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SUMMARY

This report presents results from one of several studies on various inspection
related topics which form the UEG Project on Underwater Inspection (Project
URP72).

A probabilistic fatigue analysis of a hot spot in a tubular Joint has been performed to
demonstrate the applicability of probabilistic methods to fatigue analysis and inspec-
tion planning.

Both a probabilistic S-N fatigue analysis and a probabilistic fracture mechanics
fatigue analysis are performed. The two approaches give very similar results and
are in principle equivalent provided corresponding input data are applied. An
improved quality is desirable in the data background for some input parameters to
the fracture mechanics analysis,

It is demonstrated that the probabilistic fracture mechanics analysis is easily com-
bined with results from inspection. The inspection results allow updated failure pro-
babilities to be computed. Uncertainty in inspection methods is required in the form
generally available, i.e., in probability of detection curves and in measurement uncer-
tainty in erack sizing.

Based on the probabilistic fatigue analysis the nominal reliability level against
fatigue failure in present deterministic design standards is determined. For details
designed to the highest standard, i.e., with no inspection or repair possible, the relia-
bility level is close to levels found in studies on static failure.

The most important source of uncertainty in the probabilistic S-N fatigue analysis is
the uncertainty in the location of the S-N curve. In the fracture mechanics analysis
the uncertainty in the crack growth material parameters is most important.

A review of current data on reliability of inspection methods is disappointing. Data
are scarce, data refer to capability rather than performance, and data are almost
exclusively on detection probabilities, with only few data on sizing uncertainty.

A study of the effect of different inspection procedures has been performed. The
study indicates that a large potential for economic savings in inspection for fatigue
cracks in offshore steel structures can be documented through use of probabilistic
methods.

In an appraisal of the analysis the most important shortcomings are stated as:
There is a lack of good data for material crack growth parameters.

- The quality of current data on reliability of performance of inspection methods
is poor.

- Target reliability levels must be defined by users or authorities.
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To fully achieve the potential in economic savings by use of probabilistic
methods for inspection planning, procedures must be available to evaluate the
importance of each element on the system reliability.
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1. GENERAL OVERVIEW/INTRODUCTION TO THE PROBABILISTIC
APPROACH

The objectives of this study are:
1. To demonstrate the applicability of probabilistic methods to inspection planning.

To ascertain the importance/sensitivity of the principal input parameters for
the probabilistic analysis.

3. To investigate the effect of different inspection regimes on the reliability of a
structural component.

4. To identify shortcomings in currently available probabilistic methods for appli-
cation to real structures.

The study is aimed at an existing platform and does not cover design where an ini-
tial inspection plan is decided upon together with materials, dimensions, etc.

The use of probabilistic methods in structural design is rapidly growing. There
is now a general agreement on the philosophy behind use of probabilistic methods in
decision making, modeling tools for uncertainty modeling are accepted and unified,
and numerical techniques have been developed to compute failure probabilities and
sensitivity factors efficiently. Such computer programs are now commercially avail-
able and easy to use for many engineers. A general overview and introduction to the
probabilistic approach to structural design is presented here, while a more detailed
account for the available methods is presented in Madsen et al [1].

A probabilistic approach is applied for different aspects of design, Probabilistic
methods are used for calibration of safety factors in structural codes and technical
standards. The first such calibration was for the 1974 Canadian Standards Associa-
tion Code, and since then almost all major codes for land based and offshore strue-
tures have been through a formal calibration process. In recent years probabilistic
methods have also been used directly as a design tool. This has taken place for
failure modes with little previous experience, very important structures either very
costly or with very large failure consequences, and for structures which are produced
in large numbers. Very recently, the probabilistic methods have been further
developed to account for new information becoming available after the design pro-
cess. Such information is from fabrication, e.g. compliance control of materials, and
from service experience. Inspection and monitoring as well as proof loading provide
important additional information. With the additional information much of the
uncertainty present at the design stage is removed and improved decisions on e.g.
repair, strengthening, inspection plan and change in use can be made. This is gen-
erally not possible to nearly the same extent only based on the deterministic
methods. The application of updating takes place for e.g. bridges, where loads
increase due to heavier vehicles being allowed, and this report presents the applica-
tion for inspection of offshore steel structures.

The use of a probabilistic approach for reliability updating based on inspection
results is based on the same concepts and notions as applied in the use for design.
The fundamental notion in both deterministic and probability based structural
design is the limit state function which gives a discretized assessment of the state of
a structure or structural element as being either failed or safe. The limit state func-
tion is obtained from a traditional deterministic analysis, but uncertain input
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parameters are identified and quantified. The uncertainty in the deterministic load
and response models themselves is also attempted quantified. Sources of uncertainty
can be inherent physical uncertainty, statistical uncertainty due to estimation of sta-
tistical parameters from a small data base, and model uncertainty. All uncertain-
ties are, however, treated in the same way in the analysis independent of their ori-
gin,

Sometimes a distinction between randomness and uncertainty is introduced,
where the randomness is inherent while the uncertainty in principle can be removed.
It must, however, be realized that the classification is not fundamental but related
to a level of modeling. Also, the classification depends on the phase of a project.
Whereas, e.g., the steel quality of a member is random at the design stage due to a
lack of knowledge in the choice of supplier and randomness within the production of
the supplier, the steel quality is uncertain in the as-built structure where it can be
determined through measurement.

The probability of malfunction or failure is computed by specially devised
numerical techniques known as first- and second-order reliability methods. Besides
computing probabilities of failure, these methods give a number of important sensi-
tivity factors in addition. The total uncertainty is divided on the different sources
indicating where to most effectively allocate resources to reduce uncertainty.
Parametric sensitivity factors give the sensitivity of the reliability to changes in
design parameters and statistical input parameters. When an initial lay-out is avail-
able, but the reliability is not at the target level, these factors give the necessary
change in an input parameter to achieve the desired level. No reanalysis is thus
necessary when a small change in input is made but the modified reliability is com-
puted directly from the initial analysis.

Because the uncertainties in the input parameters are partly objective and
partly subjective the computed failure probability can not be taken as an expected
frequency of failure. Rather, the failure probability is a measure of the designers
belief in the reliability. As such the failure probabilities may change as more infor-
mation becomes available. The computed failure probability is therefore not a physi-
cal property of the structure.

The structural reliability analysis does not attempt to account for failures due
to gross error. Such errors probably cause 90% of all failures. To reduce the fre-
quency of gross error failures by increasing load and resistance factors is, however,
not economic, but other means must be used. Such means may well be much more
costly than increasing dimensions by a few percent. The ratio of approximately 10:1
between costs of gross error failure and failure due to exceedance of design criteria is
therefore not necessarily far from being optimal. '

Structural reliability methods have mainly been applied for individual failure
modes of single elements in a structure. In recent years an increased interest in sys-
tem reliability has arisen. It is now possible to compute failure probabilities for gen-
eral systems - the difficult and as yet not fully solved part is to model a structure
with its failure modes as a system in reliability analysis terms.

This report first gives a review of current data on reliability of inspection
methods and numerical values are suggested for the probability of detection function
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for under water MPI and close visual inspection. The ohjectives of the study are
then highlighted through an example study of a hot spot in a K-joint. Finally, a see-
tion identifies shortcomings in currently available probabilistic methods for applica-
tion to real structures.
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2. REVIEW OF CURRENT DATA ON RELIABILITY OF INSPECTION
METHODS

Selected conclusions and recommendations from the study of Gray [2, section

10] are:

7.

10.

12.

15.

16.

17.

18.

An overly optimistic view (of inspection reliability) is held by many engineers
based on their experience of that which has been detected and naturally not
what was missed and is therefore unknown.

Quantitative data relevant to the reliability of structural inspection methods is
generally lacking but those studies carried out indicate reliabilities significantly
below those anticipated.

The "state-of-the-art" of fracture mechanics is now developing ahead of that of
inspection reliability such that the potentially sensitive defect assessments are
severely limited by the reliability of the inspection methods used, e.g. UE (ultra-
sonic examination).

Most studies have assessed the capability rather than the actual performance
that should be expected of an inspection method in normal use.

Where NDE reliability trials are carried out on simple geometries, with an
unnaturally high occurrence of defects, with high vigilance and without access
problems, fatigue, contractual pressures etc., true performance on real inspec-
tions may be significantly less than the capability demonstrated. True perfor-
mance needs to be quantified for structural reliability analysis.

Due to the dearth of data on inspection reliability, particularly methods other
than UE, it is not possible or sound to conclude figures for the reliability of indi-
vidual inspection methods but certain trends are evident for all methods.

Whilst visual inspection appears to be acceptably reliable for the detection of
gross errors and damage, it cannot be relied upon to detect cracks unless these
are associated with significant opening or are delineated by corrosion products
or leakage.

It seems reasonable to assume that MPI (Magnetic particle inspection) is likely
to detect, i.e. with more than 80% probability, a crack which is longer than 10
mm. The number 10 mm may be 30 mm under water. However, poor pro-
cedures and procedure control would give poorer results and there is inadequate
data to confirm this assumption.

UE performance has not been adequately quantified to date but capability
assessments indicate that even under controlled conditions, i.e., trials, there are
substantial differences in the performance of different operators. As an exam-
ple, in one study it was seen that nearly half the operators showed a 40% pro-
bability of accepting 10-12 mm high defects in a 26 mm plate.

Other data indicated that POD (probability of detection) of defects in more com-
plex joints, e.g. nozzles and nodes, may be as low as less than 50%, regardless
of defect height. The length of defects relative to the inspected length will effect
detection performance. The relationship between height and length in POD has
not been studied. Attempts to quantify true performance in real inspections
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have not been made. It is concluded that "one-off' ultrasonic examinations
under the circumstances of current practice on marine structures are likely to
give poor detection and characterization performance.

19. RE (radiographic examination) appears to be reliable at detecting "workman-
ship” defects e.g. slag, porosity and lack of penetration. RE can, however, not
be relied upon to detect planar defects, e.g. cracks and lack of fusion, although
if orientation is favourable or lack of fusion is associated with other defects,
detection is likely. RE therefore continues to be a powerful quality control tool
for detecting "workmanship" defects and providing a record for the subsequent
Judgement of inspectors.

