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FRACTURE ANALYSIS AND
CORROSION FATIGUE IN PIPELINS

Scope of the Project

The primary objectives of this research program are

 {a)
(b)
(c)

(d)
(e)

(f)

Classification and assessment of the relative importance

of various types of weld defects

An in-depth study of the problem of interaction between

two flaws and between flaws and pipe surfaces

Fracture analysis of pipes with crack arrestors

The effect of crack orientation on the strength of pipes

The development of quantitative understanding of the early
stage of chemical reactions in relation to the corrosion
fatigue crack initiation and propagation

Elucidating the mechanisms for corrosion fatigue crack initia-
tion and propagation, including the influences of chemical,
mechanical and metallurgical variables in pipeline steels

The formulation and evaluation of models for predicting
cracking response and service performance by using a combined
fracture mechanics, surface chemistry and materials science
approach. '

In this second annual report the completed part of the research program
during September 1983 to October 1984 is described and the results are presented.

General Information

The research presented in this report is supported by the U.S.
Department of Transportation, Office of University Research, and by
the U.S. Department of Interior, Minerals Management Seryice, Mr., Duglas
B. Chisholm of DOT Research and Special Programs Administration,
Office of Pipeline Safety Regulation is the Project Monitor. Dr, Charles
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E. Smith, Research Program Manager, Technology Assessment and Research
Branch, Minerals Management Service .is the Department of Interior
technical representative. .

Part I of the report describes the theoretical research carried
out by Professor F. Erdogan, the Principal Investigator, Mr. B. Aksel,
Dr. H. Boduroglu and Dr.'X#H Liu. Part II presents the experimental
work which was carried out by Professor R.P, Wei, the Co-Principal
Investigator and Mr. S. Chiou.
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FRACTURE ANALYSIS AND CORROSION
FATIGUE IN PIPELINES

PART I

FURTHER DEVELOPMENT OF MODELS FOR WELD
DEFECTS AND DEFECT INTERACTION STUDIES

In the previous report [1] various kinds of flaws which may be found in
pipelines, particularly in girth welds were considered, a broad classification
was made, and the results of some defect-defect and defect-free surface inter-
action studies were presented. In this report further inclusion and planar
crack models are developed and some inclusion-crack, crack-crack and crack-free
surface interaction problems are studied. These problems have a bearing in
and application to the fitness for purpose type studies in pipelines which may
contain known or conjectured flaws. As in the previous report, the emphasis
in this report too is on the fracture mechanics approach to the evaluation of
flaws.

1. BACKGROUND

" The standards of acceptability of welds in pipelines are generally based
on certaih empirical criteria in which primary importance is placed on flaw
length. Specifically for girth welds such standards are described in API
STANDARD 1104 prepared by the "American Petroleum Institute - American Gas
Association Joint Committee on 0il and Gas Pipeline Field Welding Practices”.
However, the API Standard also recognizes fitness for purpose criteria based
on fracture mechanics methodology as an alternative technique for flaw evalua-
tion. The advantage of the fracture mechanics approach is that since it takes
into account all factors which may be relevant to the failure of the pipe such
as the type and the relative size, shape, orientation and Tocation of the flaw,
the effect of multipie flaws, the nature of the applied stresses, and the
environmental conditions, it could be somewhat more precise than the empirical
ruies which are largely based on the flaw length, '
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In fracture mechanics approach to flaw evaluation it s implicitly assumed
that the material contains some macroscopic flaws which may form the nucleus
of fracture initiation. Generally, these flaws may be mapped by using an appro-
priate nondestructive flaw detection technique. = Aside from the weld defects
the pipe may alsc have flaws which may be external in origin. Generally the
initial phase of the failure in a pipe is the rupture of the net ligament adja-
cent to the critical flaw in the pipe wail. In most casés the resulting through
crack is arrested and the pipe is repaired before further damage. However, in
some cases the resulting through crack, after some stable growth, may become
unstable leading to circumferential pipe break or dynamic propagation of an
axial crack. The initial rupture of the net Tigament in the pipe wall is
usually preceded by some subcritical crack growth due to fatigue, corrosion
fatigue, or stress corrosioh-cracking'and the actual net ligament rupture is
generally a ductile fracture process.

