1in [9]. The signal-to-noise ratios in r(t) are
7.26 and 10.27 dB. In figure #2 we wuse this r{(t) but
sampled at wunequally spaced 1lags, namely the differences
between all possible pairs of ‘the following numbers: 0,
1.9, 2.76, 3.78, 4.08, 4.81, 4.98, 5.73, 7.91,‘8.05, 10.0.
Figure #3 shows the spectra for this r(t), computed at lags
which are the differences divided by 1.27 between any pair
of the following numbers: 0, 0.1, 0.2, 0.3, 0.5, 0.7, 1.5,
3.1, 6.3, 10.0, 12.7. Figure #4 shows the spectra for
{r(t)+14 5(t); t=0,1,..,10}, where the white noise increases

from 1 to 15. The signal-to-noise ratios are =-4.49 and
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BARTLETT
/
" LAGUNAS
J\
~24. 8- v, INDICATOR
- f true locations of simusoids
” A
|
-30.0 I i T I ] ] 1 | :
3.0R0 R.Z5 .50

frequency Hz

Figure #1: spéctra for {r(t)=é(t)+5.33cos(0.3mt)
+10.66cos(0.47t);t=0,1,2,...,10.}
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frequency Hz
Figure #2: spectra for {r(t)=5(t)+5.33cos8(0.3m1t)

+10.66cos(0.4xt);t=ti-tj;1i,3=1,2,..11} where ti=
{0,1.9,2.76,3.78,,4.08,4.81,4.98,5.73,7.91,8,05,10]
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Figure #3: spectra for {r(t)=§(t)+5.33co0s(0.31t)
+10.66cos(0.4Rt);;t=(ti-tj)/1.27:1,3=1,2,..,11}
t1={0,0.1,0.2,0.3,0.5,0.7,1.5,3.1,6.3,10,12.7]
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Figure #4: spectra for {r(t)=153(t)+5.33co0s(0.3%t)
+10.66cos(0.4xt);t=0,1,2,...,10.}
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-1.48 dB. We also include the spectra with colored noise in
figure #5. The correlation function used in this figure is:

—Ool"t 0-4
r(t)+ 2 e [cos(0.2rt)+

sin(0.2qwt)]
0.2K

-O.Zt 0'2
+ 2 e [cos (0.6t )+

sin(0.6;t)]
0.6T.

where t=0,1,2,...10.

The colofed noise 1is counstructed as the sum of two
independent wide~band processes., Each of the two
independent processes has a spectrum which could be obtained
from a simple RLC circuit driven by white noise. The peaks
of these two spectra are at 0.0435 and 0.296 Hz
approximately. These peaks are explicitly indicated by the
indicator only. 1In figure #6 the spectra are obtained for
the perturbated | correlation _ function,
r(t)+n(t);t=0,1,2,...,10, where the n(t) is a sequency of
random numbers with a zero mean and uniform distribution
between -0.25 and 0.25. The extra humps 1in this figure
indicate the possible appéarance of extra sinusoidal
components caused by adding n(t). In all these figures the
two sinusoidal signals are always distinguishable through
using the indicator’s formula. Our simulated- results show
that this dindicator can easily distinguish sinusoidal
signals but does not accurately estimate the magnitude of
the spectrum or the whole shape of the spectrum. The reason

why this indicator can sharply point out the sinusoidal
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components 1s that this indicator heavily weights the
eigenvector corresponding to the minimum eigenvalue of R.
This reason 1is similar to that for Pisarenko’s method, see
page 106 in [5]. We also studied the pole-zero behavior of
this indicator for the case of wuniform samples by
simulations. We found that this indicator can always place
some of the zeros in between the significant poles and close
to these poles. This is probably the reasomn why this
indicator can separate/resolve the peaks so well and narrow
the peaks. But it 1is hard to describe this behavior

theoretically.
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CHAPTER 3

APPLICATIONS

In this chapter two applications, and the CTOSS
spectral estimator will be discusséd. We will introduce\the
cross spectral estimator in the first section followed by
applications in modal analysis and frequency wavenumber

estimation.

Section #l1: Cross Spectral Estimation

Since the cross spectrum is very important in many
applications, wev discuss it first and show some of the
results for two channgls using simulated data at the end of
this section. We will wuse (EQ 12) to estimate the cross
spectrum throughout this cﬁapter, because 1t always gives
reliable results empirically.. The other reason we prefer
using (EQ 12) to estimate the cross spectrum is that it has

an additional interesting interpretation.

For simplicity and clearness, we will wuse the two-
channel-one-dimension <case to interpret (EQ 12) using LLSE.
This interpretation generalizes “to _the multichannel
multidimensional <case with some notation complexity. The
problem statement is the following. Let x'=[xl, x2,...,
Xi,+ee., xL] and y’=[yl, y2,.¢., yi,e.., yL], where xi and yi.

are the samples at time t=ti from the two channels, x(t) and
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y(t). Let hx=[hxl,.., hxi,.., hxL] and hy=[hyl,.., hyi,..,
hyL] be the two filters which we will apply to x(t) and
y(t), where hxi and hyi are the coefficients of hx and hy at
the time lag ti. We plan to use both hx and hy to find the
quantity we wante. Let s(tl) be the quantity

s(tL)=u(tl)+v(tL),

L

where u(tlL) = z hx(L-1i) x(ti)
L

v(tL) = > hy(L-i) y(ti)

The idea is to adjust both hx and hy in such a way that s(t)
is the desired quantity. This idea is formulated in the
following way. Rearrange {hxi,hyi} into a new vector h and
{xi,yi} 1into a new sampled series z. Let h'=[hxl,hyl,
hx2,hy2, hx3,hy3,..., hxi,hyi,..., hxL,hyL] and z’'=[xl,yl,
x2,y2, x3,¥y3,¢¢0, xi,yi,ee.s., xL,yL]. Suppose we know the
correlation matrix for 2z, E{zz’}=R.. One method of
estimating the spectrum using s{(t) is to impose an unbiased
constraint on h at a frequency w and then minimize S=E{ss’}
in order to reject the influence from all other frequencies.
This contraint is:

h’e=c’=[a,b], where a,b = 0,1 ,

jwti
e‘=lel’, e2’; e3’,¢00, €1’ 0005, eL’] and ei=e I, where

1 is the 2 by 2 identity matrix. With this constraint we

want to find a vector h which has a minimum S=E{ss’}=h’Rh.

k4
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The derivation is straightforward. The solution for h is:

When ¢“=[1,0], we get h<1,0>=h, s<1,0>=h<1,0>"z and
-1 -1 /1 \

min § = h<1,0>'R h<1,0> = [1,0] [ e R e ] ] |

\ 0/

This minimum value 6f S is just the estimated spectrum for

x(t) using (EQ 12).

When c¢“=[0,1], we get h<0,1>=h, s<0,1>=h<0,1>°z and

-1 -1/ 0\
min § = h<0,1>'R h<0,1> = [0,1][ e’ R e ] |
\1/

This minimum value of S 1s just the estimated spectrum for
y{t) using (EQ 12).

Heuristically, we may use either the cross term

h<1,0>°R h<0,1> or h<0,1>’R h<1,0> as a cross spectral

estimator, as follows:

-1 -1/ 0\

Sxy(w) = h<1,0>°R h<0,1> = [1,0][ e*" R e ] ! I
V1o

-1 -1/ 1\

Syx(w) = h<0,1>‘R h<1,0> = [0,1][ ¢" R e ] | |
\ 0/

Sxy(w) and Syx(w) are just the estimated cross spectra
between x(t) and y(t) wusing (EQ 12). Another way to

formulate this problem is: Let U’ (tL)=[ u’(tL) v’(tL) ] and
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/ \
hxx(n) hxy(n)
H(n) = -
hyx(n) hyy(n)

/ x(tm) \
H(tL=-tm) | |
1 \ y(tm) /

Let H’=[ H'(0), H'(1),.., H'(L-1) ].

Then, U(tL)=

v

m

We want to find an H which has a minimum tr(H'RH) subject

to the unbiased constraint H'e=I. (tr(.) means trace.)

The solution for H is: H=-R e (e’R &e)
-1 -1
So, H'RH= (e'R e ) , which is identical to (EQ 12).
Note H has 3L wvariables while the previous h has 2L
variables when we need to estimate the autospectrum only for

one channel.

Figure #7 is a simulated exémple which shows how (EQ
12) works for estimating cross specra. In this figure the
autocorrelation functions, rx(t) and ry(t), of both channels
are the same as that wused in figure #1. The «cross
correlation function rxy(t) is equal to rx(t) without white

noise. The lags used are {tjt=-10,-9,...,0,.,10}.

Section #2: Modal Analysis
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In this section we will compare our cross spectral
estimator with MEM using the acceleration data from sensors
oriented in a northerly direction measured at the centers of
4 different decks 1in Amoco’s single caisson as studied in
[1]. The 4 records are NAH, NAP, NAW, and NAB, which were
recorded at the helicopter, production, wellhead, and boat
decks respectively. We will use the estimated correlation
functions, figure #8 and #9, to estimate all the spectra in
this section. All these correlation functiohs are estimated
by the FFT method through averaging over 58 segments of 512
data points each. The sampling rate is 6.4 Hz and the total
record length is 77.3 minutes or 29696 data points. Figure
#10 plots the natural log (ln) values of the autospectra
estimated by (EQ 12) for the helicopter (NAH), production
(NAP), well (NAW) and boat decks. These four autospectra
are obtained by ‘using the two channel formula of (EQ 12)
between NAH and each of NAP, NAW, and NAB. We plot only one
spectrum for NAH, because the spectra for NAH are almost the
same among the three cross spectra. All these spectra were
estimated using 40 lags or 6.09375 seconds of the
correlation functions. According to modal analysis, the
small vibration of this caisson can be modelled
apprbximately as the superposition of several natural modes.
Each mode moves primarily at its own natural frequency and
mode shape as detailed-in [1]. The first and second mode

peaks are easily identified in figure #10. Figures #11 and
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#12 show the estimated natural frequency and damping ratio
obtained by MLM and MEM for the first mode as a function of
lags. The NAH’s autocorrelation function is used in theée
two figures. The half-power bandwidth 1is wused 1in
approximating the damping ratio, see [3]. The figure shows
that the damping ratio estimated by MLM looks higher than
that from MEM, and the estimated natural frequency by MLM
has less variation than that by MEM. Figure #13 shows the
estimated cross spectra between NAH and the other records
estimated by (EQ 12) wusing 40 1lags of the correlation
functions. Only the natural log (ln) of the magnitudes of
the cross spectra are shown in this figure. The estimated
first and second mode shapes, obtained by using the ratios
of these <cross spectra at the frequencies 0.32 Hz and 1.2
Hz, are plotted in figure #14. For comparison purposes,
results using MEM at 80 lags as given on page 151 in [1l] are

also plotted in this figure.
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Section #3: Wavenumber Spectrum Estimation