20. Little or no information exists concerning the reliability of ECE (eddy current
examination) and ACPD (AC potential drop) crack measurement applied to
marine structures. However, ACPD crack depth measurement appears to be
capable of performing, with errors, approximately +10% of crack depth or + 2
mmn, although more data is required. ECE of welds is reported to be as good as
MPI but current practice of sample rechecking with MPI may be creating a
situation of abnormally high care and vigilance by NDE operators.

One conclusion is thus that very few data are available, both for establishing
probability of detection (pod) curves and on uncertainty in size assessment of
detected cracks.

The aim of the case study is to compare the effect of visual inspection and MPI
(magnetic particle inspection). Although the confidence in pod curves is not very high
the following is judged reasonable for the case study. The probability of detecting a
crack with depth greater than a is P;(a), which is taken as (¢ in mm)

Pila)=1—e13 450
Pi@)y=1-e2726 4590
Pi@)=1-e2%5 4590
Pjla)=1—-e13 4590

Two POD curves for each of the inspection methods are thus provided as shown in
Fig. 2.1. Some of the POD curves show a non-negligible probability of not detecting
a failure, which in the example is defined as crack growth through the 22 mm wall
thickness.

The POD curves in Eq.(2.1) relate to the probability of detection for a specified
crack depth. Most inspection methods rely on the possibility of observing the crack
length. There is not a perfect correlation between the crack length and the crack
depth. This applies both immediately after fabrication where inspection results show
a great deal of scatter in crack depth for a fixed crack length. It also applies for
growing cracks, where in particular the ratio between the membrane stress and the
bending stress is governing for the development of the aspect ratio, i.e. the ratio
between depth @ and half length ¢. A quite different development for an unstiffened
joint with a large ratio between bending and membrane stress and a stiffened Jjoint
with a smaller ratio is thus present. The erack growth analysis should thus be for-
mulated for a vectorial description (a,c) of the crack size, and the theory and

MPI (2.18)

visual (2.1b)
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Figure 2.1 POD curves

software applied in the case study has indeed been extended to cover such a descrip-
tion. Most useful information abowl observed aspect ratios in fatigue tests of tubular
joints is reported in DeO [3].

The fatigue crack aspect ratio a/c is often reported near 0.15 for tubular
joints. Assuming this ratio the pod curves in Eq.(2.1) give a 90% probability of
detecting respectively a 40 mm and 80 mm long crack by MPI and a 90% probabil-
ity of detecting respectively a 200 mm and 400 mm long crack by visual inspection.
Due to the small amount of data on which Eq.(2.1) is based, statistical uncertainty
introduced in the constant of the exponential function is relevant. This is, however,
not considered here, although it is easily included in the subsequent analysis. The
detection of a crack in different inspections is assumed to be statistically independent
events.
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3. PRESENTATION OF CASE STUDY

Two hot spots in a tubular joint (K-joint) in a jacket structure in shallow water
are selected. The following types of analysis are performed and compared;

1. Deterministic fatigue analysis based on Miner-Palmgren fatigue damage accu-
mulation model with S-N curves (DETFAT).

2. Probabilistic fatigue analysis based on Miner-Palmgren fatigue damage accu-
mulation model with S-N curves (PROFAT).

3. Probabilistic fatigue analysis based on Paris fatigue damage accumulation
model, i.e. crack growth (PROCRACK).

4. Investigation of the effects of different inspection procedures on the reliability of
the joint (PROLONG & PROINSP).

The names in parenthesis are the names of the computer programs (developed at
A.S Veritas Research) used in the various analyses. The background theory of the
analysis is only briefly discussed in this section. A complete description of the reliabil-
ity updating is reproduced in the Appendix.

3.1 Deterministic S-N fatigue analysis

This analysis is a standard spectral fatigue analysis and the method and input
are briefly described.

A model of the environmental conditions in terms of stationary sea states is
applied. In each sea state the sea elevation is modeled as a stationary Gaussian pro-
cess, characterized by a wave spectrum. Parameters in the wave spectrum describe
the main wave direction, significant wave height, mean wave period, wave spectral
bandwidth and directional wave energy spreading. A spectrum in terms of direction
¢ and angular frequency w is assumed of the form

S (w8) = W, ()G 0 (3.1)

W (w) is selected as the Pierson-Moskowitz spectrum and G (8) is a squared cosine
function.

8 main wave directions are used and the fractions of time with each direction
are shown in Table 3.1. The fractions of time with each combination of significant
wave height Hg and mean wave period T, are available from the Hg T, diagram,
see Table 3.2. Totally, 41 seastates are included in the analyses. The same diagram
is used for all main wave directions.

The wave kinematics are calculated by linear wave theory (Airy) and loads are
computed by Morison’s equation. The drag loading is linearized and a linear strue-
tural analysis (FEM) is performed. A beam model is used with no joint flexibility.
Unit height waves of different angular frequency and different direction are applied.
As a result, complex transfer functions H oF; (w) for section forces and moments F; (¢)

in each beam end are determined.
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Wave approach from  Probability of occurrence
N 0.0956
NE 0.0689
E 0.0857
SE 0.1179
S 0.1118
SW 0.1698
W 0.1748
NwW 0.1755

Table 3.1 The directional distribution of wave occurrences.

T, (zero up-crossing period) [sec]
1-2  2-3 34 4.5 5-6 6-7 7-8 8.9 910 10-11 SUM
-0.6 0 9 74 19 1 0 0 0 Q 0 113
0.6-1.0 0 0 62 163 31 3 0 0 0 0 2569
1.0-1.5 0 0 0 112 93 16 3 0 0 0 224
1.6-2.0 0 0 0 13 89 31 7 1 1] 0 141
2.0-2.5 [ 0 0 0 49 45 6 1 0 0 101
HS 2.6-3.0 0 0 0 12 61 9 2 0 ¢ 0 82
fm] 3.0-3.5 0 0 0 0 0 29 11 1 0 0 41
3.6-4.0 0 0 0 0 0 8 11 1 0 0 20
4.0-4.5 0 ] 0 0 0 2 8 2 0 0 12
4.6-6.0 0 0 0 0 0 0 b 1 0 0 6
65.0-6.6 0 0 0 0 0 0 2 2 0 0 4
b5.6-6.0 0 0 0 0 0 0 2 1 1 0 4
SUM 0 9 136 307 276 196 64 12 1 0 1000
Table 3.2 The sea scatter diagram,

A linear stress analysis of the K-joint with six degrees of freedom fixed is per-
formed, and the hot spot stress for unit loads in each of the remaining 18 degrees of
freedom is determined, see Fig. 3.1. The hot spot stress is taken as the component
perpendicular to the weld. A linear stress variation over the thickness is assumed
as shown in Figure 3.2.

The axial component o, () is expressed in terms of the sectional forces and
moments F;(¢) and the influence coefficients I, ;, i.e. the axial stress for a unit force
or moment in the i th degree of freedom, as

18
O'a(t) = E Ia,iFi(t) (32)
i=1
The bending stress is expressed in a similar manner, As an approximation, only the
axial force and bending moments in the brace are included. The axial and bending
components o, () and o, (¢) are completely in phase and in the S-N analysis the hot
spot stress is taken as
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Figure 3.1 Calculation of influence coefficient.

BRACE WALL

Figure 3.2 Stress variation through thickness.

ot) =0,(@) + o0 () (3.3a)
L =L, +1; (3.3b)

The spectral density of the hot spot stress in a sea state is for a unidirectional
sea

18 18
8 (W) = 21 21 LIH,p (w)H,?Fj(w)'Sn(w) (3.4)

I=ljm
where an asterisk denotes a complex conjugate. With wave energy spreading an
additional summation over elementary wave directions is performed. The hot spot
stress process is assumed Gaussian and narrow banded. Stress ranges then follow a
Rayleigh distribution. A better description accounting for the non-Gaussian response
due to drag is presented in Skjong and Madsen {4] and is implemented in the

apphied computer programs.
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The fatigue strength is expressed in terms of an S-N curve, giving the number
N of stress cycles of constant range S leading to failure. Failure is here defined as
crack growth through the wall thickness. The curve from Department of Energy is
used both with and without a change in slope at N = 107 stress cycles, see Figure

3.3 (5].

Stress romge N/
g
T

301

20

m=3

Basrc design
curve (T}

16mm mean-20

J2mm meon-20

AT EEPETUTTW I SO

104

03 08 o
Endurance , cycles

Figure 3.3 Department of Energy T-curve, [5].

The mathematical form of the eurve is

logm(N) =12.16 — 3.010g10(S) N
logio(N) = 15.61 — 5.0log;o(S) ,

Without a change in slope the similar form is

logyoN) = 12.16 — 3.0logyo(S)

S >0 N/mm?

S >53 N/mm?
S <53 N/mm?

(N<107) (3.5a)
(N >107) (3.5b)

(3.6)

The thickness reduction proposed by Department of Energy is implemented in the
applied computer programs., The chord thickness is 22.3 mm and no thickness
reduction is performed in the present analysis.

In computing the damage for variable amplitude loading, Miner's rule is
applied. The damage increment AD; in a stress cycle of range 8; is according to the

rule
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1
= 3.7
NS (
Damage increments are added independently of the position of a stress cycle in the
stress history. Failure is assumed to take place when the damage D exceeds 1.

The total damage is computed as a weighted average of damages from the
different sea states. For the S-N curve (3.6) the result is

D=y % piqj%(z\/i)%o,,jVar[a,-j]3/2r(1+%) (3.8)
9 (Hg,Tz)
where T is the length of the considered time period, p; g; is the fraction of time with
a specific sea state, vy and Varlo;] are the mean rate of cycles and variance,
respectively, in the specific sea state, and T'() denotes the Gamma function. A
slightly more complicated expression results from using the T-curve (3.5).

The deterministic life time 7' corresponding to an accumulated damage of 1 is
determined and the results are shown in Table 3.3.

Table 3.3 | DETERMINISTIC LIFE TIME IN YEARS

T-curve T-curve modified
Hot spot 1 488 111
Hot spot 2 107 40

Stresses at hot spot 1 are fairly small and the effect on the life time of the
change of slope in the S-N curve is large. For hot spot 2 with larger stresses the
effect is not as significant.