Therefore, it is seen that in order to apply fracture mechanics analysis
to welded pipes, first one needs to characterize the material itself (the base
metal, the weld material and the material in the heat affected zone) with
regard to fatigue and corrosion fatigue crack propagation, stress corrosion
cracking, fracture toughness and ductile fracture. Next, for a given flaw geo-
metry and loading conditions one has to solve the related mechanics probliem to
calculate the appropriate fracture mechanics parameter such as the stress inten-
sity factor, the crack tip opening displacement, or the J-integral. The third
step in the process would be the selection or development of a proper failure
theory and the application of the related qdantitative failure criterion . The
type of analysis and the experimental work to be performed and the particular
criterion to be used are clearly dependent on the expected or the most Tlikely
mode of failure. '

Even though the primary applied 1oad in the pipelines is the internal
pressure which is largely time-independent, there may be some small variations
in pressure and some vibrations particularly near the pumping stations which may
add a fluctuating component to the static stresses just high enough to cause
concern. There are also secondary stresses which are mainly time-varying in
nature and therefore would enhance the subcritical crack propagation, Some of
the sources of these secondary stresses are misalignment and fit-up, daily,
seasonal and other thermal fluctuations, ground settlement and possible
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earthquakes, axial constraint, and gross bending in offshore piping due to buoy-
ancy and other hydroelastic effects. It should be added that the "stress tran-
sients" may also play a major role in the subcritical crack propagation and par-
ticularly in the final phase of the fracture process, if one takes place. These
stresses are generally caused by the pressure waves resulting from changes in
flow rate due to partially or fully closing of the valves, In the case of pipes
carrying liquids such as petroleum pipelines this is known as the "water hammer"
effect due to which the peak pressure may be as high as multipies of the then
operating pressure in the pipe, In the natural gas pipelines, this increase in
the peak pressure may be somewhat more moderate. Nevertheless, in either case,
such sudden surges of pressure are probably responsible in most cases for the
final stage of the net ligament failure in the pipe wall resulting in leaks or
in a catastrophic failure. .

A detailed description and classification of weld discontinuities-(int]ud-
ing "flaws" which are considered to be undesivable) and a critical review of
the ]iterature as well as very extensive references on the subject up to 1976
may be found in [2]. The problem of interaction between two (planar) cracks
and some empirica1 rules to define a single equivalent crack are discussed in
[3]. The procedures dealing with the subcritical crack propagation by using )
the tools of linear elastic fracture mechanics (LEFM) is High1y standardizéd
and may be found, for example, in [4] or [5]. Similarly, the. process of brittle
or quasi-brittle fracture is relatively well-understood and is easily dealt with
techniques based on LEFM and the concept of fracture toughness. The process
which is not well-understood and not standardized, however, is the ductile
fracture. The Appendix in the API Standard 1104 concerning the fracture mech-
anics applications is based on the critical crack tip opening displacement con-
cept, whereas the J-integral seems to be more widely used in pressure vessel
technology. The description, some applications of and extensive references on
the crack opening displacement approach to fracture may be found in [6]-[8].
Application of a general fracture instability concept based on the crack open-
ing displacement to shells and pTates'with a part-through crack is described
in [9].

Generally a "flaw" may be defined as a discontinuity in material constants
or geometry. Variety of inclusions come under first and notches, pores and
cracks come under the second group of flaws. A common feature of all flaws is
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that they disturb or perturb the stress field around: them. Very often this
perturbation gives rise to a stress concentration around the flaw. However,
for certain typés of flaws there may also be a reduction in key components of
the stresses. From a viewpoint of fracture mechanics applications following
are some of the typical and important flaw geometries.

(a) Pores and Solid Inclusions .