Using (EQ 12) to estimate the oné-channel
multidimensional case has been discussed in [10]. We will
show several examples using the sinusoidal indicator, which
is detailed at the end of chapter 2. Three simulatéd.
examples using this indicator are plotted in figures #15 to
#17. Only the positive wavenumbers are plotted. Figure #15
shows the &estimated spectrum for the 2-D correlation
function, {r(n,m) | =§(n)§(m) +2.0co0s(0.2tn+0.27m)

+2.0cos(0.4Mn+0.64Mm); -2<n,m<2} This r(n,m) has a 5x5

coarray, or =2{n,m<2, and a 3x3 filter support (see fig.4
page 172 in [10] for explanation and comparison). Figure
#16 | shows the estimated spectrum for the correlation
function, {r(n,n)= -+ 0.258(n) §(m) +cos(0.4Ttn+0.4Tm)

+cos(0.6wn+0.6wm) ;-3<n,m<3}. This is the same coarray as
that used in figure 2, page 853 [yll. Fiéure #17 shows the
estimated spectrum. for the correlation function, {r(n,m)=
2.0§(n) 5m) +2.0cos(0.6666Tn+0.47m) +cos(0.2ﬂn+0.44mm)
3-2{n,m<2}. This is the same coarray as that used in figure
7 TABLE IV [12]. Figures 4(a) from [10], 2(b) from [11] and
figure 7(c) from [12] are included in figures #18 and #19
for quick comparison. They are obtained by the modified MLM
[10], 1IMLM [11], and MEM [12]. Figures #15 to 17 show that
the sinusoidal indicator can easily distinguish the 2-D

sinusoidal signals as good as the modified MLM, IMLM, and

MEM.
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Figure #15: spectral estimates for the case of two
sinusoids in noise The spatial correlaton function
is {r(n,m)= 4(n) §(m)+ 2c0s(0.2Mn+0.2Rm) + cos(0.4qn

+0.641m) ;-2<n,m€2 or 5x5 coarray}. The symbol "+"

represents the locations of true sinuscidal signals.
The contour levels shown are in units of dB relative
to the largest peak value.
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Figure #16: spectral estimates for the case of two
sinusoids in noise The spatial correlaton function

is {r(n,m)=0.25%(n) (m +cos(0.4n+0.41m)+ cos(0.6mnn
+Oogum)§-; n,mn<3 or §x; coarray}. The symbol "+"

represents_the—lacations of true sinusoidal signals.
The contour levels shown are in units of dB relative
to the largest peak value.
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Figure #17: spectral estimates for the case of two
sinusoids in noise The spatial correlaton function
is {r(n,m)=25(n) (m)+2¢c0s(0.6666Tn+0.4nm)+cos(0.2rn
+0.44xm) ;-2<n,m<2 or 5x5 coarray}. The symbol "+"

represents the locations of true sinusoidal signals.
- The contour levels shown are in units of dB relative
to the largest peak value.
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data correlation support 5x5

two sinusoidal (3 dB each) at (0.1,0.1) and (0.2,0.32)
contour from 1.5 to 9, contour interval of 1.5 dB

Fig. 2(b) in [11]: IMLM estimate

spectral estimate for the case of two sinusoids in noise
The contours are 2 dB apart.

Figure #18: spectra from [10] and [11]
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Fig. 7(c) in [12]: MEM estimate

Figure'#IQ: spectrum from [12]
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CHAPTER 4

CONCLUSION

In this work we apply two cross—entropy-like principles
to estimate the power spectrum through designing a set of
filters and knowing the finite sampled correlation function.
Some of the present results are close to ' the ﬁLM and

classical windowing methods but give new interpretations to

them. We also include two applications in chapter 3 with
the emphasis on the cross spectral estimator. Several
additional important features peculiar to the present

approach are summarzed here.

First, the sensitivity of the estimated spectrum can be
obtained roughly by differentiating the variances in (EQ

9,11) with respect to Rx. They are:

-1
3[Ry Jii -1 -1 -1 -1
MCE: —————— =~{ Rx ti’ i Rx }’
a8 Rx

which depends on Rx, and
d(Rylii

KDF : =——————— = tr(ti’ ti)
ARx

which does not depend on Rx.

Unless we use a data adaptive filter, the sensitivity of the
estimator which the KDF method gives usually has no response
to the data Rx. Therefore, the KDF is usefull when one has

no knowledge about Rx.
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Second, note that using the data adaptive MLM filter
(equation (12) from [9]) in (EQ 11) makes the equation
identical to MLM. When p=1, (EQ 9) by MCE is identical to

(EQ 11) by KDF.

Third, we have shown some empirical results wusing the
estimator (EQ 12) and the indicator which always give
convenient estimated spectra. More work is necessary for
finding other good estimators which can be reached by this

approach.

Fourth, in section 2.2, note that we build a matrix T
which has  NxN variables for a single channel, one
dimensional signal, {x(n),n=1,N}. This contrasts with the
usual situation, where we build a discrete finite length
filter with N variables which processes x(n). We attempted
to take advantage of these NxN-N extra variables to obtain
an accurate estimated spectrum, but the results always come
out to be identical to MLM. The following example is one of
those that have been tried. Let x'=[x(1),x(2),...,x(N)].
We want to find a T which has a minimum tr(TRT’) subject to
the constraint e’T’'Te=l, where e is identical to that wused
in the special case #2 of Chapter 2, R=E{xx’}, and the rows
.0f T are N filterse The constraint means that the sum of
the energies from the output of these N filters is unbiased

(although not phase unbiased) for a sinusoidal signal with

frequency w. We hope that minimizing tr(TRT’) will reduce
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the influence from other frequency bands. The solution 1is
still MLM. Note that T'T is a non-negative definite matrix

and tr(TRT )=tr(RT'T).

Fifth, the general theory (EQ 1l to 4) can be wused 1in

other subjects [1l4].
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APPENDIX

A Technical Approach for Improving The Resolution Ability

In this appendix we will derive a family of spectral
estimators which are obtained by weighting the magnitude of
the spectrum. The MEM and square window method are included

in this technical approach. The criterion is maximizing

/B
H= \ F[S(f)]df, where the weight on the magnitude of S(f)
/=B
/B j2pifmT
is F[S]=10og5 and the constraints are R(m)= \ S(f)e df
/=B

s Im|<M. This suggests examining the possible functions F.
The following simple example is a test of this idea. =x(t)
is assumed to be zero mean, stationary and band limited

random process. H is defined to be an integral function.

/B
H= \ F[S(f)]df
/-B
f: frequency
B: frequency band of x(t)

F: arbitrary function of S

S: spectrum of x(t)
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R(t)=E[x(y)x(y+t)]
R(t): autocorrelation function of =x(t)

R(t ) known for -M £ m £M; m: integer
m

(R(t ) 1is sampled at time t )
m m

The sampling time interval T is small enough
for 1/2T = B, B: bandwidth.

t = t T

We estimate S(f) by giving R(m)=R(t ) for -M < m <M.

m
The true spectrum S{(f) should be
inf -j2pifmT
S(f)= > R(m) e T .

m==inf
Since M is finite, we need a cretérion for choosing
the R(m) for |mj > M .
Such a creterion is H. This means that the H function is
maximized or minimized by choosing R(m) for |m| > M.
Thus for |m| > M,

oH

= 0 .
8R(m)

It remains to choose a proper function F.

: n
For simplicity assume F(S)= S . Then

/B n
H= \ S(f) df, and so
/-B

62
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2H 3 /B inf -j2pifm’T n
= \df { > R(m’) e T }
R (m) 2R{(m) /-B m’=-inf
/B inf -j2pifm’T n=-1 =~-j2pifmT
=\ df n{>R(mn") e T } e T
/=B m’==inf
9H
Since = 0 for Im}| > M, we have
SR(m)
/B ' -j2pifmT n-1
\ df { So(f) } e T = 0 j;where So(f)=nS (f)
/-B

This implies that So(f) is expressible in the form of

a truncated Fourier series as follows:

-i2pim  £T
So(f)= (m”) e

m’

vz

c
-M

%*

where C(m)=C (-m) in order to Iinsure that So(f) is a

real quantity.

The next step in the derivation is to determine values
for the set of coefficients { C(m’) } such that the
spectral density estimator S{(f) is consistent with the

known values of the autocorrelation function, that is,

/B v i2pimfT
R{m)= \ df S(f) e for Imj < M
/-B
1
/ So n-1 j2pimfT
=\ { — 1} e df
/ n

63
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=> R(m)=
When n=2
R(m)=

This means

Page 64

1
-j2pifm’T n-1

/ j2pifmT 1 M
=\ e £ > C(m’) e o df

/ n m'=-M
pifT

. Then
1

B / m-1 M -n’ 1 n-1
— @ 2 { > c(m’) = -} dz ; Iml M
jpi / m’ =-M n

B / m-l M -m”’
— @ 2z { >2C(mn") z } (0.5)dz ;3 Imi <M
jpi / m’=-M

005B /B y_ —m’+m‘1

— @ { > C(m") =z } dz

jpi /=B m’=-M

B C(m) ; Beause only 1 simple pole appears.

that the spectral estimator by the square

/B 2
window method is an optimal solution for H= \ § df .
/-B
*
Since C(-n)=C (n), So(f) may be expressed as
M -=m * 1
2 C(m) z = G(z) G ( —— ) , where
m=-M *
z
M -n
G(z)= 2> g =
n=0

G(z) is chosen to be minimum phase, and
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* 1 M * n
G(— )= > g z
% n=0 n
z
* 1
G ( — ) is choosen to be maximum phase.
*
z
Substitute this in R(m).
1
B / 1 * 1 n-1 m-1
R(m)= — @ { - G(z) 6 ( — ) } z dz ; |m|<M
jei / n *
z

The above M+l nonlinear equations can be used to solve

the {g , n=0 to M } M+l unknowns by numerical methods.
n

When F[ S(f) ] = 1ogS(f), the solution is that of MEM.
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Abgtract

A method is proposed for the prediction of
the flow induced vibration response of flexible
cylinders such as cables, pipes, and rigers, in a
sheared flow. The significance of material and
hydrodynamic sources of damping is discussed. The
reduced damping or response parameter plays a key
role in response prediction. However, the
dependence of the response parameter and therefore
the response amplitude on the ratio of cylinder
mess per unit length to the displaced fluid mass
per unit length is shown to be widely
nisunderstood. Under lockin conditions, damping is
important in determining response amplitude, but
cylinder mass per unit length is not.