3.2 Probabilistic S-N fatigue analysis

The probabilistic S-N fatigue analysis uses identically the same models as the
deterministic analysis, but the randomness and uncertainty in input parameters is
modeled explicitly. It is beyond the scope of this report to give a detailed account of
the uncertainty modeling. It suffices to mention that uncertainties are considered in:

sea scatter diagram

wave energy spreading funetion

wave spectral band width

load coefficients (transfer functions)

influence numbers (stress concentration factors)
location of S-N curves (deterministic slope)
Miner sum at failure

Some statistical input parameters are (COV = coefficient of variation):

20% COV  on the load coefficients
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64% COV on N in the S-N curve (64% COV on InN)
20% COV  on A (damage at failure)

In the failure criterion for a time period T

A-D=A-3 Y pyg; T ova Y, Var log 120(143/2) <0 (3.9)
0 He Ty K

a (large) number of random variables are introduced. For each value of T' the failure
probability P, ie., P(A-D <0), is computed. First-order reliability method
(FORM) are applied [1], and results are shown in Figure 3.4.

6
4107
'y
. J16°
) 110* g
<% - 00014
x s
4001
2 2 8
- - ' \ ’ =
z’ I ; 't—-—n——-—.,_______'- . %
3 [ R
< © "---/ T e— Hes b
| e
E | Ho;t spot 2 (With) ; g
-10.9
: ‘--.__ 1
-2t ! ¢ Hot spotz(wlt.hout)7 "“Cogg
N lﬁo l0+“»|44 4% '
1 i 1 1 1 A 4 - L !

YEARS IN SERVICE

Figure 3.4 Reliability index 85 for hot spot 1 and 2 as function of years in service
based on fracture mechanics.

The results are expressed in terms of a reliability index fp which is uniquely
related to the failure probability as

Br = —471(Py) (3.10)

where ®( ) is the standard normal cumulative distribution function. Both the S-N
curves in (3.5) and (3.6) are used. For the T-curve (3.5) the reliability index is
approximately 1.4 for the deterministic life time of 488 years for hot spot 1 and also
1.4 for the deterministic life time 107 years for hot spot 2. For the S-N curve (3.6)
the reliability index is also approximately 1.4 for the deterministic life time of 111
years of hot spot 1 and for the deterministic life time of 40 years for hot spot 2.
This level 3=1.4 thus represent the level implicit in the technical standard for fatigue
analysis with a requirement of the Miner sum < 1. The level is, however, not only
linked to the technicai standard but also to the specific uncertainty modeling applied.
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For a more strict requirement - Miner sum < 0.1 - for joints which can not be
inspected or repaired a reliability index around 4.7 is determined. In analyses of
other structures the reliability indices have been around 3.7 and 1.2 rather than 4.7
and 1.4. The reliability index values agree well with suggested levels for annual
failure probabilities for static failures, e.g. in NKB [5). No such targets have, how-
ever, been formally stated for offshore structures.

Besides failure probabilities, various additional information is obtained. The
total uncertainty is divided between the different sources. For hot spot 1 and T=100
years the result is shown in Table 3.4 for the S-N curve (3.6).

Table 3.4 Sources of uncertainty
Source of uncertainty Importance
Environmental description 1%
Load model 19 %
Stress analysis 13 %
Fatigue strength 60 %
Damage criterion 7 %

The major source of uncertainty thus arises from uncertainty in the S-N curve.

Parametric sensitivity factors express the change in the reliability index to a
change in a statistical distribution parameter, or deterministic design parameter.
For T=100 years the sensitivity factor for the COV of the load coefficients V, is

OBr
F‘-fl— = -0 .81 (3113)

A reduction in the COV from 20% to 10% thus leads to an increase in the reliability
index of approximately

Afp = (—0.81)-(—0.10) = 0.081 (3.11.b)

Omission sensitivity factors give the relative error on the reliability index if one
random variable is replaced by its median, i.e. if one source of uncertainty is
neglected. For T'=100 years the omission sensitivity factor for the uncertainty in the
load coefficients is

B (deterministic load coef ficinets) _ 1
Pr(random load coefficient) /] g 2032

= 1.02 (3.12.a)

The reliability index is thus overestimated by a factor of 1.02, if the uncertainty
in the load coefficient is neglected. Using omission sensitivity factors, based on one
representative analysis, all but the important sources of uncertainty can be disre-
garded in subsequent analysis. Utmost care must, however, be shown in disregard-
ing uncertainties, if the design analysis is followed by subsequent updating.
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The probabilistic analysis is more involved than the deterministic analysis. The
two analyses, however, result in almost identical rankings of the criticality of
different hot spots. In practical analysis of large structures a deterministic analysis
is therefore recommended to be applied first. This allows a filtering and the
identification of the least reliable hot spots for which the probabilistic anglysis is per-
formed.

In the introduction it was mentioned that a distinction between subjective and
objective uncertainties (randomness and uncertainty) is sometimes made. Let Z,
denote the random variables describing randomness and Z, denote those describing
uncertainty. The failure criterion as in Eq.(3.9) is written in terms of a limit state
function g ( ) as

g2 =g(Z,,Z,) <0 (3.12.b)
and the failure probability Py is computed as
Pp =P(g(Z)<0) = P(g (Z,,2,)<0) (3.12.¢)

= [P (g (Z,,2)<0)f 7 (zp)d 2,
Zy

= fPF (Zg)f zz(ZQ)d Zy = E [PF (Zz)]
Zy
Pp(Zy) is a conditional failure probability and instead of only plotting the expected
value E[Pr(Zy)] one may plot curves corresponding to different fractiles, see Fig.
3.5. The left hand curve in this figure is as Fig. 3.4 while the right hand figure
illustrates the alternative presentation (no actual calculations have been performed).
The curve marked 10% thus shows reliability indices for which there is a 10% proba-
bility that the reliability index is smaller considering the subjective uncertainties.
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Figure 3.6 Alternative treatments of subjective probabilities in reliability index cal-

culation.

The presentation on the right hand side in Fig. 3.5 may be judged as more informa-
tive than that on the left hand side as the importance of the subjective input is

PROBABILITY OF FaAlL
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better presented. In classical decision analysis with the objective to optimize the
expected utility (e.g. minimize the total expected cost) only the expected value
E{Pr(Zy)], however, enters the calculations, which is the reason why only this
number is generally determined.

Figure 3.4 presents for various time periods the probability of crack growth
through the thickness before the end of the period. By varying the critical crack size
it is also possible, for each point in time, to determine the cumulative distribution
function of the crack size and by applying the sensitivity factors also the probability
density function. This information is illustrated in principle in Fig. 3.6 (this figure
does not show result from the actual analysis) where the hatched areas show the
failure probability. '

fie

|
|
!

. ' ;...m

Figure 3.6 Probability density function for crack size at various times - dotted
curve illustrates development of mean crack size.

3.3 Probabilistic fracture mechanics fatigue study

The probabilistic fracture mechanics study uses the same models for the
environmental description, loading, global response and stress analysis as the proba-
bilistic S-N fatigue analysis. The fatigue strength is, however, determined from a
fracture mechanical description of crack growth from an initial size and through the
thickness. A semi-elliptical surface crack is considered with depth a and length 2¢.
A constant aspect ratio @ /¢ =0.15 is assumed and the crack growth can be described
in terms on the depth a. It is a straightforward generalization to describe the
growth in both depth and length.
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In a linear elastic fracture mechanics approach the increment in crack size, Aa,
during a load cycle is related to the range of the stress intensity factor, AK, for the
stress cycle. For a crack of length a, growing in an alternating elastic stress field of
magnitude ot ), the increment of crack length for one cycle, Az, is given by the
Paris and Erdogan relationship

%:C(AK)”‘ . AK > AR, =0 (3.13)

where C and m are functions of the material and environment and N is the
number of stress cycles. The cyclic crack tip stress intensity range AK can be
described by the following relationship

AK = AsY(a) Vra (3.14)

where Ao is some indicator of the magnitude of the stress range (in the absence of
the crack) and Y(a) is a factor to allow for the crack and component geometry and
the stress distribution over the crack. Y (a) is here referred to as the geometry func-
tion. The crack growth equation can be extended to include a positive threshold
AK,),, . For stress intensity factors ranges below the threshold value no crack growth
takes place. More complicated relations than the linear log da /dN —log AK relation
may also be introduced, when certain assumptions about the loading history are
made. This aspect is, however, beyond the scope of this report.

The determination of the stress intensity factor requires a knowledge of the
stress distribution ¢ through the wall thickness on the plane normal to the crack or
assumed crack at the hot spot and along the circumferential direction. Here, ¢ is
taken as the hot spot stress, i.e. the nominal stress multiplied by the global stress
concentration factor (the same as used in the S-N fatigue analysis). The stress is
computed for both axial, in-plane and out-of plane loading and added. The resulting
stress through the thickness consists of a bending and a membrane component.
Even under nominally axial loading, the stress in the through-thickness direction in
a tubular joint is predominantly bending. For the actual unstiffened joint and hot
spots the ratio between the local membrane and bending stresses is assumed to be
0.20 which is reasonable for the present tubular joint and crack location. This ratio
is constant in this approximation. For a stiffened joint a larger ratio is typically
found,

By using the simple formula for a surface crack in a flat plate acting under ten-
sion and bending [7], the Y{(a) factor for the actual hot spots can be estimated. The
formulae for calculating the stress intensities for semi-elliptic cracks given in [7]
were derived for linear stress fields (i.e. pure tension and pure bending). In welded
Joints, considerations must also be given to the non-linear stress fields arising from
local stress concentrations at the weld toe. These have been modeled using a stress
intensity multiplication factor M, derived from finite element analysis, [8]. Two-
dimensional models of welded joints were analysed with emphasis on the effect of
small variations in the geometry of such models. This information was used to come
up with an analytical form of the M, solutions.
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In addition to the effects of weld toe stress concentration and mixed bending -
tension stresses, the stress distribution in the circumferential direction is varying.
Therefore, the stress field at the tip of a surface crack will vary as the crack
lengthens. The stress variations in the circumferential direction are not accounted for
as constant hot spot stresses over the cracked region are applied here.