Pores are the ho]es or voids in the material having entirely smooth sur-
faces (Fig. 1.al). If a, refers to the magnitude of the uniform stress field
outside the perturbat1on region of the pore, then the pore lTeads to a stress
concentration which is of the form

g = Ko ,K=—&——',_ _ | (1)

where K is the "stress concentration factor", A is a (finite) constant which
depends on the geometry of the medium and p is radius of curvature of the pore.
Generally K is greater than one. We note that surface notches with finite
radius of curvature p would also come under this category

Solid inclusions are the second phase materials in the medium a]so having
entirely smooth surfaces. The modulus Ei of the inclusion may be greater or
less than the modulus E of the matrix or the base material, the two limiting
cases being the rigid inclusion (Ei=”) and the hole (E1=0), If E,<E, qualita-
tively the perturbed stress field of the inclusion is similar to that of a pore,
meaning that there would be a stress concentration around the inclusion. On
the other hand, if E1>E there would be a reduction in the net section stress.
However, in this case there would also be a stress concentration in other planes
perpendicular to the applied stress, For example, Fig. 2 of [1] shows the stress dis-
tribution in a medium containing a circular inclusion under plane strain or
plane stress conditions. Note that for c>R around the inclusion there is indeed
some stress concentration. In this figure, u is the shear modulus, ¢ = 3-4v ’
for plane strain, and k = (3-v)/(1+v) for plane stress, v being the Poisson's
ratio.
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(b} Pores, Notches and Solid Inclusions with Sharp Corners

From Eq. (1) it may be seen that from a viewpoint of failure analysis a
distinguishing feature of the pores, notches and solid inclusions with smooth
surfaces is that the stress state around such flaws is always bounded. Eq. (1)
also indicates that as the root radius o of the notch tends to zero, the stress
state around notch tip would tend to infinity. Particularly in problems con-
cerning brittle fracture and fatigue crack initiation such flaws may have to
be treated differently. In these nonplanar flaw problems it is said that the
inclusion or the notch tip is a point of stress singularity around which the
stress state would have the following behavior: '

s;ij=;‘-<i- , 0<Re(r) <1/2 , (@)
where k and ) are cohstants-represénting the strength and the power of the
stress singularity and v is a (small) distance from the notch tip. Generally,
Eq. (2) is valid for values of the material angle 8 > v {Fig. 1 b1, b2, b3).
Even though the term "stress intensity factor" is commonly used in relation with
crack problems for which A = 0.5, in the more general problem leading to an
expression such as (2) k is aisb called the "stress intensity factor".

In the case of notches with a material angle = < 8 < 2« the power of sin-
gularity A is dependent on & only and may be obtained from (see, for example,
[10] where the general problem of bimaterial wedge under variety of boundary
conditions are discussed)

cos[2(r=1)87 = T + (A-1)2(1-cos26) = 0 . (3)

(c} Cracks and Flat Inclusions

These are simply the planar flaws in which the material angle o (theoreti-
cally) is 2n (Fig; 1 ¢1, ¢2). Again, the inclusion may be elastic or figid,
the crack being a Timiting case with zero modulus. In all planar inclusion
as well as crack probiems eq. (2) is valid with » = 0.5.

In the previous report [1] the interaction problems between a crack and
an elastic inclusion or a pore, between cracks of various configurations near
and at the boundary and between flat inclusions and planar cracks were con-
sidered and Timited results for planar cracks of finite size were presented.

In this report the details of the interaction probiem for the multiple planar
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cracks of finite size are presented and some of the results are discussed. Also,
a new model for a flat elastic inclusion of finite thickness interacting with
a plane crack is developed and numerical results are given.

2.- PLANAR CRACKS - THE LINE SPRING MODEL

In this section the general description of the 1line spring model for inter-
nal as well as surface cracks is presented and results for various crack geo-
metries are given. Referring to Fig. 2 which is reproduced from API Standard
1104 and which describes a set of empirical rules regarding the interaction
between planar cracks it may be seen that somewhat more quantitative.resu1ts
are needed, The genefa1 method to provide such results is described below.