Introduction

Flexible cylinders, such as cables, drill
pipe, and marine risers, often exhibit an harmonic
flow induced vibration response known as lockin.
Under uniform flow conditions, lockin has been
extensively studied and empirical response
prediction techniques are often adequate.

However, real ocean applications often require
response prediction under non-uniform (sheared)
flow conditions. Very long cylinders with closely
spaced natural frequencies rarely exhibit lockin
behavior and frequently behave as infinite strings
(1). For shorter cylinders, with well separated
natural frequencies, lockin with one mode is
possible, even in the presence of shear. Howsver,
in such cases, response amplitude is very
difficult to predict and it is often difficult to
determine which mode, if any, will dominate the
response. In this paper, & method for predicting
lockin in a sheared flow is proposed. The method
makes extensive use of the concept of the response
perameter or reduced damping, as it is sometimes
called.

A very common misconception regarding the
response parameter is pointed out. The response
parameter is shown to be primarily a function of
damping and is specifically not a function of the
cylinder mass per unit length.

References and figures at end of paper.

Normal Mode Model of Lockin Vibrations

A pipe or cable under tension has, from an
aenalytical view, an infinity of natural modes.
When the cylinder is deployed with its
longitudinal exis normal to an incident uniform
flow; vibration is caused by the shedding of
vortices in the wake of the cylinder. The vortex
shedding process generates both fluctuating 1ift
and drag forces on the cylinder. Under the
correct circumstances, described extensively in
the literature, (2,3) a phenomena known as lockin
may occur. Lockin is characterized by the
synchronization of the wake with either the
cross-flow (1ift direction) oscillations or with
the in-line (drag direction) vibrations. This
paper focuses on cross-flow lockin only, in which
one cross flow mode dominates the response. At
lockin in a uniform flow the lift forces are
coherent over the entire length of the cylinder.
A normal mode solution to the partial differentisl
equation of motion mey be obtained, and is briefly
reviewed below.

Consider a beam or string under tension with
fixed ends as defined in Figure 1. Let the
vortex-induced cross-flow displacement be given by

yix,t) =} q,; (0¥, (x) (1)
i

where the v,(x) are the mode shapes and the g, (t)
are the modgl amplitudes. Using the method o}
normal mode superposition, and assuming
insignificant damping related intermodal coupling,
a set of independent equations of motion are
obtained, one for esach mode. These equations are
of the forms

Miqi + Riqi + Kiqi = Ni(t) (2)

This equation is simply that of a linear, single
degree of freedom mass-spring-dashpot system

" excited by a force Ni(t)’ known as the modal

exciting force for mode i. There exists one such

405




oTC 5006

J.K. Vandiver 3

For cylinders that do not have a constant mass
per unit length, the m in these equations is
replaced with an equivalent uniform mass per unit
length m . m is the equivalent constant mass per
unit length which would yield the same modal mass
from Equation 4 as the actual variable mass per

unit length m(x). Therefore
L 2
S m{x)V¥, " (x)dx
0 1
n = (20)
e L 5
S Wi (x) dx
0

For the remainder of this paper, a constant mass
per unit length m shall be assumed, to simplify
the analysis.

D is the cylinder diameter, assumed constant,
and St is the Strouhal number given by

st
- 21
s - (21)

t

where f is the vortex shedding frequency and U is
the fresé stream fluid velocity. At lockin the
natural frequency and the vortex shedding
frequency are assumed to be equal.

21f = w = (22)
S 8

i
Over many yeers the variety of these evolved forms
has led to confusion and misinterpretation of the
significance of the various terms which form the
response parameter SG'

= 2nstU/D

The most serious misinterpretation is the
implication that lockin response amplitude depends
on the mass ratio, M. It has been generally
believed that very dense cylinders respond with
lower amplitudes than low density ones. This is
not true. It is in fact dependent on fluid
exciting forces and structural damping (not
damping ratio). The mass per unit length of the
cylinder is only important in determining the
natural frequency. The validity of these
statements can be demonstrated by simply drawing
upon definitions, as shown below.

From Equations 18 and 6
4nmeCs

k = =
2
=3 oD

4t R,
el (23)

2
oD ZmlMi

Using the definitions of modal mass, and
effective mass per unit length from Equations 4
and 20 yields,
2TR,

= (24)

L
pDzw. fW.z(x)dx
101

k =
s

For the case of constant damping constant per unit
length, r(x)=r
k = 5 ' (25)
8 oD mi

If k_ is not a function of m(x) then from Equation
15 neither is SG'

= 2 5
SG = ZTTSt kS (15)
41r25t2Ri
SG = 3 3 ) (26)
pb"w, J Y. (x)dx
1 1
¢}
Ri is the equivalent, linear, structural modal
damping. The actual source of damping may not in

fact be linear., For most interesting vibration
cases the damping is low and for any specific
steady state response amplitude an equivalent
linear damping is an acceptable approximation.

There is experimental confirmation that S
and hence the predicted response do not depend
specifically on the mass ratio but on the ratio
t,/u. As shown, this is because in taking this
ratio the dependence on mass per unit length
cancels out. Griffin in reference (7) presents a
plot of response amplitude, 2Y/D, versus reduced
velocity Vr=U/an where £ is the natural
frequency. This figure i8 reproduced in figure 4.

Two different cases are shown, one in air and
one in water. For both the ratio ¢ _/u is
approximately constant. However, the damping
ratios and therefore the mass ratios are different
by an order of megnitude. Bothelo has also
obserze? this apparent lack of specific dependence
on u (8).

Both Griffin and Botelho have pointed out
another interesting fact, which can be seen in
Figure 4. The in . water case has a larger damping
ratio, by a factor of 10, and therefore it has a
much broader bandwidth, than the in air case with
lower damping. The halfpower bandwidth for a
linear oscillator is equal to 2z,w,., Thus one
would expect to see a wider region of large
amplitude response in a figure such as 4, for
those cylinders with larger damping ratios. This
author is of the opinion that the consequence of a
higher damping ratio is to make lockin vibration
of the cylinder less sensitive to locel variations
in flow velocity (hence reduced velocity) and
therefore more tolerant of shear. In other words,
two geometrically similar cables with the same
reduced damping but different damping ratios will
respond differently to a shear. The one with the
higher damping ratio will likely experience lockin
over a greater portion of its length.

For most engineers S, has little physical
meaning. In the next sec%ion, an attempt is made
to clarify it.

An Interpretation of S., The Response Parameter

No one denies its importance but a common
sense interpretation is needed for S,. To develop
one requires a statement of the equation of motion
for the normal mode excited at resonance during
lockin. At lockin the 1lift force per unit length
in phase with the cross-flow velocity of the
cylinder can be expressed as

£(x,t) = 1/2 oUzDCL(x)eiwit 27
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where ? Wé (x) dx i. The modal response amplitude for each must be
o 1 the same and therefore from Equation 14
Ii =1 (39)
& wf (x)dx N, N, :
ie - 1S ( 42)
For example, a string or a beam with pinned ends . W.R.
and constant tension have mode shapes which are 1 1e 11s
given by
. imTx
¥ (x) = sin (/=) (40) where the subscripts e and s refer to the
+ equivalent and sheared cases respectively.
and Ii = 3/4 (41)
ii. The exciting force over the region x. to x5
Other values for Ii corresponding to different must be the same for both cases. Outside Gf
mode shapes are giVen in Reference 4,as is a table this region the forces contributing to lockin
identifying the source of the data used in Figure are assumed to be zero for the sheared case,
. and appropriate to that of a fully locked in
cylinder in the equivalent case. The
The factor I 1/2/w. was used in an attempt equivalent cylinder experiences lockin over
to reduce the scafter i%i plotting response data - its entire length and therefore additional
for many different types of structures versus SG' power is fed into the resonant mode ocutside
That this was the appropriate factor to use to of. the region x, to x,. In order for the
accomodate various mode shapes was based on the response amplitude to“stay constant the modal
assumption that the wake oscillator model damping in the equivalent cylinder must be
correctly predicts response. Implicit in the wake increased, so as to dissipate the greater
oscillator model are particular assumptions injected power.
regarding the spatial variation of C.(x). This
author is of the opinion that such models are only Solving for the equivalent damping
approximations and that much of the scatter in the
data is due to the fact that the correction factor Nie
has substantial error for some types of mode Rie = Rio 7 (43)
shapes. is
It should also be noted that only very little The equivalent response parameter is obtained
of the data shown in Figure 2 is derived from directly from Equation 26.
cebles and beams under tension such as risers and
casing strings, which have essentially sinusoidal 2 2
mode shapes. In the last few years a large amount 4 S. R
of experimental date have been mccumulated on such Sgg = T (44)
cylinders, and should be compiled in a seperate 2
pD w, [ Y. (x)dx
plot of 2ym /D v?ygus SG without correction o *
factors such as I/</y, 9 |
imax
A Proposed Fquivslent Response Parameter for SWZStheQie
Sheared Flow: S.. = (45)
TS pD
Under sheared flow conditions lockin may
occur over a limited portion of the cylinder where
defined by the range X, to X,. For sections of R
the cylinder outside of this“range lockin does not Lie T oM. (48)
occur and energy is lost due to hydrodynamic ii

damping. In the analysis to follow it is assumed
that only one mode hes significant response, and
even though exciting forces do exist outside of
the lockin region they are not at the natural
frequency and cause insignificant response. The
method proposed is intended to be used to evaluate
several possible vibration modes, one at a time,
to determine which if any is likely to dominate
the response.