For the actual hot spots the factor Y (a) is found to be (as a function of the
thickness ¢)

Y (@) = Yunuerzea (@ ) My (@) (3.16a)

Y, wetded (@) = [1.08 - 0.70(%)] (3.15b)
—22.1(% -857(3)

M, (@) = [1.0+1.24¢ ¢ 48.17-¢ ¢ ] (3.15¢)

The effective geometry function is shown in Figure 3.7.
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Figure 3.7 Geometry function for hot spot 1 and 2.

Integrating the crack growth equation (3.13) gives, see Appendix,

a

f dx cy 8 (3.16)
LY@ () 55 '

where a, is the initial crack depth and ¢ is the crack depth after N stress cycles.
Stress ranges are denoted by S;. An initial period of time before the crack starts
growing can be included either by introducing a crack initiation period or applying an
equivalent flaw size distribution. For a welded offshore joint the crack initiation
period is generally small and this certainly applies to joints which fail during the
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service life.
With failure corresponding to crack growth through the thickness, the failure
criterion becomes
a,

dx C3S” <0 3.17
mf(,Y(x)m(mc)m’2 R 817

The safety margin M is therefore defined as

e N
M= —cysey 3.18)
&{,Y(:x)m(1T!’C)m/2 i§1 (
and the failure probability Py is
Pr =PM <0) (3.19)

For constant amplitude loading with stress range S the relation between S and
the number of cycles to failure is determined as

R
a

1 dx

N =.—_
C . Y(x)m (m)m/2

S ™ —constant -8~ (3.20)

R

i.e. the same form as (3.6). A measure of damage can be defined as

a

f dx
ap Y™ (me)m/?

D= (3.21)

afc dx
D Y @™ ()2

This damage measure increases from an initial value 0 to 1. The increment in D
from a stress cycle of range S; is

F dx
A
J(; Y ()™ (m)m/2 ] osm )
AD. — = ! = 3.22
‘ f d N@)Cs» NS 8.22)

ao Y&)™ (mx)m/2

i.e, of the same form as (3.7). The S-N fatigue analysis and the fracture mechanics
analysis are thus equivalent methods in the failure analysis.

In addition to the random variables is the load model, random variables are
introduced for the initial ecrack size, parameters in the geometry function, and
material parameters. An exponential distribution with a mean value 0.11 mm is
used for a, as suggested in [9]. The geometry function (3.16a) is randomized by
multiplying the expression with a random variable which is lognormal distributed
with mean value 1.0 and COV 10 %. A fixed value of m =3 is used and the COV on
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InC is taken as 50%, together with a mean value of -29.76 on I{nC (units N,mm).
The data on C are not unrealistic but are on the other hand not very well docu-
mented. They have been selected to give good correspondence between the S-N
analysis and the fracture mechanics analysis. The mean value of C differs by 10%
from the value suggested in DnV [10] and the coefficient of variation agrees well
with values proposed elsewhere.

Figure 3.8 shows similarly to Figure 3.4 results of a FORM analysis for the

failure criterion in (3.18) for hot spot 1 and hot spot 2. Figure 3.9 combines the
results of Figs. 3.4 and 3.8 and almost identical results are observed.
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Figure 3.8 FORM results - probabilistic fracture mechanics fatigue study.

Importance factors similar to those of Table 3.4 are presented for T'=100 years
in Table 3.5. The major part of uncertainty is thus from the material parameter C .

3.4 Effect of inspection procedures

The updating based on inspection results can be performed with the stress
range distribution resulting from the detailed uncertainty modeling of the environ-
mental conditions, load model, global response and stress calculation. It is, however,
extremely time saving to calibrate a stress range distribution with a smaller number
of random variables. A Weibull distribution is selected

Fgs(s) = 1—exp [— [%]B ], s>0 (3.23)

A and B are random distribution parameters which are calibrated to include the
uncertainties described above. A joint normal distribution for (Ind ,1/B) is selected.
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Figure 3.9 Comparison - probabilistic S-N fatigue analysis and probabilistic frac-
ture mechanics fatigue analysis,

Table 3.5 Importance factors
Source of uncertainty Importance
- Environmental description 1%
Load model 19 %
Stress analysis 20 %
Stress intensity factor 10 %
Crack growth parameters 50 %

The procedure is based on a first-order reliability analysis for selected fractiles in the
long term distribution of stress ranges and the following results are obtained:
E[InA] =1.60, ¢[lnA] =0.22, E[1/B] = 1.31, ¢{1/B]1=0.14, p[lnA,1/B] = —0.79
— Figure 3.10 shows the comparison between the results from the original and the
simplified stress range distribution. A very close agreement is observed.

With the simplified stress distribution, the sum in the safety margin (3.18) is
replaced by

N m
fe=]

where N is the total number of stress cycles which is determined from the same cali-
— bration procedure.
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Figure 3.10 Comparison probabilistic fracture mechanics study - detailed and
simplified stress range distribution uncertainty.

In-service inspection is performed in order to assure that the existing cracks in
the structure which may be present from the initial delivery or arise at a later stage
during the service time do not grow to critical sizes. The result from an inspection is
either no detection or detection of a crack, i.e.,

a (T,-) S Adi (3.25)

In the first case, (3.25), no crack was found in the inspection after the time T},
implying that the crack size was smaller than the smallest detectable crack size
A . Ay is obviously a random variable, since a detectable crack is only detected
with a certain probability. The distribution function for A;; is equal to the probability
of detection function and here taken as (2.1). When more inspections are performed
the random variables A;; are assumed mutually independent. In the second case,
(3.26), a crack size A; is observed after the time T}. A; is also random due to meas-
urement error and/or due to uncertainties in the interpretation of a measured signal
as a crack size.

For each inspection which results in no crack detection (3.25) an event margin
M; can be defined similar to the safety margin (3.18) as
Ag;

[ dx <0, i=1,2,.r (3.27)

M; = CN, A" T+ -
a6 Y)Y (mx)m/2 —

B

These event margins are negative due to (3.25). For each measurement (3.26) an
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event margin M; can similarly be defined as

A
dx m .
M, = —CN;A™T(1+—) =0, =1,2,...,8 (3.28)
J ‘-!;Y(x)m (m)m/2 J B J

These event margins are zero due to (3.26). The situation where a crack is not
detected in r inspections at a location is now considered. The updated failure proba-
bility Pj is in this case

P¥ = P(M <0 |M,<0M,<0M - - - (M, <0) (3.29)

This expression can be calculated by solving the FORM problem for two parallel sys-
tems, one for the numerator and one for the denominator, respectively, of the expres-
sion

pu _ PMOMML0N - - (M, <0) (3.30)

F P(M,<0N - - (M, <0)

The situation where cracks are found in an inspection can be described as a direct
generalization. For more details see the Appendix.

Assuming that a repair takes place after N,,, stress cycles and a crack a,y, is
observed, an event margin M,,, is defined as

a

T dx m
M, = _ACN,, A" T(1+%) =0 3.31
P c-!; Y(x y» (m)m/2 P ( B) ( )

The crack size present after repair and a possible inspection is a random variable
a,., and the material properties after repair are m,,, and C,.,. The safety margin
after repair is M,

a¢

dx
MM&U = f m m
e Y (2 )% (g Yo"

and the updated failure probability after repair is
P§ =P(M,,, <0 |M,, =0) (3.33)
This updated failure probability is then of the same form as for (3.29).

To illustrate the effect of an inspection which does not lead to crack detection
Fig.3.11 has been prepared. The probability density function for the crack size
before the inspection is f, (¢ ) and after the inspection f .(a). These are related by

fal@)1-Py(a)))

m ne

— Crpers N =N, JA™ T(1+ ) (3.32)

fala) = (3.34)

[fal@)1-P,(a)da
]

f.(a), the probability of not detecting a crack of size @ 1-Pg(a), and fa(a) are
shown in Fig.3.11. Figure 3.12 shows a development with several inspections and
no crack detection and Fig.3.13 a development with a crack detection and no repair
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Figure 3.11 Updating of probability density function of crack size when no crack is
detected.

and a crack detection and repair (none of these figures show results of actual caleu-
lations).

The effect of MPI on the reliability of hot spot 1 which has an deterministic life
time of 111 years, Table 3.3, is considered. The design life time is taken as 100
years. The time of the first inspection is selected such that the probability of failure
before this time is 10~ corresponding to a reliability index 8=3.72, i.e. after 20
years according to Fig.3.14.a. This probability level is not stated in any offshore code
as a requirement but is here selected as a number which appears appropriate. The
general conclusions are not very dependent on the number, but clearly the resulting
number of inspections depends on it. The choice of F=4.7 could also be considered as
this corresponds to the reliability index inherent in the code when inspection and
repair is not possible and the design must have a Miner sum less than 0.1,

It is assumed that no crack is detected in the first inspection. The reliability is
then updated according to Eq.(3.30) as shown in Fig.3.14.b. The solid reliability
index curve in this figure corresponds to failure before the considered time. To avoid
confusion, it must however be emphasized that the two parts of the curve are not
based on the same information. The figure does therefore not show a cumulative dis-
tribution function for the fatigue life time derived before the inspection program
starts (such a cumulative distribution function is monotonic). The reliability index
just after the inspection at 20 years correspends to the probability that failure has
occurred (the crack has grown through the thickness) but this is not detected.

Y
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Figure 3.12Updating of crack size density function when no crack is detected in

1 ¢ ( Q) several successive inspections.
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Figure 3.13 Updating of crack size density function when a crack is detected and
measured, not repaired or repaired.



RELIABILITY INDEX B

- 98 -

After the first inspection the reliability index decreases with time as shown in
Figure 3.14.c where the development for fixed inspection intervals of 20 years is
shown. The updated reliability level is above 8§ = 3.72 or the updated prdﬁbility of
failure P# is below 10~* throughout the life time of 100 years. Figure 3.15 shows

the same results as Fig.3.14 but for another assumed quality of MPI inspection
(another POD curve given in Eq.(2.1).
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Figure 3.14 Updated first-order reliability index after inspections with MPI with

no crack detection. Regular intervals, A= 1.3 mm in POD curve
Eq.(2.1).

Figures 3.16 and 3.17 show for the two MPI POD-curves the necessary amount
of inspection to achieve a level above g = 3.72. It is observed that only two inspec-

tions respectively three inspections are needed. A potential reduction of 50 % and 25
% respectively is thus present.