2.1 Introduction - .

From the viewpoint of practical applications the analysis of a part-through
crack in a structural component which may locally be represented by a "plate”
or a "shell" is certainly one of the most important problems in fracture mech-

anics. In its general form the.prob1em is a three-dimensional crack problem in
~ a bounded geometry where the stress field perturbed by the crack interacts very
strongly with the surfaces of the solid. At present even for the linearly elas-
tic solids a neat analytical treatment of the problem appears to be intractable.
Consequently, asindicated in references [1] and [9], the available soluions of the
problem very heavily rely on some kind of numerical technique, most nbtab?y on
the finite element method. The renewed interest in recent years in the so~
called "1ine-spring model" first described in [11] has been due partly to the
desire of providing simpier and less expensive solutions to the part-through
crack problem and partly to the fact that for certain important crack geometries
the model seems to give results that have an acceptable degree of accuracy.

In a plate or a shell containing a part-thrbugh crack and subjected to
membrane and bending loads, the net Tigament(s) around the crack would generally
. have a constraining effect on the crack surface displacements, The basic idea
underlying the "Tine-spring model" consists of approximating the three-dimensional
crack problem by a two-dimensional coupled bending-membrane problem through the
reduction of the net Tigament stresses to the neutral surface of the plate or
shell as a membrane load N and a bending moment M. In the resulting two-dimensional

-7~
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problem the crack surface displacements are represented by a crack opening dis-
placement § and a crack surface rotation 8, referred to, again, the neutral
surface. The quantities N, M, ¢ and & are assumed to be functions of a single
variable, namely the coordinate X along the crack in the neutral surface (Fig.
3). The pair of functions (s,8) or (N,M) are determined from the corresponding
mixed boundary value problem for the "plate” or the "shell" having a through
crack in which N and M are treated as unknown crack surface loads. Once N and
M are determined the stress intensity factors are evaluated from the two-
dimensional elasticity solution of a strip under the membrane force N and the
bending moment M (Fig. 3b).

The model introduced in [11] is based on the classical plate bending theory.
There is no need here to go into a detailed discussion on the necessity of using
a. higher order plate (or shell) theory in studying the crack problems (see,
for exampie, [12]-[141). It is, however, sufficient to point out that the
'asymptotic stress field around the crack tip given by the classical plate bend-
ing theory is not consistent with the elasticity solutions, whereas a transverse
shear theory (such as that of Reissner's [15], [16]) which can accommodate all
stress and moment resultants on the crack surface separately (i.e., three boun-
dary condit%ons in plates, five in shells) give results which are identica1 to
the asymptotic solutions obtained from the plane strain and anti-plane shear
crack problems [17], [18]. The line spring model was later used in [19] and
[20] to treat the longitudinal part-through crack problem in a cylinder by
using, again, the classical shell theory, The solution obtained by using a
transverse shear theory in plates and shells may be found in [21] and [22]

(see also [23] for more extensive results in line pipes). Rather extensive
results for corner cracks and for collinear surface cracks in a plate having a
finite width are given in [24]. _ .

The concept of "line spring" may be used to treat also the problem of
plastic deformations in the net Tigament [25], [19], [20]. For materials
without any strain hardening a simpler fully-plastic version of the model
was used in [26] and [27] to calculate the crack opening displacement (see
aiso [23] for the application to pipes containing a circumferential part-
through crack).
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Fig. 3 Notation for the part-through crack problem.
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2.2 Description of the Model