A substantial database exists, which
tabulates observed response versus the response
perameter, SG’ but for uniform flows only. The
approach proposed here takes advantage of this
existing database by providing an estimate of the
response parameter of an equivalent cylinder in a
uniform flow, which would behave the seme as the
cylinder in the sheared flow. In order to be
equivalent, both the cylinder in the sheared flow
and the equivalent cylinder in the uniform flow
must have the following characteristics.

and m_ is defined in Equation 20. It remains to
obtain a detailed expression of R, in terms of
, and Nie/Nis' From Equation 28§ and item (ii)

R
a%gve,~

L
é CL(x)Wi(x)dx P, o
= = 2 4

Nie/Nis X2 Ps

J CL(x)Wi(x)dx

Xl

and from Equation 5
; 2 48

Ris = é (rs(x) + rh(x))‘l’i (x) dx (48)
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THE RELATIONSHIP BETWEEN IN-LIN': AND CROSS-FLOW, VORTEX-INDUCED,
VIBRATION OF CYLINDERS

J. Kim Vandiver
Massachusetts Institute of Technology

Jen-Yi Jong; Wyle Laboratories

ABSTRACT

Cable strumming experiments were conducted at
Cestine, Maine in 1981 and from an icebreaker in 1983.
The purpose was to study the vibration characterlstics
of long flexible cylinders subjected to vortex-induced
oscillation. Particular emphasis was placed on the
investigation of the relationship between in-line and
cross-flow vibration. Under non-lockin, random
vibration conditions, linear spectral analysis
indicated that in-line and cross-flow response were
1linearly independent of one another, while the results
of modal snalysis showed that the moving average
vibration energies in these two directions were
strongly related. A higher order spectral analysis
was performed to demonstrate a non-linear correlation
between in-line and cross~flow vibration of flexible
cylinders excited by vortex shedding in both uniform
flow and sheared flow conditioms.

The results of bispectral analysis demonsirated
the existence of a quadratic relationship between
in-line and cross-flow motion under both lockin and
non-lockin conditions. The well-known frequency
doubling phenomena in in-line response was proven to
be the result of such a quadratic correlation.

INTRODUCTION

Many types of ocean-based structures such as
marine risers, TLP tension members, deep water
pipelines and hydrophone cables are susceptible to
vortex-induced vibration. These strumming
oscillatione are of great practical importance because
they may cause failure by fatigue.

The resolution of problems associated with
prediction of vortex-induced vibration has proven to
be extremely difficult due to the complex, non-linear
interactions, between the structural motions and the
vortex-shedding. The well-kmown wake capture

- phenomenon is a typical example of such non-linear

interactions. A sampling of papers on this topic can

~be found in references 1 through 4.

The emphasis in the literature has been placed
mostly on the study of vibration characteristics in
the cross-flow direction. The behavior in the in-line

direction is much less well-understood. No attempt
has been made previously to investigate the
relationship between cross-flow and in-line response,
or equivalently, between 1lift and drag forces under
non-lockin conditions. Even the enswer to the
preliminary question of whether they are correlated or
independent is not avallable for non-lockin
conditions. In the design of, for example, a marine
riser, the correlation between the response in these
two perpendicular directions plays an important role
in fatigue life estimation, because of its relation to
the stress statistics of the structure.

One of the purposes of the experiments described
in this paper was to study the relationship between
in-lire and cross-flow response of long flexible
cylinders under realistic field conditions. These
tests were more realistic than laboratory ones,
because it was possible to use cylinders of sufficient
length so that many different natural modes could be
excited, simultaneously, in both directions. The
experiments at Castine were performed on flexible
eylinders, 75 feet long, which were exposed to a
uniform currents. Measurements taken included
current, drag, tension and biaxial scceleration at
seven locations unequally spaced along the test
cylinder. Linear spectral analysis of lockin and
non-lockin response datas revealed little coherence
between in-line end cross-flow vibration.

A frequency doubling relationship between
cross-flow and in-line response has long been observed
for lockin conditions and has been evident in an
approximate sense in the broadband spectral
characteristics typical of multi-moded non-lockin
conditions. Quadratic operations are known to have
frequency doubling characteristics.

Furthermore, by a least squares error
minimization method, it was possible to evaluate the
individual modal contributions for in-line and
cross-flow motions under lockin and non-lockin
conditions, thus enabling the computation of vibration
energy. The results of modal analysis showed that
there existed a strong correlation between the drag
coefficient and the total vibration energy as well as
a correlation between the in-line and cross-flow
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vibretion energy. The evidence suggested that e
spectral analysis technique capable of detecting
quadractic system behavior was required. Bi-spectral
analysis is specifically sensitive to quadratic
relationships. The cross-bicoherence spectrum
ultimately provided definitive evidence of a qusdratic
correlation between cross-flow and in-line response
under both lockin and non-lockin condltions.
These conclusions were tested using data gathered
on very long cables deployed 1n sheared currenis under
“the ice in the Arctic in 1983 with similar
conclusions.

THE EXPERIMENTS

Castine-1981

The site chosen for the experiment was a sandbar
located at the mouth of Holbrook Cove near Castine,
Maine. At low tide, the sandbar was exposed allowing
easy access to the test equipment while at high tide
it was covered by about 10 feet of water. The test
section was oriented normel to the direction of the
current which varied from O to 2.4 ft/sec over the
tidal cycle with only small spatial differences over
the section length at any given moment. The data
teking station for the experiment was the R/V
Edgerton, moored approximately 300 feet from the
sandbar and chartered from the MIT Sea Grant Program.
Figure 1 shows a schematic diagram of the test
section.

A 75 foot long instrumented ceble was developed
specifically for this experiment. The outer sheath
for the cable was a single piece of clear flexible PVC
tubing, which was 1-1/4 inches in outer diameter by
1.0 inch in inside diameter. Three 1/8 inch diameter
stainless steel cables ran through the tubing and
served as tension carrying members. Seven biaxial
pairs of accelerometers were placed along the cable at
positions L/8, L/6, L/4, 2L/5, 5L/8, and 3L/, where L
is the length of the cable. The accelerometers vere
Sundstrand Mini-Pal Model 2180 Servo Accelerometers,
vhich are sensitive to the direction of gravity. The
biaxial peiring of these accelerometers made it
possible to determine their orientation and hence
extract real vertical (cross-flow) and horizontal
(in-1line) accelerations of the cable at the seven
locations. For some tests the composite cable was
placed inside s 1.631 inch O.D. by 1.493 inch I.D.
steel tube, referred to as the pipe.

A load cell mounted at one end of the test
cylinder measured the horizontal shear force on one
end of the test cylinder. The cylinder and ite twe
end supports were symmetric, and therefore the
measured force was one half the total drag force on
the cylinder. Mean drag force was measured. The load
cell was a Sensotec Model 43, packaged for underwater
use., The current was measured by a Neil Brown
Instrument Systems DRCM-2 Acoustic Current Meter
located 12.5 feet from the west end of the test
cylinder and 2 feet upstream. It was set so that it
determined the current at the level of the test
cylinders. The current was found to be spatially
miform to within 3.0% from end to end for all
current speeds above 0.5 feet per second. Additional
details can be found in references 5, 6 and 7.

- The Arctic-1983
During en Arctic cruise in the summer of 1983 on
the Research Vessel Polarstern, cable strumming
" experiments were conducted in sheared currents near
the ice edge in the Frahm Strait close to the eastern
coast of Greenland. The cables, up to 2000 feet long,

were suspended vertically under the ice and provided
data with hundreds of modes responding simultaneously.
Current profiles were recorded using the same acoustic
current meter and acceleration was messured using
blaxial pairs of piezoelectric accelerometers. For
complete details see references 8 and 9.

PRELIMINARY ANALYSIS OF EXPERIMENTAL DATA

Castine Data

The orientation of the biaxial accelerometers was
initially unknown. The accelerometers used were
sensitive to gravity and gave a DC offset to the
recorded signal in proportion to the vector component
of gravity. From the DC offset the accelerometer
orientation angle was obtained. After this angle was
found, the in-line and cross-flow accelerations were
obtained by performing a vector rotation,

Once the in-line and cross-flow accelerations
were found, it was necessary to undertake a complex
process to determine the displacement time histories
by double integration. In the frequency domain, the
transfer function of an integrator possesses a
singularity at zero frequency. Therefore, low
frequency noise components near this singularity blow
up and smear the output signal from the integrator.
To avoid this an effective filtering and integration
procedure was developed. The details may be found in
the thesis by Jomg [10].

A broad view of the data may be obtained by
examining compressed 2-1/2 hour records of drag
coefficient, current speed, and RMS displacement
response as shown in Figure 2. Data was collected om
the rising tide. This example represents one complete
experimental run.

The data shown were calculated by a moving
averasge whose window was 8.53 seconds in length, which
is long enough to average over many cycles of
vibration but short enough to show subtle variations
in behavior. The displacement data are taken from
location L/6. Over the 2-1/2 hour span of time shown
in the figure, some periods correspond to lockin
response, and others toc non~lockin. As current speed
falls within a lockin range, & substantial increase of
cross-flow and/or in-line EMS displacement is
apparent. A corresponding elevated plateau in the
drag coefficient is also observed. These are raw RMS
displacements at the location specified and have not
been corrected for mode shape. Due to the fact that
these raw data are highly positional and mode shape
dependent, the in-line and cross-flow RMS
displacements in the figure do not give a good
indication of any relationship existing between the
two. A modal amslysis is required to represent the
behavior of the entire cylinder and to understand the
relationship between in-line and cross-flow motiom.
It is instructive to begin with sample time histories
typical of lockin and non-lockin behavior.

Lockin

Lockin occurs when the vortex shedding frequency
falls within a few percent of & natural frequency of
the cylinder. The vortex shedding process is
synchronized with the cylinder's motion, and a stable,
periodic, transverse displacement of nearly constant
amplitude is observed. Figure 3 shows an example of a
cross-flow displacement time history of the pipe at
L/4 during lockin with the third mode. Figure 4 is
the corresponding acceleration power spectrum,
presented on a logarithmic scale. The dominant
response peak is at 2.4 Hz. All spectra shown in this
paper were computed using a 100 pole meximum entropy




spectral estimator [11]. The input was an
autocorrelation function 34 seconds in maximum lag,
computed from 136 seconds of data. The sampling rate
was 30 Hz.

In the in-line direction, the motion is quite
different. A periodic displscement of non-constant
amplitude is apparent in Figure 5. Figure 6 presents
the corresponding acceleration power spectrum. One
important observation in this result is that the
dominant frequency in the in-line direction is 4.8 Hz,
exactly double that in the cross-flow direction. This
frequency doubling phenomenon was always observed
under lockin conditions.