PROBABILITY OF FAILURE, Pg



- 29 .

8
S n-l.l..
6 W
& 9 g
x =
o i
< 4} N
> T O
Ll & >
= e
g 2 o= - -""--‘-‘ - — R 5
=4 3 i R, .-: <{
w 01 &
* 2
AN VN WP U WS G SH SHI RS W GHNN VN TN U U SO SR | Smad i & 05 o_
40 60 80 100 120
YEARS IN SERVICE
Figure 3.156 Updated first-order reliability index after inspections with MPI with
no crack detection. Regular intervals, A= 2.6 mm in POD curve
Eq.(2.1).
8
- &u
6} W
< %
x =
3 | :
Z a4 N
> O
-t >
I —
o _1
<7 - D
< = = =401
w v
& | .
[T U U VR W S W UUN N Ul U NI DN SH VN VN W SR S S— - 05 0o
20 40 60 80 100 120

Figure 3.16

YEARS IN SERVICE

Updated first-order reliability index when the MPI inspections are

optimized. A= 1.3 mm in POD curve Eq.(2.1).
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Figure 3.17 Updated first-order reliability index when the MPI inspections are

optimized. A= 2.6 mm in POD curve Eq.(2.1).
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Figure 3.18 Updated first-order reliability index after visual inspection with no
crack detection. Regular intervals, A= 6.5 mm in POD curve

Eq.(2.1).
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Figure 3.19 Updated first-order reliability index after visual inspections with no
crack detection. Regular intervals, A= 13.0 mm in POD curve
Eq.(2.1).

For visual inspection Figures 3.18 and 3.19 show similarly to Figures 3.14 and
3.15 for MPI the reliability for an inspection strategy with inspection every 20th
year. It is again assumed that no cracks are detected. The visual inspection is not
able to maintain a reliability level above fp =3.72 throughout the life time,
although the reliability level immediately before an inspection increases also in this
case. To mamtain a reliability level larger than 3.72 thus requires 5 respectively 10
inspections, see Figures 3.20 and 3.21,

When a crack is detected and the size is measured a decision must be made on
whether or not to repair immediately. The analysis includes measurement uncer-
tainty in sizing the detected crack - either directly or indirectly. With a criterion for
the reliability between two inspections, a safe period of operation can be determined
and a decision on repair be somewhat postponed. The situation in which a repair
takes place and the reliability after repair is shown in Figure 3.22. It is assumed
that a crack size of a,, = 4 mm is repaired after 20 years. The distribution of the
initial crack size after repair a,,, is taken as an exponential distribution with a
mean value of 0.11 mm, i.e. as the same initial distribution as after installation.
Independent material properties are assumed in this case and the same distribution
is used for the properties before and after repair. It follows from the results that
there is an immediate increase in reliability after repair, but the reliability drops
below the level obtained by the design calculations. This reflects the possibility that
the cause for the repaired crack is a larger than anticipated loading of the hot spot,
which is also acting after repair.
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Figure 3.20 Updated first-order reliability index when the visual inspections are
optimized. A= 6.5 mm in POD curve Eq.(2.1).
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Figure 3.21 Updated first-order reliability index when the visual inspections are
optimized. A= 13.0 mm in POD curve Eq.(2.1).
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Figure 3.22 Updated first-order reliability index after repair of an 4 mm crack
after 20 years.
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4. APPRAISAL OF THE LIMITATIONS OF THE ANALYSIS.

The limitations in terms of modeling capabilities and available data are dis-
cussed. Some of these limitations are of fundamental nature while others may be
removed, however, often at significant cost. The models applied in the analysis
represent a compromise between easy use and accurate description of real world per-
formance. With the improvements suggested below the models are, however, very
well suited in decision making concerning inspection planning and repair. Already
with the present state of the methods their use can be very beneficial, i.e. the relia-
bility can be improved for a fixed inspection budget or the inspection costs can be
reduced while maintaining the reliability.

Models for environmental conditions, load models, global structural analysis
models, and local stress analysis models applied in the analysis are well accepted
and verified. Good estimates for the mean values of input parameters are generally
available. Through many studies in recent years it is also possible to give sound esti-
mates for the coefficients of variation. The distribution types have not been accu-
rately assessed and formal choices must be made.

In computing stress intensity factors the analysis presented here applies a
simplified approach. With forthcoming finite element codes for cracked joints this
computation may soon be improved at a reasonable cost. When the only inspection
consists in detection of leakage, an important phase in this context is where the
crack grows through the thickness and starts a circumferential growth. No good
knowledge of stress intensity factors are presently available for this phase. The prob-,
lem is, however, equally critical for deterministic as for probabilistic calculations.

The Paris and Erdogan equation for crack growth is adopted and no interaction
effects are included, i.e., the order in which the load cycles appear is considered of no
importance. A possible effect of the mean stress level including residual stresses is
also excluded. These assumptions are made in almost all deterministic analyses,
but are more fundamental for the success of the probabilistic analysis. Without these
assumptions the variables in the differential equation cannot be separated and
under variable amplitude loading not only the moments of stress range distributions
are needed. When the assumptions are not valid simulation is the only available
alternative to the analytical methods presented here. The computation time then
becomes prohibitively long for a probabilistic analysis.

Data on initial defect sizes and the material parameters governing crack
growth are sparse.

Acceptance criteria in probabilistic analyses need to be defined. This applies
both to the design situation, but in particular to a situation with updating based on
inspection results. No "safe" periods of operation without inspection/repair can other-
wise be identified. A calibration to existing "acceptable” design practice is the easiest
solution, but may break down for new design situations. An international standard-
ization of distribution types for the uncertain parameters and of acceptance levels is
being prepared on a long term basis.

Acceptance criteria for individual joints and members must reflect the conse-
quences of failure in terms of reduction of system reliability. To this end system
reliability methods - even in a simplified form - must be available. Although mush
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research work is carried out in this area no satisfactory system reliability analysis
procedures have been devised. Good progress is, however, reported by many
researchers.
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APPENDIX

PROBABILISTIC FATIGUE CRACK GROWTH ANALYSIS
- OF OFFSHORE STRUCTURES, WITH RELIABILITY
UPDATING THROUGH INSPECTION

Henrik O. Madsen®, Rolf Skjong?,
Andrew G. Tallin®, and Finn Kirkemo?

ABSTRACT

A stochastic model for fatigue crack growth is applied, which
accounts for uncertainties in loading, initial and critical defect sizes,
material parameters including spatial variation, and in the uncertainty

- related to compntation of the stress intensity factor. Failure probabilities
are computed by first- and second-order reliability methods and sensi-
tivity factors are determined. Model updating based on in-service inspec-

- tion results is formulated within the first-order reliability method.
Updated failure probabilities are computed and the distributions of the
basic variables are updated. Two types of in-service inspection results are
used to update the computed failure probabilities. Inspections which do
not detect a crack are used and the inspection uncertainty is included in
terms of the distribution of nondetected crack sizes by the specific inspec-
tion method. Inspections which detect a crack are also included and the
inspection uncertainty is included through the uncertainty in the measured
crack size. The formulations are presented for updating based on one or
more Inspections. A similar formulation for reliability updating after
repair is provided within the same framework.

1. INTRODUCTION

In offshore steel structures flaws are inherent due to, e.g., notches, welding defects
and voids. Macro cracks can originate from these flaws and under time varying loading
grow to a critical size causing catastrophic failure. The conditions governing the fatigue
crack growth are the geometry of the structure and crack initiation site, the material
characteristics, the environmental conditions and the loading. In general, these conditions
are of random nature. The appropriate analysis and design methodologies should therefore
— be based on probabilistic methods.

In recent years considerable research efforts have been reported on probabilistic

modeling of fatigue crack growth based on a fracture mechanics approach, see, €.g., [1-8].

om In particular, stable crack growth due to cyclic loading has been studied. This paper
presents a stochastic model for this crack growth phase for which linear elastic fracture

mechanics is applicable. A common model is formulated for constant and variable ampli-

- tude loading. The model is developed for a cracked panel and has been shown to be in
good agreement with experimental test results. A generalization to a semi-elliptical

e rergyTTey .
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surface crack is straightforward and has been successf ully implemented. Uncertainties in
the loading conditions, in the computation of the stress intensity factor, in the initial
crack geometry, and in the material properties are included. In particular the material
resistance against crack growth is modeled as a spatial random process thus accounting for
material variations within each specimen.

The probability that the crack size exceeds a critical size during some time period is
of interest. It is demonstrated how this event is formulated in terms of a limit state func-
tion with a corresponding safety margin and how the probability of failure can be calcu-
lated by a first- or second-order reliability method. The critical crack size may refer to
growth through the thickness or to a size where a brittle fracture or plastic collapse occur.
The critical crack size can be modeled as a deterministic or as a random quantity.

Inspections are frequently made for structures in service. Some inspections result in
the detection of a crack while others give no detection. The size of a detected crack is
measured either directly or indirectly through a non destructive inspection method,
where the measured signal is interpreted as a crack size. Neither the measurement nor the
interpretation are possible in an exact way and the resulting inspection result is conse-
quently of random nature. When the inspection does not reveal a crack this does not
necessarily mean that no crack is present. A detectable crack is only detected by a certain
probability depending on the size of the crack and on the inspection method. Whether or
not a crack is detected, the inspection provides additional information which can be used
to update the reliability and/or the distribution of the basic variables. This can lead to,
e.g., modifications of inspection plans, change in inspection method, or a decision on repair
or replacement. The paper describes inspection results in terms of event margins and for-
mulates the updating in terms of these event margins and the safety margin. The use of
first-order reliability methods to perform the calculations is demonstrated.

When a repair of a detected crack is made and a new reliability analysis is per-
formed, it is important that the new analysis accounts for the information that a repair
was necessary. Often it is not possible to determine if the unexpected large crack size has
been caused by a large initial size, by material properties poorer than anticipated, or by a
loading of the crack tip area larger than anticipated. The paper demonstrates how infor-
mation obtained in connection with a repair is introduced.

For welded structures a crack is generally assumed to be present after fabrication.
The analysis method can, however, in a simple manner include a random crack initiation
period for which a separate model can be formulated.