The problem under consideration is a surface or an internal crack problem
for a relatively thin-walled structural component which is solved basically as
a plate or shell problem. In the usual notation it will therefore be assumed
that referred to the local coordinate system shown in Fig. 3, Ups Up, Uy are
the components of the displacement vector, 84 and B, are the angles of rotation
of the normal to the neutral surface in X1%3 and XoX4 planes, respectively, and
Nij’ Mij and Vs, (i,J=1,2) are respectively the membrane, moment and transverse
shear resultants. It will further be assumed that the through crack problem
for the plate or the shell has already been formulated and has been reduced to
a system of integral equations. -In the solutions given in [21]-[24] the deriva-
tives of the crack surface displacement and the crack surface rotation on the
neutral surface are assumed to be the unknown functions in the integral equations.
This comes quite naturally out of the formulation of the related mixed boundary
value problem for the plate or the shell. For a symmetric problem of a through
crack (located in one of the principal planes of curvature) along -a<x;<a in a
plate or shell under Mode I loading conditions, invariably the integral equa-

tions are of the following form:
' 1

1 .
VAN +
aé;hXR) f [?+3 tzx + k11(xat)]91(t)dt + Jl k12(xst)gz(t)dt

T, mix)

='.E_E'+ 6E _5'1<X<1 3 (4)
' 1
1 %M |
B[ Lttt | Dgyatlag(e) + kpplxstlale)let
-1 -1
000
=-?f°E" , ~lex<l , (5)

where the unknown functions are defined by

=
[\

=629V="_- (6)

3x

9(x) = 3% B, (x:40) 4 gp(x) = 5 v(x,40) , 8,

-17=



The external loads

- N = 6M../h2 -
5, = Nyp/h , m, = EMyn/h (7)

[£+]

represent uniform membrane and bending resultant applied to the plate or the
shell away from the crack region (Fig. 3a) and o and m which are defined by

s(x) = N(x1,0)/h 5 m(x) = 6M(x;,0)/h% , (-1<x<1, x = x;/a) (8)

are the membrane and bending Toads applied to the crack surfaces (Fig. 3d).

2a is the length and L(x1) the depth of the part-through crack(*). The thick-
ness h and the principal radii of curvature R, and R2 are the other length par-
ameters of the structure, The formulation is given in terms of the dimension-
less quantities defined in Table 1. E and v are the elastic constants of
the material. The integral eqguations are obtained from the following mixed
boundary conditions in x, = 0 plane (Fig. 3d}:

N22(x1,0) = -NZZ + N(x1) s ~A<Xy <A | (9a)
Uy(x150) = 0, [x4]>a, (9b)
.M22(x1,0) = -Mzz + M(xT) » —a<Xq<d, | (10a)
35(x1,0) = 0, [xq)>a , - (10b)

where the genera] principle of superposition is used to account for the loading
' N22 and M22 applied to the structure away from the crack region. From v = u2/a,
By = By and the definitions (6) it follows that the unknown functions g; and
9o must satisfy the single-~valuedness conditions given by

1 1

[y =0, [ geae=0 . (1)
-1 -1

(*) Clearly any additional known external loads may be accommodated by using
the notion of superposition and thereby adding appropriate functions to
the right hand sides of (4) and (5).

~12-
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In all Mode I plate and shell problems the dominant part of the kernels
in (4) and (5) namely, the terms having the Cauchy singularity 1/(t-x) are
the same. The Fredholm kerneis k1J (1,3=1,2) represent the details of the
plate or shell geometry. For the through crack problem in plates the integral
equations (4) and (5) are uncoupled, i.e., kyp=05 koy=0. Thus, the through
crack problem for the plate under membrane and bending loads can be solved
separately. As will be shown below, in the case of a part-through c¢rack the
equations are coupled through the loading terms o(x) and m(x) (which are also
unknown)}. For example, for an infinite plate (4) (5) may be expressed as

[12-14], [21]

a{1-v?) Jl [3+v 1. 4(-v) 1

2mhat T+v t=x ~ 7 1+v (t-x)°
=1
f A 1k altex]) g (Bt = - o2 e IX) g (12)
Ty T-x 2\ % E " 6t ’
10 - ° (x)
EJ T-x gz(t)dt = - -E—+ GEX s =l<x<l (13)
-1

o = [2/x(1-0)T% , | (14)

where Kz is the modified Bessel function of the second kind and the constants
» and « are defined in Table 1, In shelis the kernels k; i (1,3=1 2) are always .
nonzero. ‘