By double integration of both measured in-line
and cross-flow acceleration time histories, it is
possible to plot the trajectory of the motion of &
point on the cylinder. Figure 7 shows the motion at
L/, projected onto a plane which is normal to the
cylinder axis (orbital diagram). This point on the
pipe prescribed figure eight motions. In this case
the cross-flow motion was locked-in with the third
mode at 2.4 Hz. The in-line motion was primarily at
twice the frequency of the cross-flow motion and was
dominated by response in the fifth mode. The fifth
mode natural frequency for this cylinder is twice that
of the third mode. Though at different frequencies
the two motions must be highly correlated.

At this point in the analysis, one does not
generally know for certain which natural modes of
vibration are responding. It will in fact be shown
that the in-line response though sharply peaked near
one frequency does not always correspond to a resonant
natural frequency, as it does in this case. Under
lockin conditions it is always at twice the cross-flow
lockin frequency.

Non-lockin

When the vortex shedding frequency is outside of
the lockin range, non-lockin vibration results. The
responge is characterized by random fluctuations of
amplitude and frequency in both in-line and cross-flow
directions. The 1lift force correlation length along
the cylinder becomes much shorter than that at lockin.
Figures 8 and 9 show typical acceleration power
spectra in the cross-flow and in-line directions.
Wide band lift and drag forces are implied. Figure 10
shows the corresponding orbital diagram; the random
walk character of the figure gives no evidence of
correlation. An important observation to be made is
that spectral peaks in the in-line response occur at
frequencies which are equal to the sums of various
combinations of two spectral pesk frequencies in the
cross-flow direction. For example, peek E at 3.70 Hz
is the sum of 1.70 and 2.00 Bz from pesks A and B.
The frequency doubling and summing phenomena seen in
the lockin and non-lockin date suggest non-linear
quedratic correlation. Furthermore, linear coherence
between displacements in the two directions 1s very
low [10, 12]. In line response peaks for both lockin
and non-lockin cases frequently do not correspond to
natural frequencies. The subject of which modes
account for this response is an interesting one and
will be discussed in the next section.

MODAL ANALISIS

In this section, a least squares error
minimization method is used to estimate the modal

- 'displacements of all the participating modes.

Vibration energies in both directions are then

_calculated from the modal displacements and the known

mode shapes. By this method of modal analysis, the

response of the cylinder can be expressed in terms of
a superposition of mode shapes Yi(x) multiplied by the
modal displacements Pi(t) [10, 13]:

ylx,t) = 1 PL(t)Ti(x) (1)
i

In this experiment, the response was measured at seven
unequally spaced positions. A least squares method
was used to estimate the modal displacement time
histories in terms of the measured responses at these
seven positions. For each test case the response was
dominated by a finite number of modes, usually two to
six in number. A first guess at the responding modes
was obtained by inspection of the response spectrum at
any one location. By summing the normal mode
responses over the apparent participating modes, the
following equations are obtained, where the range M to
¥ covers all of the participating modes. For taut,
constant tension, pin-supported, uniform cylinders,
the i-th mode shape is given by e sinusoidal curve as:

Yi(x) = sin(ill x/L) (2)

At time t=to, the response of positlon x=xj can be
expressed ass:

N
y(xj,to) = i'zM Pi(to)Y¥i(xj) + E(xj) (3)
Where E(Xj) is the error term.
Rewriting (3) irn matrix form,
(y) = [11 (P) + (E) (4)

where
yj is an element in the vector of the measured
response &t to.
Yij is an element in the mode shape matrix.
Pi 1is an element in the vector of the natural
coordinates at to.
Ej is the error vector.

i=M,N j=1,7
The sum of error squares ee is given by
®TE) = ((5) - (MENT () - (1] @)
Oy - 207 @) + @Ttme) ()
The vector of natursl coordinates Pi is to be

determined such that the error squared term is
ninimized.

ee

minlee) = min [(E)(E)] (6)
Let
d (ee) =0 (7)
ap1
and solve for P(t).
® = (o) (8)
or
(» =I[T] () (9)




where [T] is the transfer matrix:
1] = o TEn~tm (10)

Equation (9) decomposes the measured response at
the seven positions into the natural coordinates,
provided the mode shepes are known and the guess of
the responding modes is initislly correct. Figure 11
shows an example nf *he in-line pipe displacement at
position L/8. In th: displacement spectrum, there are
several peaks, each likely corresponding to one
particular mode to Le identified. Using the method
discussed above, the natural coordinate time histories
were obtained for the 4th, 5th, 6th, and 7th modes.
These modal displacement time histories are shown in
Figure 12. Fach time history represents an antinode
displacement for that mode expressed in inches. A
scale of -1 to +1 inch is shown on the figure. All
modal time histories are to be considered to have a
zero mean., Their sum correctly weighted by the value
of the respective mode shapes at any particular
location would equal the displacement at that point.

At constant current speed, when the cylinder is
at non-lockin, the participation of different
contributing modes varies with time as illustrated in
Figure 12. It is enlightening to study this feature
of non-lockin response on a longer time scale. A
448-second record of mon-lockin pipe response was
analyzed and the contributing modal displacements were
evaluated. Moving average RMS modal displacement
responses in both directions were calculated. These
are plotted in inches in Figures 13 and 14. The RMS
value of the individual modal antinode responses are
shown. Notice that as the response of one mode
recedes, another appears to take its place.

The emplitude scales on Figures 13 and 14 are to
be interpreted as follows. Each modal RMS amplitude
is plotted above a horizontal line representing zero
deflection for that mode. If the scale given on the
left edge of the figure and spanning O to 2.0 inches
is moved upwards untll zero corresponds to the zero
line for the mode of intérest then the response can be
read off directly. For example, the meximum RMS
response for mode two is approximately 0.72 inches.

. The same graphical scaling method is used in
Figure 15 except that the units of energy are
foot-pounds and of current speed are feet per second.
Drag coefficient is dimensionless.

Moving average vibration energies were calculated
from these natural coordinates and mode shapes in both
in-line and cross-flow directions as shown in Figure
15. The vibration energy is given by

B(t) = L/4 ¢ [ETIePi?(t)}{in /L)“ + TePi?(1 /L)?
i
+ moPLi(t)] (11)

Obvious correlations exist between in-line and
cross-flow vibration energy d between vibration
energy and drag coefficientacan be seen in Figure 15.
The high plateaus in drag coefficient and response
energy correspond to perlods when one mode was able to
dominate the response and lockin or partial lockin
over a portion of the cylinder existed. This figure
represents flow conditions at the boundary between
lockin and non-lockin behavior. A scatter diagram of
the in-line vibration energy versus drag coefficient

";.is plotted in Figure 16. The temporal history is

retained by connecting successive points as indicated
by the arrows. A very clear memory phenomena is

“revealed. Drag coefficients are higher going into
lockin than coming out.

As mentioned before, the in-line response
frequencies are equal to the sums of pairs of
cross-flow response frequencies. It is usually not
obvicus which in-line modes respond. Modal
identification methods were used to provide the
answer, with some very surprising results. One
interesting case is described below.

For a taut cable, all of the natural frequencies
are integer multiples of the lowest. Therefore, under
lockin conditions, it is reasonable to expect that the
fluctuating drag forces will excite an in-line mode
whose natural frequency is twice that of the mode
vhich is responsible for the cross-flow lockin. This
i1s not always the case, as will be shown. In the
example, a modal analysis of data taken with the bare
cable revealed that the cross-flow vibration was
second-mode lockin. It was expected that the unsteady
drag forces would excite the fourth in-line mode,
because its matural frequency was the same as the drag
force fluctuations. However, modal analysis revealed
that in-line motion was third mode, instead of the
fourth mode as had been expected. The frequency of
this third motion was not the natural freguency of the
third mode but was in fact equal to the natural
frequency of the fourth mode. The response was not
resonant with the fourth mode, but was inertia
controlled response of the third mode.

Though not initially obvious, the explanation is
quite simple and applies to all taut cables and pipes
with sinusoidal mode shapes. Under lockin conditions
the shedding of vortices over the entire cylinder is
essentially simultaneous, independent of the
cross-flow mode shape. Regardless of the symmetry of
the cross-flow mode shape with respect to the center
of the cylinder the in-line drag force fluctuations
are symmetrically distributed. Therefore, the in-line
mnodal force for all even numbered modes is zero. In
this example, although the drag forece fluctuations
were at the natural frequency of the fourth in-line
mode, (an anti-symmetric mode) the dominant modal
force corresponded to the third mode, (a symmetric
?od?) resulting in non~resonant third mode motion

10].

Similar peculiar results of non-resonant, in-line
motion also happened under non-lockin conditions and
can be explained with an understanding of the
quadratic relationship between in-line and cross-flow
response.

BISPECTRAL ANALYSIS OF QUADRATIC CORRELATION

From the results of modal anelysis there was
substantial evidence of a quedratic relationship
between in-line and cross-flow response. Higher order
spectral analysis was required to study the
correlation between time histories resulting from a
nonlinear process. The bispectrum was used here to
investigate the quadratic coupling between response in
the cross-flow and in-line directions [10]. General
references on nonlinear spectral analysis are 14, 15,
16, and 17.

For a statiopary random time series x(t) the
auto-bispectrum, B(Wj,Wk), of x(t) is defined as:

Bxxx(Wj,Wk) = E[XjeXkeX*j+k] (12)

where Wj and Wk are discrete frequencies at which a
Fourier transform has been computed. Xj and Xk are
the Fourier transform coefficients computed from the
time series x(t) at frequencies Wj and Wk and X*j+k is
the complex conjugate of the coeffiecient at Wjtk.




The mathematical definition of the Fourier
transform used iss

T
Ix = /T 5 x(t)exp(irWk-t)dt (13)
[}

E[ ] is the expectation operator and is computed as
an ensemble average. In this paper the bispectrum
calculations were made in the following way. A
stationary time series was sampled at 30 Hz. Fast
Fourier transforms of 100 segments, all 128 samples in
length were computed. Ensemble averages using the 100
realizations were used to compute each bispectrum
point. The frequency resolution is therefore 0.23 Hz
and the maximum frequency in the spectrum is 15 Hz.
The results are more easily understood when plotted
as coherence functioms.