2. FATIGUE CRACK GROWTH MODEL

In a linear elastic fracture mechanics approach the increment in crack size, Aa, dur-
ing a load cycle is related to the range of the stress intensity factor, AKX, for the load

cycle. A simple relation which is sufficient for most purposes was proposed by Paris and
Erdogan, [9]

Aa =C(AK )", AK>0 (D

The crack growth equation Is used without a positive lower threshold on AK below
which no crack growth occurs. The equation was proposed based on experimental results,
but is also the result of various mechanical and energy based models, see, e.g., [9,10]. C
and m are material constants. The crack increment in one cycle is generally very small
compared to the crack size and (1) is consequently written in a ’'kinetic’ form as

da _ m
N CAK)Y™ |, AK >0 (2)



I

where N is the number of stress cycles. The stress intensity factor K is computed by
linear elastic fracture mechanics and is expressed as

K=gY(a)Vma (3)

where o is the far-field stress and Y (¢ ) Is the geometry function. To explicitly account
for uncertainties in the calculation of K, the geometry function is writien as
Y(a)=Y(a,Y), where Y is a vector of random parameters. Inserting (3) in (2} and
separating the variables leads to the differential equation

da
Y (a, Y (Vra )™

where a Is the initial crack size. The equation is applied both for constant and for vari-

able amplitude loading, thus ignoring possible sequence effects. Also a possible effect of
the mean stress or R -ratio is ignored.

=Co™dN, a(0)=a, (4)

Eqgs.(1-4) describe the crack size as a scalar @, which for a cracked panel is the crack
length. For a surface or emebedded crack a description of the crack depth, crack length
and crack shape is necessary. It is common practice to assume a semi-elliptical or elliptical
initial shape and to assume that the shape remains semi-elliptical or elliptical during the
crack growth. In that case the crack depth a and the length 2c describe the crack. The
differential equation (2) is replaced by a pair of coupled equations, see e.g. {11].

Solutions to (4) are smooth curves which do not intermingle. This is in contrast to

experimental results as reported in, e.g., [12]. As a consequence the crack growth model is
randomized as, [7]

da C,
= AKX 5)
dN  Cyla) (ax )" (
where C, is a random variable modeling variations in C from specimen to specimen,
while C,{a) is a slalionary log-normal process modeling variations in C within each
specimen. The expected value of C ,(a ) is taken as one. The random model in (5) has three
properties, which are experimentally observed in the test results reported in [12]:

- sample curves of @ versus N are irregular and not very smooth,

- sample curves of a versus N become more smooth for larger values of a,

- sample curves of @ versus N intermingle, in particular for smaller values of @.

To estimate the correlation properties of the random process C,{a ) a statistical analysis

of the test data from [12] has been carried out, [7]. The correlation function p,(Aa) for

C,{a) is shown to decrease to zero very rapidly with Aa. The correlation radius r¢ is
defined as

re = fpz(x)dx (6)

and has been estimated as 0.12 mm for the aluminum alloy in the experiments of [12].
The variance of C, has been estimated as 0.062 for the same data. The varjance is
expected to be significantly larger for crack growth in material in the heat affected zone or
in the weld material. Non-proprietary data are, however, not available for estimation of
the variance in these circumstances.

A damage function ¥(a ) is introduced from (4) as

‘p(a)=f Cz(x)

TR LTS 7
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The stress ranges are denoted S, =Ao,; and solution of (4) gives

v Cy 8™ N constant amplitude loading
¥a)=C, [sman ={ (8)
0 C, X S variable amplitude loading
r=]

The difference between the two cases of constant and variable amplitude loading therefore
only concerns the loading statistics. In the remaining part of the paper constant amplitude
loading is considered.

In the presentation it has so far been assumed that a crack is present at the time the
loading is applied. With an initial crack initiation period before the crack reaches a size a

for which fracture mechanics can be applied to describe the f atigue crack growth with
some confidence, the solution to (4) is

] C,(x)

LY GYY (xS C1ST (NN ©)

where N, is the (random) crack initiation period for which a separate model can be for-
mulated.

The second moment statistics for the damage function conditioned upon (a4,Y,m ) are

E[C,(x)] dx = f 1
Y (2, Y)Y (Vox )™ s Yz, Y (Vorx )

“ COV[Cz(xl),Czcxz)]
Var |V la,Y, =
ar [¥(a)lagY,m] afniwxl.w’" o Y G o

dx (10)

El¥(a)lay,Yml= f

0 [

dxldxz (11)

a
P 1
rC2Var[C2]!Y(x O G dx
0 ]

mialea,l

f 1 dx
2, Y (x.Y) (arx)m

(Zy( dx, )5é (}% dx, )"5

%3.Y)%" (qrx O 5o Y (x2.YP™ (mrx )™

pl¥(a ) Vla)lag Y ml= (12)

The approximations for the variance and the correlation function are justified by the short
correlation length of C,(a) compared to crack size increments of interest. The random
variable W(a )la,,Y,m is essentially the sum of many independent random variables of
approximately the same variance. The distribution is therefore well approximated by a
normal distribution.

The failure criterion is taken as exceedence of a critical crack size a. in a time period
with /V stress cycles,

Qe —dp \<.. 0 (13)

where ap is the crack size after the N stress cycles. ¥(a) is monotonically increasing
and the failure criterion (13) can be written as

‘I’(GC)—‘I’(GN)*_-I C,(x)

dx -C,S™ N £0 (14)
3, Y (x YI* (Vo ™ T S
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The safety margin M is therefore defined as

“ C,(x)
e dx — m"N 15
M= ey ey 6 1

and the failure probability Pr is
Pp = P(M <0) (16)

3. EVENT MARGINS FOR INSPECTION RESULTS AND REPAIR
Two types of inspection results are considered

a(N{_) "{Adll i=1,2$.-' lr (17)
alN;)=A;, j=12,"".s (18)

In the first case, (17), no crack was found in the inspection after NV, stress cycles, imply-
ing that the crack size was smaller than the smallest detectable crack size Agi Ay Is gen-
erally random since a detectable crack is only detected with a certain probability depend-
ing on the crack size and on the inspection method. The distribution of A4 is the distribu-
tion of non-detected cracks. Information of the type (17) can be envisaged for several
times. If A, is deterministic, however, and the same for all inspections, the information
in the latest observation contains all the information of the previous ones. In the second
case, (18), a crack size A j Is observed after V, stress cycles. A, is generally random due
to measurement error and/or due to uncertainties in the interpretation of a measured sig-
nal as a crack size. Measurements of the type (18) can also be envisaged for several times
corresponding to several values of N;.

For each measurement (17) an event margin M, can be defined similar to the safety
margin (15) as
Agy

__ m _ Cz(X)
My =Cy 87 Ny ;cY(x,Y)mw?r}“)m

dx £0, i=12,"-+,r (19)

These event margins are negative due to (17). For each measurement (18) an event mar-
gin can similarly be defined as

A
C(x) .
M =_/' 2 dx —C,S™ N, =0, j=12,--, 20)
1YY Wy T g * (

These safety margins are zero due to (18).

The situation is envisaged where no crack is detected in the first r inspections at a
location, while a crack is detected by the r +1'th inspection and its size is measured at this
and the following s —1 inspections. The updated failure probability is in this case

Pp = P(M<0IM,€0N -+ NM, SONM, 1= - - - =M, ,,=0) (21)

A more general situation involves simultaneous consideration of several locations with
potentially dangerous cracks for which inspections are carried out. The updating pro-
cedure still applies when due consideration is taken to the dependence between basic vari-
ables referring to different locations.

Assuming that a repair takes place after N, stress cycles and a crack size a,,, 1s
observed. The event margin M,,, is defined as
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a
re C (x)
M =f 2 dx —C{8™ N,,, =0 (22)
YY) (Vrx ! TP
The crack size present after repair and a possible Inspection is a random variable q,,,, and

the material properties after repair are m_,, and C 1new - The safety margin after repair is
M

new

“ Cz(x) m
M, = dx —C 1 pew 8™ (N =N, ) (23)
I X (S Yo b d

and the failure probability after repair is
Py = P(M,,, <0IM,,,=0) (24)
This updated failure probability is then of the same form as (21).

4. RELIABILITY METHOD

The reliability method used in this paper is the first-order reliability method which
is here bricfly reviewed for parallel systems. For a more thorough description see [13].
Each element in the parallel system is described by a safety margin M, =g, (Z) in terms of
the vector of basic variables Z. The safety margins are defined with M, €0 corresponding
to failure in the i th element, and g; (z)=0 defining the limit state surface for the i th ele-
ment. The failure probability of a parallel system with & elements is

The failure probability is computed efficiently and to a good accuracy by a first-order reli-
ability method. The first step in the computation is a transformation of the vector of basic
variables into a vector of standardized and independent normal variables U. The transfor-
mation is denoted T and the transformed space is called the normal space.

U=T(2Z) (26)
A good choice for T is a transformation, which uses the conditional distribution functions
Filzlzy, ... 2, )=P(Z,€2/1Zy=2,,-+,Z,_1=2,_,) of the basic variables, [14]

U1 = q’—l(F](zl))
Uz = (p_—l(Fz(ZzIZl))

: 27
U =N F(Z,12,,Z5 - 21D (27

Un = q)'_l(Fn (Zn IZI’ZZ’ e 'Zn—l))

Here ®( ) denotes the standardized normal distribution function. The limit state surfaces
for the individual elements are expressed in terms of u as

g:(2)=g (Tl =g, ,(W)=0, i=12,---k (28)

The second step in a first-order reliability analysis consists in determining the joint
design point u”, which is the point on the limit state surface closest to the origin. u” is
thus found as the solution of a constrained minimization

min lul

£8,,(0) €0, i=12,- -k (29)



-7 -

provided that g, ;(0)>0 for at least one i €{1,...k }. Standard optimization techniques
can be applied to solve this problem. All constraints are not necessarily active at the joint
design point, i.e., g, ; (u)=0 is not necessarily valid foralli. Let! <k denote the number
of active constraints.