Let us now assume that the local plate or she11 geometry is represented
by Fig. 3 and for simplicity we also assume that the structure contains only
a single surface crack as shown in Fig. 3c. Let N(x1) and M(x1) be the membrane
and bending resultants acting on the neutral surface which are statically equiv-
alent to the net ligament stress czz(xj,o,xs), (—a<x1<a,-h/2<x3<h/2—L(x1))
(Fig. 3c). The first approximating assumption made in introducing the line
spring model is that the crack may now be assumed as being a through crack of
length 2a (Fig, 3d) and the constraint caused by the net ligament stress
522(x1,0 x3) (tending to prevent the crack faces from opening and rotating)
may be accounted for by applying the membrane and bending resultants N(x1)
and M(x]) on the crack surfaces. Note that N and M tend to close the crack
surfaces whereas the external loads N22 and M22 tend to open them.



The second major assumption made in developing the model is that the
stress intensity factor at a location X1 along the crack front may be approxi-
mated by the corresponding plane strain value obtained from a plate which con-
tains an edge crack of (uniform) depth L(xI) and which is subjected to uniform
bending moment M(x]) and uniform tension N(x1) away from the crack region (Fig.
3c}. This assumption makes it possible to express N(x1) and M(x1) in terms of
the unknown functions 9y and g, in (4) and (5), which may then be solved in a
straightforward manner, It should again be emphasized that it is because of
these two rather gross approximating assumptions that a basically intractable
three-dimensional problem is reduced to a relatively straightforward plate or
shell problem. ' |

in order to obtain N and M in terms of 9 and 99 the energy available
for fracture along the crack front is expressed in two different ways, namely
as the crack closure energy and as the product of load-load point displacement.
In a plate with an edge crack subjected to a uniform tension N and uniform
bending moment M(Fig. 4a}, if Ky is the stress intensity factor given by the
plane strain solution, from the crack closure energy the energy (per unit width)
available for fracture may be obtained as

_—y2 '
6 =2 (U-v) = ‘Ev x (15)

where U is the work done by the external loads and V is the strain energy.

Now, let & and 9 be the load Tine "displacements” corresponding to N
and M as shown in Fig. 4a. Let ds and de be the changes in § and 6 as the
crack length goes from L to L+dL under "fixed load" conditions. Then referring
to Fig. 4b the changes in U and V may be expressed as

]

_ dU = Nds + Mds , : (16)

dv

T [N(s+ds)M(e+de)] - & (No+Mo) = - (Nds+hds) . (17)

Equations (13) and (14) give the energy available for a crack growth dL as
follows:

d(U-V) = 5 (Nde+Mds) . (18)

~14-
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Fig. 4 Notation for the related plane strain problem.
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On the other hand for constant N and M and for a change of dL in the crack
length we have .

.38 28
ds =3 d ,de=pd . (19)

Thus, from (15) and (16) it follows that

(N ' - (20)

(U-v) =6 = T M

3 =1
aL . 2

and, by using (12) we find

%_(N_B_Q_'_M_Q_G_):'l-\) K.2% ., (1)

3k oL
Let us now define the membrane and bending stresses by
o = N/h , m = 6M/h2 | | @2)

and assume that the solution- of the plane strain probiem shown in Fig. 4a give
the stress intensity factor as follows: '

Ky = /M [ogy(s) + mgp(s)] . s =L/ -~ (23)

where 9 and g, are known functions. If we also define the following
matrices

| . 2
: ‘ 6 g, 9.9
e (o) = (e () I 1, 8(6) = (gy5) < [glg 8]+ (@)
from (15) and (23) we obtain:
-yl -yl
G =1 = Ky2 = (2 2 h)< 6t . | @)

-16-



Similarly, from (20), (22) and (24) we find.