The auto-bicoherence spectrum, & normalized
auto-bispectrum is:
bxxx (Wi ,Wk) = | Bxxex (W3, Wk " (14)
E([53%k | JE( | 3+k]" 1§ 2

By using Schwarz's inequality, it can be shown
that auto-bicoherence spectrum is bounded by O and 1.
If the component at Wj + Wk, is related by nonlinear
quadratic coupling the auto-bicoherence spectrum will
be close to unity. On the other hand, if the
component at Wj + Wk is uncorrelated quadratically to
the components at Wj and Wk, the autobicoherence will
be near zero. For this application the
crogs-bispectrun between two time series x(t) and y(t)
is the most useful. -

Let x(t) and y(t) be two zero mean Jjolntly
stationary time series, the cross-bispectrum between
x(t) and y(t) is:

Bxxy(Wj,Wk) = E[XjoXkeI*j+k] (15

The cross bicocherence spectrum between x(t) and y(t)
ia:

bxxy (Wi, Wk) = | Wi, Wkl ‘ (16)
{EEE|Xj-lk]’]Ef|!*j+k|’3312

The crose bicoherence spectrum alsc ranges from
zero to unity. Bicoherence functions require three
dimensional plots, one axis each for frequencies W]
and Wk and a magnitude axis.

Lockin Example

Figures 4 and 6 show the acceleration spectra for
crose~-flow and in-line motion under lockin conditions.
The principal cross-flow peak occurs at 2.4 Hz and the
principal in-line response peak occurs at 4.8 Hz. The
cross-bicoherence for this case, Figure 17, has its
highest peek at frequencies (£j, fk) = (2.4 Hz, 2.4
Hz). These figures are presented showlng frequencies
on two axes. The height is to be interpreted as
resulting from moving the base of any peak of interest
down to the horizontal axis and then estimating the
peak height on the vertical scale of zero to 1.0,
shown at the left of the figure. The vertical
frequency axis goes from O to 7.5 Hz as shown on the
right of the figure. Therefore, peak X has a height

-..of 1, and corresponds to a sum frequency of 2.4 Hz +

2.4 Hz = 4.8 Hz. This essentially perfect coherence
is the result of =z quadratic relationship between the

~2.4 Hz vibration energy in the cross-flow motion and
the 4.8 Hz motion in-line.

Non-Lockin Example
: Figures 8 and 9 show cross flow and in-line

response spectra at non-lockin. The cross~bicoherence
for this case is given in Figure 18. The peaks
lebelled X, Y and Z demonstrate the quadratic
coherence between peaks E,F and G in the in-line
spectrum and peaks A, B, C and D in the cross flow
spectrum. For example, the peak E at 3.70 Hz in the
in-line spectrum occurs at the sum of frequencies at A
and B (1.70 + 2.00 Hz). The quadratic relationship is
confirmed in peak X in Figure 18 which is at (£j, fk)
= (1.7, 2.0 Hz) and is near unity in height. Other
similar correlations are specifically indicated in the
figure.

Sheared Current

The bispectrum results shown so far are for the
uniform flow low modal density date obitained at
Castine. To investigate the extent to which the
hypothesis of quadratic correlation can be
generalized, & much different date set was needed.
The Arctic experiments conducted by Vandiver and Kim
were in sheared flows, using cables which were long
enocugh to have flow induced vibration properties
characteristic of infinitely long cables [8,9].

The test cable, 975 feet in length, in this
example, was suspended vertically from a research
vessel with & heavy weight at the bottom end. An
accelerometer was located at 100 feet from the bottom
end of the cable orientated at an unknown angle to the
flow. The measured response had both in-line and
cross-flow response components in it. Figure 19 shows
on a linear scale the FFT power spectrum of the
measured response with peaks at 4, 8, 12 and 16 Hz.
Figure 20 shows the suto-bicoherence for this date
revealing numerous peaks of high coherence. The most
notable one is at (£j, fk) = (8.0, 4.0 Hz). Thus
demonstrating that quadratic correlation exists even
in a long cable, with sheared flow.

CONCLUSIORS

A variety of field vibration dats has been used
to demonstrate that for all conditlons studied
including lockin, non-lockin uniform and sheared flow,
quedratic correlation exists between in~lipe and
crogs~flow vibration components.

These results suggest that the time series
modelling or prediction of the vibration response of
parine risers, cables, pipelines and other cylinders
exposed to currents should take into account these
nonlinear correlations. This is especially true when
fatigue damage prediction is a concern, because
fatigue is dependent on stress statistics and these
depend on the correlation between various vibration
components.

When estimating strese statistics for mechanical
systems it is desirable and often assumed that the
stress time histories can be modelled as Gaussian
random processes. It is & mathematical fact that if
the bispectrum of a time series 1s non-zero, the time
series is not the result of a Gaussian or normally
digtributed rendom process. It is not appropriate to
model flow induced vibretion as Gaussian random
processes.

This paper has demonstrated strong quadratic
correlation between cross-flow and in-line vibration
caused by vortex shedding. This suggests that it
should be possible to identify the second order
nonlinear transfer function which can relate the
crose-flow to the in-line vibration. In other words,
given the cross-flow time series and the proper




non-linear transfer function, one should be able to
model or predict the resulting in-line vibration.
This has been done by the authors and is presented in
references [10 and 12].
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ABSTRACT

This paper presents an application of the
multiple regression method to the identification of
the nonlinear relationship between cross-flow and
in-line, vortex-induced vibration. Previous results
of bispectral analysis of the Castine data by Jong [7]
indicated that cross-flow and in-line response are
correlated quadratically for both lock-~in and
non-lock-in cases. Therefore, & second order
nonlinear system was used to model the relationship
between cross-flow and in-line vibration. The
cross-flow response l1s trested as the input to the
nonlinear system and the in-line response is defined
as the output. Both time domain and frequency domain
multiple regression methods are presented in the
evaluation of the quedratic system function under
lock-in and non-lock-in conditions respectively.
Nonlinear input/output correlations higher than second
order in the relationship are shown to be negligble.

NOMENCLATURE
x(t) cross-flow acceleration
y(t) in-line acceleration
y1(t) output from the Case 1
square law operator
ya(t) output from the Case 2
square law operator
Yelt) sirulated in-line response
Yo d.c. component of the in-line
response

n(t) noise
g{u,v),g1( ),g2( ) second order impulse
response function

h(u) linear impulse Tesponse
function

G(w) speciasl form of g(u,v)

K order of linear convolution

M order of the second order
convolution

G(Wq,W2) ,G1(Wq,Wa)Go(Wq,W2)
Fourier transforms of g, g1,

and g2
H(w),H{(W),Ho(W) Fourier transform of h{u),

hq (w)ho(u)
MSE mean square error
El ] expected value operator
Sxx (W) auto spectrum of x(t)
Sxy (W) cross spectrum of x(t) and

y(t)

Bxxx (Wp,Wq) auto bispectrum of x(t)
Bxxy (Wm,Wn) crose bispectrum of y(t) and x(t)
W frequency (radians/sec)
8( ) delta function
I unity vector
underscore indicates a vector
T1 square brackets indicate a matrix
INTRODUCTION

Marine risers, pipelines, and hydrophone cables
are all examples of structures subjected to
vortex-induced vibration. The response of the
cylinder depends on a complex interaction between the
natural modes of the vibration and the vortex-shedding
process. The implementation of good design procedures
that account for strumming vibration is becoming more
essential as the offshore industry moves into deeper
water.

In a spatially uniform flow, lock-in may occeur
when the vortex-shedding frequency is within a few
prercent of a cylinder's natural frequency. Sustained
periodic vibration results in both in-~line and
cross-flow directions. The cross-flow motion is
dominated by one mode at the natural frequency of the
cylinder. The in-line motion is dominated by a
frequency twice that of the cross-flow motion. Typicel
in-line amplitudes are one-half that of the cross-flow
displacement [8].

When the shedding frequency is outside the
lock-in bandwidth, non-lock~in occurs and the response
time histories in both in-line and cross-flow
directions are best described as random processes.
Several modes may respond in both directions. The
cross-flow response frequencies are generally
dominated by natural frequencies of the cylinders. The
response frequencies typical of the in-line motion are
not typically natural frequencies, but are most
closely associated with sums of frequencies of
dominant cross flow spectral peaks. The evidence of
frequency doubling and summing under lock-in and
non-lock-in conditioms supports the hypothesis that
in-line and cross-flow response are non-linearly
correlated. As an initial test a bispectral anslysis
of flow induced vibration data obtalned during a field
test at Castine, Maine, was performed by Jong [7]. A
very clear nonlinear correlation was evident betueen
in-line and cross-flow vibration. The
cross-bicoherence provided conclusive evidence that
cross-flow and in-line response are correlated



quadratically for bota lock-in and non-lock-in cases.
These conclusions suggested that, in general, a second
order nonlinear system can be used to model the
relationship between cross-flow and in-line response.

The data analyzed in this paper was gathered
during a field test in Castine, Maine in 1981. The
experimental arrangements are described in Refs. 7 and
17 and are very briefly described here. A steel tube
75 feet long (22.86 m) and 1.625 inches in
diameter (4.13 cm) was suspended horizontally under
tension between two pilings. A spatially uniform
tidal current normal to the lomgitudinal axis of the
cylinder provided the vortex related excitation.
Tension, current, drag force, and seven biaxial
cylinder accelerations were recorded. Reynolds numbers
of 300 to 20,000 were encountered.

The purpose of the research described in this
paper was to examine the adequacy of & second order
syster in modelling flow induced vibration as observed
in the Castine tests and to show that significant
contributions, due to higher order nonlinearities, do
not exist. To address this issue a quadratic system
identification was performed for both the previous
lock-in and non-lock-in cases. Due to the nature of
nearly deterministic lock-in response, a time domain,
multiple regression method was applied in the system
identification procedure, while & frequency domain
error minimization method was used for the
non-lock-in, random vibration cases. The results
showed that nonlinearities higher than second order
vere negligible for both lock-in and non-lock-in,
Linear and second order correlation exist at lock-in.
Whereas, in-line and créss-flow responses were
linearly independent at non-lock-in and quadratic
correlation accounted for all but a small amount of
the nonlinear correlation betwesen in-line and
cross-flow vibration.

QUADRATIC SYSTEM IDENTIFICATION AT LOCK-IN

Initially, the bispectrum analysis was used to
identify the quadratic correlation between cross-flow
and in-line vibration. In this section, the
relationship between cross-flow and in-line response
is modelled with & second order nonlinear systenm,
including a linear term and quadratic term. An error
term is also introduced to represent imperfections of
the model which might be due to the existence of the
bigher order nonlinesrities. The linear and quadratic
impulse response functions are identified for the
lock-in case by using a time domain multiple
regression method. By one and twoc dimensional
convolution of the identified linear and quadratic
impulse response functions with the measured
cross~-flow response, the in-line reasponse can be
predicted. The predicted and measured in-line
response agree very well, as will be demonstrated with
Castine field test data.