The third step in a frst-order reliability method consists in a linearization of the
safety margins at the joint design point formulated in the normal space. In normalized
form the linearized safety margins are

Mi = B[ —'miTU (30)

where a; is a unit vector and B, is the first-order reliability index for element i of the
parallel system linearized at the joint design point. The correlation coefficient p,; between
the safety margins M; and M, is

Dy =plM; M, 1= o, (31)
The failure probability of the parallel system is now estimated as
Py = @,(—B;p) (32)
where B={B;}, p={p;;} and only the [ active elements are included. The asymptotic
result as fu” | —oco is, [15]
Py ~ &,(—B:p) [det(I-D)I"V2, 1u’ l—eo (33)

where I denotes the unit matrix and D is a matrix determined by the coordinates of the
design point and the gradients and second order derivatives of the limit state functions at
the design point.

The reliability index 85 for the system is defined as

Br = -7 Pr) (34)
For a single clement the asymptotic result for B Is derived in [16]:
Br ™ B, B=1u’ | =00 (35)
A generalization of this result to a parallel system ylelds
B ~ =07 @,(—B;p)), 1u’ loeo (36)

The failure probability in (16) is calculated directly by (32) or (33) with k=(=1.
The updated failure probability in (21) is rewritten as

P(M<0IM,<0N --- NM, SONM, ;== s =0) (37)
5 P(M<SONM 0N -+ NM, SONM, 11 Sx, 41N """ NM, 4, X, 45)
B, 417" O%r4s
§ P(M,<L0N ---NM, SONM, 41 €x, 410 - MM, 4, £X, 45)
0% 41 0% 4s
where the partial derivatives are evaluated at x=0. Two parallel systems must thus be
analyzed, but the optimization problem is cast in a slightly different form than (29) since
the constraints corresponding to the detected crack sizes are changed to equality con-
straints. In addition, linearized safety margins for inactive constraints are included as

described in {17]. The vector of reliability indices and the correlation matrix for the nor-
malized safety and event margins in the numerator are
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8 v of pf
B, [P Py PR (38)
B8, P2 Py P2

where 8 refer to the safety margin, an index 1 to the normalized event margins for no
detection and an index 2 to the normalized event margins for a detected crack and meas-
ured crack size. The dimension of B, is r (since inactive constraints have been included)
and the dimension of 8, is 5. The vector of reliability indices and the correlation matrix
for the denominator are similarly

(39)

By P1 P
B " |pa’ P

The joint design point for the parallel system in the denominator is generally different
from the design point of the parallel system in the numerator which is emphasized by the
prime. The dimension of 8" is r and the dimension of 8, is 5 .

In [18] the asymptotic result for the partial derivative of B for an element has been
derived with respect to a distribution or limit state function parameter p :

g?.’?_—--.aﬁ_, I | — oo (40)
op op
For the failure probability then follows
0Pr _ 80(-Bg) 0Bg 8 .
o o W) T TR G 1 “

Generalizing this result to the parallel system in the numerator of (37) yields
o P(M<SONM <ON -~ NM, KONM, 1, €x, . N+ NM,,, €x,,.)

(42)
axr+1“'axr+s 1x=0

8 1 of pf
O Praset|—|Bili |o1 P11 PH
B, P2 Py Py

aBr+1 e aBr +5

B
= &, (=B p33) ®, 41 |— lBl Py P1 P11 31

p| 1ol { lof|
- 7; P2 B2 - ol P22 [Pz Pl

where standard results for the conditional multivariate normal distribution have been
applied since the vectors of linearized safety margins are joint normally distributed.
Furthermore §8;/8x,=—1 has been used, which is valid since Var [M,]=1. For the condi-
tional probability in (37) one obtains:
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P(ML0IML0N -+ - NM, KONM, ;= - - =M, ,,=0) (43)
. 8 ps oy 1 ol | |pf | |
4l B, - szl Pr2 P25 P P Ple Pax Py P
_ R ("'Bz;Pzz)
R (_BZI; Pzz') D, (—Bf + Pz‘{(Pzz')ﬂlBZ'; Py - pz‘,{(Pzz')'—lpzll)

The updating of the reliability has been demonstrated. If the interest is on updating
the distribution of the basic variables the same procedure is followed. Instead of the
safety margin (15) an event margin M for basic variable Z; is defined as

With the safety margin replaced by this event margin the value of the cumulative distri-
bution function for Z; at the argument z; is updated. The procedure can be repeated for
diffcrent arguments z; and the complete distribution function thereby be updated. Ever
when the basic variables are initially independent the updating procedure generally intro-
duces dependence. It may thus be more relevant to update the joint distribution function.
The safety margin M is then replaced by a vector of event margins {Z,~z;}, i=1, - n
and the updating of the vector is performed as described above. In connection with a
reanalysis after repair it is important that the updated distributions are used.

5. EXAMPLE.

Consider a panel with a center crack as in the experiments of [12]. The loading is &
constant amplitude loading leading to a far-field stress range S. The geometry function is
modeled as

Y(a,Y) = exp(¥ 1(%)”0 (45)

The geometry function takes the value one for a=0. Lengths are measured in mm and
stresses in N /mm 2 The distribution of the basic variables is taken as

S € N(60, 10®)

Y, € LN(1,0.2%)

Y, € LN(2,0.19)

ay € EX(1) (46)
ac € N(50,10%)

(InC,,m ) € N ,(—33.00,0.47%, 3.5, 0.3%; ~0.9)

N (u,02) denotes a normal distribution with mean value x and variance 02, Similarly
LN{u,02) denotes a log-normal distribution with mean value p and variance o2
N z(p.l,olz,,uz,o zz;p) denotes a bivariate normal distribution with mean values u; and u,,
variances o and ¢ and correlation coefficient p. £EX () denotes an exponential distribu-~
tion with mean value u. The negative correlation between InC; and m is not reflecting a
physical dependence, but is introduced by the form of the crack growth equation (2).
Statistics for C,{a) are taken as those reported in [7], see section 2 of this paper. The
example has eight basic variables and the transformation into standardized and indepen-
dent normal variables has been described in [13,19,20].
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The first-order and improved second-order approximations to the reliability index
are shown In Fig.1 for various life times expressed in terms of the number of stress cycles
N . The two approximations are close implying that the curvatures of the limit state sur-
face are moderate at the design point.

B
4 4
SORM

FORM
3
2 +
1 4
o4
-t -+

+ + + + + +— N

10° 210° 510> 10* 210  sw0* 107

Figure 1. First- and second-order reliability index from design calculation.
Statistics for the distribution of life time T’ can be directly approximated from the resuits
of Fig.1. For the mean life times the approximation is

ElT]= [U-PT <t Nar = [o(BC Nar (47)
1] 0

For N =1.5-10° cycles the reliability index and the sensitivity factors are shown in
Table 1. o can be interpreted as the fraction of the total uncertainty due to uncertainty
arising from basic variable U;. The major contribution to the overall uncertainty is thus
in this case from the uncertainty in the material parameters. The critical crack size uncer-
tainty is of little relative importance in this case, and the same is concluded in almost all
cases where the critical crack size is significantly larger than the initial crack size. The
uncertainty in the geometry function contributes very little to the total uncertainty in
this case. This is because the value for ¢ =0 is completely known. When this initial value
Is not known the uncertainty is comparable to the uncertainty in the loading. The uncer-
tainty contribution from the uncertainty in the change in the geometry function from the
initial value is generally found to be low. For tubular joints, where the geometry func-
tion is approximately proportional to a V2 for large values of a, this statement may not
be true in all cases.

Based on the results in Table 1 and results for the parametric sensitivity factor (40),
[13,18), the sensitivity of the reltability index to a change in a distribution parameter can
be determined. For the mean value ug of the normally distributed loading variable S, the
sensitivity factor is

B % _ _0358 _ ;0358 (48)
aﬂs Og 10
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TABLE 1 Reliability index and sensitivity factors

N=1510° B=1.816

Variable o ot

o 0.5513 30%
ac -0.0001 0%
S 0.3577 13%
m -0.6141 38%
Clm 0.4362 19%
Y, 0.0248 0%
Y, 0.0085 0%
Y(a. Magac,Y,m -0.0060 0%

An increase in ug by 10 MPa thus leads to an change in 8 of approximately
(-0.0358)10=-0.358.

Next, the situation where a crack is found in the first inspection is considered. It is
envisaged that the inspection is carried out after N = 10° stress cycles and a crack length
of 3.9 mm is measured. The measurement error is assumed to be normally distributed
with standard deviation o, . Figure 2 shows the updated reliability index as a function of
0,4, when (43) has been applied with (r,s)=(0,1). The result is almost independent of

04 in this example as the uncertainty in the initial crack size is dominating the uncer-
tainty in 4 ;.

N

1(:)5 2.:105 510 10¢ 210 5108 107
Figure 2. Updated first-order reliability index after first inspection with crack measure-
ment 3.9 mm.

When the crack is detected, a decision has to be made and two options are present. It may
be decided to repair the crack now or to leave the crack as it is and base a decision on
repair on more inspection results. With just one inspection it is not possible to determine
if the crack was initially large but grows slowly enough that repair is not needed, or the
crack was initially fairly small but is growing fast and must be repaired. If a requirement
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on the reliability index in a period without inspections is formulated, e.g., Bz 22, the
latest time of the next inspection is determined from Fig.2.

Assume that the crack is not repaired but a second inspection at N =2-10° stress
cycles is required. Let the inspection method be the same as in the first inspection and let
the measured crack size be 4.0 mm. The measurement error is again assumed to be nor-
mally distributed with standard deviation ¢ 4 and the two measurement errors are

assumed to be statistically independent. Figure 3 shows the updated reliability index after
this second inspection.

B

4 4

g, 05 02 0Ot 002 Omm

e

0°  210° 510° 10%  210° 508 107
Figure 3. Updated first-order reliability index after second inspection with crack measure-
ments 3.9 mm and 4.0 mm.

Different inspection qualities now lead to very different results. With o, =0 the negative
slope of the reliability index curve becomes very large demonstrating that the crack
growth behavior is basically determined by two combinations of the basic variables. With
a large measurement uncertainty there is an immediate and large increase in reliability,
but after some time the curve becomes almost identical to the curve resulting after the
first inspection. Due to large uncertainty in both inspections only little information is
gained on the crack growth rate. If the inspection quality is very high it may be possible
to state that the crack does not grow to a critical size within the design life time. Repair
and further inspections are then unnecessary. For a poorer inspection quality a time
period until the next inspection can be determined and the decision on repair be further
delayed.