3w ‘ :
- L (e, 24 12 6°1 _h Taw
G255 * T IR "2° oL (26)
From (25) and (26) it is seen that
&2 Z (1u2)er (27)

By observing that G is a function of L, t is independent of L and w=0
for L=0, from (27) we find '

L L
o= 2 (- s = £ (1920, A - [ Ga . (28)
0 0
If we also define
o 0
YA o Bylxet
B=["g al1:n= v{x,+0) (29)
from s = 2u2(x1,0) = 2av(x,0), 6 = 282(x1,0) = Zsy(x,O) and (28), (29), and

(6) it may be seen that

X 91(t)dt
E -1 _ 1 -1 . -1
T=T-_\-)-2'A 8n , C(x) -T'_TJ'Z'A B, 't* EC - . (30)

X
7 gy(t)dt

Note that since L = L(x ) L(ax) is a known function of x the matrix A and
consequently C = (1- vz) 1a=lg consist of also known functions of x.

Substituting now from ( 30) into {4) and (5) we obtain
1

aéi;;il-f (30 Lok kg (x,t)gq(t)dt + J kyp(Xst)gp(t)dt

-1 -7 .
caq{x) (X Cin(x) X »
- ]; [ g1(t)dt - 12 J gz(t)dt = - TE-, -T<x<T,
- ! (31)
1 1 _
2 [ B sp(01t + [ Ty () (8) + pplxitlgp(1)3et
=1 =1
x, X [5 799
- °21(X)J g;(t)dt - CZZ(X)J go(t)dt = - &, -T<x<i , (32)
-1 =1
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where the functions Ci; are the elements of C which is defined by (30).

The functions 9 and e giving the stress intensity factor in an edge-
notched strip as defined by (23) (see Fig. 4a), and the elements of the
matrix A defined by (28) are given in [21]. The functions g, and g,

valid for 0<L/h<0.8 were obtained as follows [21]:

gy(s) = /75 (1.1215 + 6.5200% - 12.3877s" + 89.0554s6
- 188.6080s8 + 207.3870s10 - 32.0524s12), s = L/h , (33)
gp(s) = /7% (1.1202 - 1.8872s + 18.0143s2 - 87.3851s°

+ 241.9124s% - 319.9402s5 + 168.0105s%), s = L/h . (34)

The dominant part of the system of integral equations (31) and (32)
has only a Cauchy kernel and, therefore, the solution is of the following
form:

. it . |
gi(t)=—’-(—-)- » 1 =1,2 35)

" where the functions f] and f2 are bounded in the closed interval -1<t<1

Even in the simplest case (of the infinte plate considered in [21]) the sys-
tem has no closed form solution. However, the unknown functions f1 and fz
may be determined numerically within any desired degree of accuracy by using
the quadrature formulas given, for example, in [28]. After determining f1
and f, the net ligament resultants m and o are obtained from (27) and the
stress intensity factor from (23).

2.3 Internal Cracks

The line spring model described in the previous section may easily be
extended to internal cracks such as that, for example, shown in Fig. 3b.
In this case the basic integral equationS‘for‘a through crack in a plate or
shell under membrane or bending loads remain the same and are again given
by (4) and (5). The major difference is in expressing the resultants o(x)
and m(x) of the net ligament stress czz(xl,o,x3) in terms of & and & or
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(b)

Fig. 5  Geometry and notation for an internal crack.
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v(x) and g (x) which represent the crack opening d1sp1acement and rotation
on the load line (Fig. 5). Let the plane internal crack be defined by

L(xq) L{x;)
-a<X-I<a, XZ = 0, d - 2 < X3 < d + 2 ) (36)

where, for simplicity, d is assumed to be constant. Thus, 1f K, and Ky are
the stress intensity factors at the crack tips A and B in the corresponding
plane strain problem shown in Fig. 5b, as L increases by dlL the energy incre-
ment available for fracture may be expressed as '

d(U-v) = W24(L72) + Kg2d(L/2)] (37)
giving
G = ——-(U V) = 2+ Kg?) - (38 )

which replaces (15). The rate of energy available for fracture as expressed
in terms of load line "displacements" and “forces" remains the same and is
" given by (20). |