Application of Multiple Regression Analysis

Let the input x(t) be the cross-flow response, and
output y(t), the in-line response. x(t) and y(t) are
assumed to be related by a second order system as
follows.,

k-1
y(t) = yo + I h(u)x(t-u) + 1)
u=0
M-1 M-1
z L g(u,v)x(t=u)x(t-v)+n(t)
u=0 v=0

where n(t) is the error term, h{u) is the linear
impulse response function and g(u,v) is the second
order impulse response kermel. Given the measured
input and output date, x(t) and y(t)=1,2,...(N+K-1),
the system functions h(u) snd g(u,v) are to be
determined in such & way that the estimated mean
square error (MSE} is minimized. It was assumed with
no loss of generality, that the second order impulse
response kernel is symmetrical in its arguments:

glu,v)=g(v,u) (22)
and thus their Fourier transforms are also symmetrical
G{Wq,W2)=G(Wa,Wq) (2v)
Consequently, the quadratic transfer funetion is
symmetric about the line Wi=W, in the bi-frequency
plane. Equation (1) can then be rewritten in matrix
form as:

LeyotixInt{z]G+n 3

where
unknowns h(u) uv=0,1,...,K-1

unknowns g(u,v) u=0,1,...,M-1 v=0,1,...,M-1

NN=N+E-1 , MM=M(M+1)/2

z(t,w)=x(t-u)x(t-v) with w=vHM*u-u(u+l)/2
G(w)= g(u,v) if u=v

= 2g(u,v) if u#v

b=[ 1(0),h(1),..cc00 n(E-1) )7 Ex1 vector
=y (K),y(K+1),.....7(0R) 1T Bx1 veetor
p=[ n(K),n(k+1),.....n(NN) 1T Nx1 vector

¥o=[ ¥0,50,ev0ereners o 1T Nx1 vector

G=[G6(0),6(1),.....6(MM-1) 1T MMx1 vector

K(E-2)ocoeoeox(l)
(K43} 00000 .%(2)

x(K) x(K-1)
x(X+1)  x(K+2)

°

[x]= .

X(B+E-1) X(N4E-2)10uenrnnenes.x(N)
NxK matrix

2(Ky1)evee..z(K,MM=1)

z(K,0)
2(E+1,1)....2(K+1,MM-1)

z(K+1,0)

.

[z]= .

z (K+§-1,0)
NxMM matrix

2(K+N-1,1) . .z (E+N-1,MM=1)

the MSE can be written as

MSE=pT(pn] =
(3-yo-[x1n-1218) " (g-yo~(xIn-[2]0)=
27y-28T1x1Ty-26T1 2] Ty+
2nT[x)T[2)c+nT[x1T(x]h +



67121T[21G-yoT (y-[x1n-[21G)~
(gT-nT[x}T-6T{z1T)yo+

yo Tyo (%)

Seeking minima in the MSE with respect to yo, hi, and
Gi leads to:

let 3MSE/dyo = 0, resulting in
N*yo+IT[x1b+1%(216=1Ty (5
let 9MSE/ohi = 0, resulting in

(Ix)Tlz]e+ ([x1T[x])n+yolx1TI=[x1Ty )

let 3 MSE/3Gi = O, resulting in

([217x1)b+([2]T[2])G+yol2]TL =[21Ty -

These three equations can be combined and rewritten as

(M1] fcl q b Rl

(clT  [m21] QT . cr= { R2 (8)
Qi @2 N yo Ro

where

Ro=1Ty = constant .
Ri={x]y=Kx1 vector
Bo={s ]y=iMx1 vector
§i=1{x)=1xK vector
§2=I{2)=1xMM vector

{M1)=[x][x]=ExK metrix

(M21=[2][2]=MMxMM matrix

[€)={x][2]=ExMM matrix

For a specified order K and M, the system
functions h(u) and g(u,v) can be obtrained by solving
the set of linear equations (8) with x(t) and y(t)
being the cross-flow and in-line responses
respectively. The identified system functions h(u)
and g(u,v), can be convolved with the measured
croes-flow reaponse x(t) to produce predicted linear
and quadratic components of the in-line response yi(t)
and y2(t) respectively as shown in equation (9). The
total predicted in-line response ys(t) and the
residual noise terms are also given,

&. n{t) = y(t)-ys(t)

b ys(t) = yoty1(t) + ya(t)
K-1

c. yl(t) = I h(u)x(t-u) &2
=0

- M-1 M-1

d. yz(t) = I L glu,v)x(t~u)x(t~v)+y
u=0 v=0 . °

AN EXAMPLE FOR THE LOCK-IN CASE

In this section, results are Presented in which
typical lock-in response data were analyzed by using
the time domain multiple regression method described
in the previous section. The data was obtained from a
vibrating, horizontal steel tube 75 feet in length and
1.625 inches in diasmeter. The tube bshaved
dynamically as & uniform beam under tension with
pinned ends. The mode shapes in both cross-flow
(vertical plane) and in-line (horizontal plane)
directions were sine waves. The natural frequencies
were unequally spaced due to the bending stiffness of
the beam. The natural frequencies are the same in the
cross-flow and in-line directions. Vortex shedding
excited at various times from the second to the tenth
modes of vibration. At any given time, the cross-flow
and in-line vibration occured in different modes and
at different frequencies.

The tube contained seven biaxial pairs of
accelerometers dlstributed along the axis of the tubse.
The accelerometers measured in-line and cross-flow
vibration. Figure 1 shows a time history of motion in
the x-y plane measured by a pair of accelerometers
located at one fourth of the length of the tube from
one end. The figure eight pattern 1s the result of
lock-in cross-flow vibration in the third mode and
in-line vibration in the fifth mode. The fifth mode
natural frequeney is twice the natural frequency of
the third mode. The one fourth point of the span is
near an anti-node for both mode shapes. At L/4 both
node shapes have 70.7% of their maximum anti-node
value. The vortex shedding process under lock-in
conditions generates a periodic zero mean 1ift force
distributed cohérently along the span of the tube.

The vortex shedding also creates a non-zeroc mean drag
force which has fluctuating component at twice the
frequency of the 1lift force.

In this example the drag force excitation
frequency coincided with the f£ifth natural frequency
of the tube in the in-line direction. The figure
eight pattern indicates that although the in-line and
cross-flow motions are at different frequencies, they
are highly correlated. These x{t) and y(t) measured
time series were used in equation (8) to calculate the
system functions h(t) and g(u,v) from which the error
n(t) was then obtained. By increasing the order K and
M, a convergent MSE was reached. The error n{t) for
E=30 and M=9 was a wide-band noige indicated by ite
flat spectrum. The ratio between the MSE and the
variance of in-line response was 2.6%Z. This small
amount of wide-band error implied that nonlineasrities
higher than second order were negligible for the
lock-in case and the second order nonlinear system was
& reasonable model, relating the cross—flow and
in-line response.

From equatior (9b), a simulated in-line response
ys(t) was obtained which was in good agreement with
the measured in-line respomse y(t). This agreement is
easier to visualize by comparing the x-y diagram of
cross-flow response x(t) ve. simulated in-line
response ys{t), as shown in Figure 2 to the measured x
versus y date shown in Figure 1. The linear and
quadratic components of the predicted in-line response
¥1(t) and ya(t) were calculated from equations (9c and
9d). The x-y diagrams of x(t) vs. y1(t) and x(t) vs.
y2(t) in Figure 3 and 4 show that the linear in-line
response and quadratic in-line response contribute
quite different patterns to the total in-line
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response.

When the multiple regression method was applied to
the non-lock-in case, the rate of convergence was much
slower than that of the lock-in case and became
inefficient due to the required larger order of X and
M. The reason for the slower convergence is that at
lock-in, the response time series ars quite
deterministic. Therefore, only a little past
information is required to predict the present
response, while the responses at non-lock-in are much
more random than the lock-in responses leading to the
Trequirement of a higher order of K and M in equation
(1). The quadratic system identification for the
non-lock-in case will be discussed in the next
section.

QUADRATIC SYSTEM IDENTIFICATION AT NON-LOCK-IN
In this section, a frequency domain nultiple

regression method for quadratic system identification
» will be discussed for the non-lock-in case. 4

quadratic model involving a square law system proposed
by Bendat and Piersol (3] is used in the system
identification. The residual error is used to
evaluate the existance of higher order nonlinearities
in the system input/output relationship. High linear
coherence between the in-line response and the square

" of cross-flow response is demonstrated, which provides

additional evidence of the existence of quadratic
correlation between in,line and cross~flow response.

Least Squares Quadratic System Identification

4 frequency domain quadratic syatem
identification method with the input, a stationary
Gaussian random process has been used by several other
researchera [5,11]. The method is applied here to
non-lock-in response data to obtain the quadratic
transfer function.

The input and output of a quedratic system is
expressed as given in Equation 1:

y{t)= zh(u)x(t-u) +
12g(u,v)x(t-u)x(t-v)+n(t) (1)

where n(t) denotes any error associated with the
imperfecticn of the model or noise in the system.
Here, a linear term is included even though the
in-line and cross-flow response are almost linearly
independent [7] for the nom-lock-in case. The
transfer functions H(W) and G(Wy, W2), are to be
determined such that the mean square error, MSE, of
n(t) is minimized. The MSE can be expressed as,

MSE=E[n2(t) I=E[y (%)~ sh(u)x(t-u) -
zzglu, v)x(t-u)x(t-v) ]2 (10)

Let
(x(t),X(W) 1, [7(t),X(W) 1, [h(u) SH(W) 1,
[g(u,v),6(W,W2)]
be Fourier transform pairs. We find that

K
MSE=E([ & (Y(W])-B(Wj)X(Wj) -

==K

IZ G(wp,Wq) X(Wp)X(Wq)exp(1Wje) ]2
pHan]