Figure 4 shows the results of Fig.3 together with similar results for a homogeneous
material. It is observed that only for very small inspection uncertainty does the material
inhomogeneity significantly affect results. The estimates for material inhomogeneity used
in this example are for base material and the conclusion may be somewhat different for
crack growth in weld material or in material in a heat affected zone.

Figure 5 presents results similar to those in Fig.3, but for the case where a crack size
of 5 mm is reported in the second inspection. Together, the two Inspection results now
indicate that a large and fast growing crack is present. Repair is therefore necessary
within a short period.
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Consider now different situations where the inspections do not result in crack detec-
tion. An attempt is made to illustrate possible means to achieve a required reliability. Let
the reliability requirement be Bg 23.0 and let the design life time correspond to 1.5:10°
stress cycles.
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Figure 6. First-order reliability index for two plate thicknesses.

Figure 6 shows the reliability index as a function of number of stress cycles for two plate
thicknesses. With a plate thickness ¢ the reliability requirement is fulfilled for the design
life time and no inspections are needed. With a plate thickness of only 60% of ¢ the relia-
bility requirement is fulfilled for the period untit N =2-10° stress cycles, where an inspec-
tion is needed. The quality of the inspection is reflected in the distribution of non-detected
cracks. An exponential distribution is assumed with a mean value A. Cracks initially
present are cracks which have passed the inspection at the production site either because
they were not detected or because they were below the acceptance level. If no cracks
were accepted in fabrication, the fabrication inspection therefore corresponds to A=1,

Figure 7 shows the initial reliability index and updated reliability indices for three
Inspection qualities. The best inspection quality A=0.3 is better than the fabrication
inspection quality and if no crack is found with this method the increase in rellability is
sufficient to make further inspections unnecessary. For the two other inspection qualities,
periods are determined until the next inspection.

Figure 8 shows the total inspection requirement for A=1 when no crack is detected in
any inspection. For this case two inspections are needed. Finally, Fig.9 shows the total
inspection requirement for A=3 when no crack is detected in any inspection, and for this
case five inspections are needed. It is thus demonstrated that diferent strategies on design
and inspection planning can be used to achieve a required reliability. Based on costs of
each strategy including expected failure costs a cost optimal solution can be determined.
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Figure 7. Updated first-order reliability index after first inspection with no crack detec-
tion.
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Figure 8. Updated first-order reliability index after inspections with no crack detection,
mean size of non-detected cracks 1 mm.
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Figure 9. Updated ﬁrst—order reliability index after inspections with no crack detection,
mean size of non-detected cracks 3 mm.
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Figure 10. Updated first-order reliability index after repair of an 8 mm crack at N =2-10°
stress cycles.
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The results of a reliability analysis following a repair of a detected crack is illus-
trated in Fig.10. It is assumed that a crack size of a,,, =8 mm is repaired after N, =2-10°
stress cycles. The distribution of the initial crack size after repair a,,, is taken as an
exponential distribution with a mean value of 1 mm, i.e., as the same initial distribution
as after fabrication. Two situations are considered with either identical or independent
material properties before and after repair. When independent properties are assumed the
same distribution is used for the properties before and after repair. If follows from the
results that there is an immediate increase in reliability after repair, but the reliability
quickly drops to a level below the level obtained for the calculations before repair. This
reflects the possibility that the cause for the large repaired crack size is a larger than anti-
cipated loading of the crack tip, which is also acting after the repair.

The results presented in this example have been for a constant amplitude loading.
For offshore structures a long term stress range distribution is generally applied in fatigue
analyses. Due to uncertainty in the environmental statistics, load models, global struc-
tural analysis and local stress analysis, the parameters of the long term distribution
should be modeled as random variables. A Weibull distribution is often used

Fg(s )= 1—exp(—(s] A)2), s>0 (49)

where A and B are random variables. A calibration of the statistics for A and B, based
on an uncertainty modeling for the above mentioned sources, can be performed by a
modification of the probabilistic fatigue analysis presented in [21]. The factor ¥/L,S™ in
(8) is replaced by the expected value, which for Weibull distributed stress ranges becomes

y m

E[T s™ =EINIEIS™]= EIN1A™ r(1+-§) (50)
r=l

The expected value is random due to the random distribution parameters, but the uncer-

tainty in the sum for fixed distribution parameters is neglected. This is reasonable due to

the large number of random variables with little correlation in the summation.

6. CONCLUSIONS
The following conclusions can be stated:

1) A stochastic model for fatigue crack growth has been applied which accounts for
uncertainties in loading, initial defects, critical crack size, material parameters
including spatial variation, and in the computation of the stress intensity factor.
Based on the crack growth model and a load model a safety margin has been defined.

2) Two types of inspection results have been considered and the inspection uncertainty
has been modeled. Event margins have been defined for both types of inspection
results. Updated reliabilities have been expressed in terms of the safety margin and
the inspection event margins. A similar analysis has been performed for a structure
after repair.

3) A brief discussion of first-order reliability theory applied to parallel systems has
been presented. It has been demonstrated that the updating after inspection and
repair can be carried out in a simple way by use of first-order reliability methods.
Updating of the reliability and/or of the distribution of the basic variables have been
considered.

4) The analysis has been presented for an example panel with a center crack. The relia-
bility index has been computed based on information at the design stage and has been
updated based on inspection results both resulting in crack detection and in no detec-
tion. The effect of material inhomogeneity for the selected base material has been
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demonstrated to be insignificant. Different inspection qualities have been considered
resulting in different effects on the updated reliability index.

7. REFERENCES

[1] Kozin, F. and J. L. Bogdanoff, "A Critical Analysis of Some Probabilistic Models for
Fatigue Crack Growth,’ Engineering Fracture Mechanics, Vol. 14, 1981, pp. 59-89.

[2] Arone, R., 'On Reliability Assessment for a Structure with a System of Cracks,’ in
DIALOG 6-82, Danish Engineering Academy, Lyngby, Denmark, 1983.

[3] Series of Articles by the ASCE Committee on Fatigue and Fracture Reliability, Jour-
nal of the Structural Division, ASCE, Vol. 108, 1982, pp. 3-88.

[4] Lin, Y. K. and J. N. Yang, 'On Statistical Moments of Fatigue Crack Propagation,’
Engineering Fracture Mechanics, Vol. 18, 1983, pp. 243-256.

[5] Madsen, H. 0., 'Probabilistic and Deterministic Models for Predicting Damage Accu-
mulation due to Time Varying Loading,’ DIALOG 5-82, Danish Engineering
Academy, Lyngby, Denmark, 1983.

[6] Bolotin, V. V., Wahrscheinlichkeitsmetoden zur Berechnung von Konstruktionen, VEB
Verlag fur Bauwesen, Berlin, 1981.

[71 Ortiz, K. and A. S. Kiremidjian, 'Time Series Analysis of Fatigue Crack Growth
Data,” submitted to Engineering Fracture Mechanics, 1985.

[8] Ditlevsen, O., 'Random Fatigue Crack Growth - A First Passage Problem,’ Fngineer-
ing Fracture Mechanics, Vol. 23, 1986, pp. 467-477.

[91 Paris, P. and F. Erdogan, *A Critical Analysis of Crack Propagation Laws,’ Journal of
Basic Engineering, Trans. ASME, Vol. 85, 1963, pp. 528-534.

[10] Irving, P. E. and L. N. McCartney, 'Prediction of Fatigue Crack Growth Rates:
Theory, Mechanisms and Experimental Results,” Fatigue 77 Conference, University
of Cambridge, in Metal Science, Aug./Sept. 1977, pp. 351-361,

[11] Shang-Xian, W., 'Shape Change of Surface Crack During Fatigue Growth,’ Engineer-
ing Fracture Mechanics, Vol. 22, 1985, pp. 897-913.

[12] Virkler, D. A., Hilberry, B. M. and P. K. Goel, "The Statistical Nature of Fatigue
Crack Propagation,” Journal of Materials and Technology, Vol. 101, 1979, pp. 148-
153.

[13] Madsen, H. O., Krenk, S. and N. C. Lind, Methods of Structural Safety, Prentice-Hall
Inc., Englewood Cliffs, New Jersey, 1986.

[14] Hohenbichler, M. and R. Rackwitz, 'Nonnormal Dependent Vectors in Structural
Reliability,” Journal of the Engineering Mechanics Division, ASCE, Vol. 107, 1981,
pp. 1227-1238.

[15] Hohenbichler, M., ’An Asymptotic Formula for the Probability of Intersections,’ Ber-
ichte zur Zuverlassigkeitstheorie der Bauwerke, Heft 69, 1.KI, Technische Universitat
Munchen, 1984, pp. 21-48,

[16] Breitung, K., ’Asymptotic Approximations for Multinormal Integrals,” Journal of the
Engineering Mechanics Division, ASCE, Vol. 110, 1984, pp. 377-386.

[17] Hohenbichler, M., Gollwitzer, S., Kruse, W., and R. Rackwitz, '"New Light on First-
and Second-Order Reliability Methods,” Manuscript, Technical University of Munich,
1986.



i

~19-

[18] Hohenbichler, M., ‘Mathematische Grundlagen der Zuverlassigkeitsmethode Erste
Ordnung und Einige Erweiterungen,” Doctoral Thesis at the Technical University of
Munich, Munich, West Germany, 1984.

[19} Madsen, H. O., 'Random Fatigue Crack Growth and Inspection,’ in Structural Safety
and Reliability, Proceedings of ICOSSAR’85, Kobe, Japan, TIASSAR, 19835, Vol. 1, pp.
475-484,

[20] Madsen, H. 0., 'Model Updating in First-Order Reliability Theory with Application
to Fatigue Crack Growth,” in Proceedings, Second International Workshop on Sto-
chastic Methods in Structural Mechanics, University of Pavia, Pavia, Italy, 1985.

[21] Madsen, H.O., Skjong, R. and M. Moghtaderi-Zadeh, 'Experience on Probabilistic
Fatigue Analysis of Offshore Structures,’ in Proceedings, OMAE Conference, Tokyo,
Japan, 1986, Vol.II, pp.1-8.