14

= L E[Y(W )-u(w.)x(wj) -

juk bl hi
zﬁg(Wp,Wq)x<Wp)x(Wq)12 an

K

= E E{|Y(W3) |2+]H(W1) |2 |x(u3) |2

j=-K
~B(W3)Z(WH)T* (W1 )-H* (W3 )X* (W3 )T (W])
- LZG(Wp,Wq)T*(Wj)X(Wp)X(Wq) +

ees
PETE* (W] )G (Wp, Wa)X* (W)X (Wp) X(Wa) -
ptq=j

£2G*(Wp,Wq )X (W] ) X* (Wp)X*(Wq) +
(V1 )6 (4p, W) X(H1 )X p) X (i) +

3 I G(Wp,Wq)G*(Wr,Ws)X(Wp) X (Wq) X*(Wr)X*(Ws) }
ptq=y rig=j i
Let SMSE/3H(Wj) =0, and 3MSE/3G (Wm,Wn) = O with
Wm+Wn=WJ for all Wi. We obtain
E¥(W3)EL|X(WS) |21=BIX(W])T*(W3) ] +
EIG* (Wp,Wq )ELX(W{)X* (Wp)X*(Wq) ] (13)
pta=j
E(T*(WJ)X(Wn)X(Wn) J=H* (WJ ) ELX* (W] ) )X(Wa)X (Wn) ]
+  ZE0*(Wp,Wq)E[X*(Wp) X* (Wq) X*(Wm) X(Wn) ] (14)
pHa=]
From the following definitions, )
Sxx (W] )=E[X(W])X(-W]) ]
Sxy (Wi )=E[X(W])¥(-wi)}] (15)
Bnuz(Wp,Wq)ﬂE[I(Wp)x(Wq)x(-Wp-Wq) 1
Bxxy (W, W) =E[X (Wm) X (Wn) Y {~Watin) ]
Bquations (13) and (14) can be ‘rewritteu a8:
H*(Wj)Sn(Wj)=Syx(Wj)+
ZIG*({Wp,Wq ) B*xxx(Wp,Wq) (16)
Broxy (W, Wn ) =H* (W] ) Bxxx (Wm,Wn) +
LIC* (Wp,Wq )E[X* (Wp)X* (Wq ) X(Wn)X(Wn)]  (17)
pq=j
From these two equations, we see that the
determination of the transfer functions H(W) and
G(Wy,W2) required the estimation of the fourth order
spectrum, which is difficult, due to computer storage
limitations. However, if the input x(t) is & Caussian
randon process, this problem can be simplified
considerably. If x(tfris a Gaussian random process,
the bispectrum Baxx(Wm,Wn) is zero, and we can write
the fourth order cumulant spectrum as:
E[X*(Wp)ZX*(Wq)X (Wa)X(Wa) }=
E{x*(Wp)X*(Wq) JE[X (Wa)X(Wn) ]+
E[X*(Wp)X(Wm) IE(X* (Wq)X(Wn) ]+
E[X*(Wp) X(Wn)E(X*(Wq )X (Wa) ]=
3(Wp+Wq ) s (Wn+Wm ) Sxx (Wp) Sxx(Wm) +
8(Wp-Wm) 5 (Wg-Wn) Sxx (Wm) Sxx (Wn )

¢ (Wp-Wn) 6 (Wq-Wm) Sax (Wn ) Sxcx (Wa) (18)

(12)



The last term in equation (17) for nonzero Wj becomes

£ZG{Wp,Wq )E[X*(Wp)X*(Wg)X(Wn)X(Wn] =
p+a=]
26 (Wm ,Wn)Sxx (Wm) Sxx{Wn) (19)

Finally we obtain
H(W) = Sxy(W)/sxx(W) (20)

G{Wq ,Wo)=Braxy (W ,Wp)/28xx (W1 )Sxy (Wp) (21)

These two equations can be used to determine the
linear and quadratic transfer functions, and on
require the estimation of the spectra Sxx(W), Sxy(W),
and the cross-bispectrum Bxxy(Wq,Ws) for a Gauseian
input. It has been shown [7] that the non-lock-in
cross-flow response can be approximated by a Gaussian
random process as deduced from the Chi-square
goodness-of-fit test on the response histogram of the
Castine data.

Figures 6 and 5 show the power spectra of the
cross~flow and in-line response at non-lock-in. The
cross-bicoherence spectrum between these two
responses, as shown in Figure 7, indicates a
significant quadratic correlation between them. Figure
8 ghows the magnitude of the quadratiec transfer
function G(Wq,W2) at non-lock-in based on equation
(21) with the imput cross—flow response a Gaussian
random process. Note that in this figure of G(Wq,Wza),
all the peaks tend to be concentrated along the 45
degree lines in the bi-frequency plane. While G{Wq,Wo)
is the two-dimensional Fourier transform of the second
order impulse response kernel g{u,v), for a general
quadratic system, it peed not possess this particular
property. This cbservation impliss that this quadratie
systenm has certain properties which might enable
further simplification of the system im the
non-lock-in case. A special quadratic system
possessing this particular property has been
formulated by Bendat and Piersol and will be discussed
in the next section.

QUADRATIC SYSTEMS INVOLVING SQUARE-LAW OPERATORS

Two models of a quadratic ‘systeer which involve a
zZero memory square-law system, as pictured in Figure
9, bave been analyzed by Bendat and Piersol and are
briefly discussed here. The zero memory square law
system is either followed or preceded by & constant
parameter linear system. The properties of these two
models; referred to as Case 1 and Case 2, were
examined to check if either of them could be used to
8implify the quadratic system identification problem
for the non-lock-in case.

The combinations of a square-law gystem and a
linear system give the relations between x(t) and
y1(t), y2(t) as, from Case 1

y1(t)=h1(t)*[x(%) ]2

Jhq (u) [x{t-u) 12au

SIhq(u) s(ue-v)x(t-u)x(t-v)du dv

Jrgq (e, v)x{t-u)x(t-v)du dv (22)

from Case 2

y2(t)=[ba(t)*x(t) 12
[ by (u)x{t-u)du]?

S (w)hs (v)x(t-u)x(t-v)du dv
=/fgz(u,v)x{t-u)x(t-v) du dv (23)

where * denotes the linear convolution and &§(u) is the

delta function. The second order impulse response

kernals for these two cases are

g1{u,v)=hq (u) s(u~v) : (24)

g2(u,v)=h2(u)by{v) (25)

The Fourier transforms of these two equations give the

quadratic transfer functions Gq(W¢,W2) and Gp(Wq,W2),

as,

Gy (W, W2)=Hq (Wy+W)  (26)

Go(Wq,W2)=Ha(Wy)Ha(Wo) (27)

The system function H}(W) and Ho(W) can be obtained by

writing equations (26) and (27) as
Gq (W/2,W/2)=81 (W/2+W/2)=Hq (W) (28)
Go (W, W)=Hp2 (W) (29)

By using equation (21) for quadratic system
identification with Gaussian inputs, we obtain

Hq(W)=Gq1 (W/2,W/2) =
Broxyq (W/2,0/2) /28%x (W/2) = (30)
Bxy1 (W/2)/25%xx (W/2)

Hp(W)=SQRT[Gp (W, W) ]=Bxxy , (W, W) /25%xx (w) (31)
= Bxy,(w)/25%xx (W)

In which Bxy(W) is the special bispectral density
function defined by

Bary (W) =Bacey (W, W)=ELX (W) T (W) Y*(24) ] (2)

Equations (30) and (31) were derived from the
least square error point of view and they are
identical to the results formulated by Bendat.

The linear tremsfer function H(W) derived by
Bendat is also identical to the results of section 4
vhich was

R(W)=Sxy (W)/Sxx (W) (33)

Checking the properties of the quadratic transfer
functions in equations (26) and (27) permits ome to
determine whether or not the Case 1 model or the Case
2 model is more appropriate to fit to the mon-lock-in
data. According to equation (26) for Case 1, any pesk
assoclated with the function Hq(W) will show up along
& 45-degree lipe in the bi-frequency plane of
Gq{W1,W2) which is similar to the result stated in
section 4, while Case 2 does not possess this
property. The Case 1 model was chosen to model the

non-lock-in response data. The goodness of fit of the’

Case 1 model would be checked by the residual n(t).
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The data presented in the previous section for
the non-lock-in cases were analyzed egain by using the
Case 1 model. The system functions H(W) end Hq(W)
were obtained from equations (33) and (30). From the
identified system functions H(W) and Hq(W), the
spectrums of the residual n(t), the linear and
quadratic responses v{t) and y1(t), as well as the
simulated in-line response ys{t) were obtained
according to,

Svv{W)=Sxx(W) H(W) 2 (34)
Sy1y1(W)=Szq21 (W) Hq(W) 2 (35)
Sysys (W)=Svv (W) +8y1y1 (W) (36)
Snn(W)=8yy (W)-Sysys (W) (37)

A emall residual spectrum Snn(W) was obtained
vwhich indicated an accurate fit of the Case 1 model to
the data. This also meant that higher order
nonlinearities were negligible. The spectrum of
simulated in-line response Sysys(W) as shown in Figure
11 was in good agreement with in-line response
spectrum Syy(W) shown in Figure 5. The spectrum
Sysys(W) is almost entirely dominated by the guadratic
in-line response. The obtained linear in-line response
spectrun Svv(W) was very small and was not shown here.
This result is quite different from that of the
lock-in case.

Finally, it is interesting to examine the
characteristics of the square of the cross-flow
response, that is the output zq(t) from the square-law
system in the Case 1 model. Figure 10 shows the
spectrum of z1(t), S2124(W), in which the two dominant
peaks are located at frequencies exactly equal to that
of the in-line response spectrum Syy(W) shown in
Figure 5. Figure 12 shows the linear cross-coherence
spectrum between z1(t) and y(t) whick demomstrates
that these two fluctuating quantities were highly
linearly coherent as shown by the high peaks at the
two dominant frequencies. This result provided
additional evidence of the existence of quadratic
correlation between cross-flow and in-line response.

CONCLUSIONS

In conclusion, it should be emphasized that
although the results presented in this paper are based
on data teken from a single mechanieal system, they do
suggest that the relationship between cross-flow and
in-line response might be best described by & second
order nonlinear system for both lock-in ang
pon~lock-in cases. Nonlinear correlations higher than
sacond order were negligible in the nonlinear
relationship for both cases. Furthermore, it was
indicated in this paper that quadratic transfer
functions can be computed by using both time domain
and frequency domain multiple regression methods.
Knowledge of these transfor functions may be useful in
modelling the relationship between cross-flow and
in-1ine response, or equivalently, the 1ift and drag
forces of flow-induced vibration. Inm addition, for the
non-lock-in ceses, the square-law system provided a
potential way to simplify modelling of the
relationship.

In the case of frequency domain analysis, it has
been assumed that the non-lock-in cross-flow response
is Gaussian. For other applications of quadratic
system identification with non-Gaussian input, one can

use the time domain multiple regression method to
obtain the impulse response kernels. However, the
practicality of this method is not clear for a rendom

input case. R
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