Let us now assume that the stress intensity factors for the plane
strain problem shown in Fig. 5b are known as follows:

p = 7 D5 () +mgg(s)] 5 s = L/ o | (39)
Ky = /[0 ggels) + mggls)l s =L/n - (40)

where s and m are again given by (22). The solution of the problem is given
in [29] from which the functions 9at> 9ap° Int and Opp 2re obtained by a
suitable curve-fitting. It is clear that the derivation given in the pre-
vious section, particularly the integral equations (31) and (32) will remain
unchanged and the only change will be in the matrix G{s) defined by {24).

For the internal crack problem shcwn in Fig. 5 the matrix G now becomes

96 + g5, 9ap9at b8t

G(s) = (41)

M| s
>

) 2 4
IanInt 95bI8t  IAt T 9Bt
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Fig. 6 Stress intensity factors for a semi-elliptic (full Tines)
and a rectangular (dashed lines) surface crack in a plate
under uniform tension (v=0.3). -

-21-



cabied

and the matrices t, A and C are again defined by (27)-(30). After solving
the integral equations (31) and (32) for 9 and gé, s and m are obtained
from {24) and (30) and the stress intensity factors from {39) and (40).

From the derivation of the model given in this report it is clear that
the technique can be used to estimate the stress intensity factors in any
plate or shell containing part-through cracks provided.the integral equations
for the corresponding through crack problem is available and the related
plane strain crack problem has a reliable solution which can be properly
parametrized. Thus, extending the method to such prob]ems as the corner
cracks [14], collinear surface or internal cracks [24], part-through cracks
in reinforced plates and shells, and other crack-crack and crack-boundary
interaction problems becomes quite_strajghtforward.

2.4 Some Results

As noted before for the application of the line spring model the contour
of the part-through crack can be any reasonable curve provided the crack is
relatively long (i.e., a>h)., Figure 6 shows the stress intensity factor in
an infinite plate containing a surface crack and subjected to uniform mem-
brane loading N22 away from the crack region. The normalizing stress inten-
sity factor Ke which is defined by

N,
Ko = (-22) /R gyls,) 554 = Ly/h (42)

15 the correspondlng nlane strain value for an edge- cracked strip (see
eq. 33), The figure shows the stress intensity factor at the midsection
(i.e., at x1-0) of a semi-elliptic and a rectangular crack respectively
defined by

L{xq) = L0¢1-1x17a52 = L/TxZ 5 L(xg)= Lys masxq<a . (43)

Note that the limiting values of the stress intensity factor are

K+~0 for a/h+0; K-+K_  for a/h+= . (44)

As one may expect, the stress intensity factor for the rectangular crack is
somewhat greater than that for the semi-elliptic crack and converges faster
to the asymptotic value K. as a/h » «.
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Fig. 7 Stress intensity factor at the mid section of a symmetrically
located elliptic crack in a plate under uniform tension;
G;2=co, L/h=0.5, K0=oo¢wLo7?; K, is the corresponding plane
strain value in a strip (i.e., for ag=).
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From a viewpoint of applying the line spring model perhaps the simplest
part- through crack problem is that of a symmetrically located internal crack
in an infinite plate under uniform tension (see the insert in Fig. 7). In
this case since there is no bending the probiem is reduced to a simple inte-
gral equation given by (32) in which k21, k22 and ¢, are zero. In {41)
9at = gt and G(s) reduces to git and the function ¢, becomes

L(x)
Cpplx) = al(1-v2)| g (L/maLT” (45)
' 0

Figure 7 shows the result of a simple example which is compared with that
given in [30] for a plate containing a symmetrically located elliptic crack
and subjected to uniform tension o, = No,/h.

If the plate is also subaected to uniform bending moment M22, then in
(31) 9np = ~98b and It = 9pt and the integral equations (3}) and (32)
would be uncoupled. It should, however, be noted that because of crack
closure on the compression side, in this case taken separately the bending
results are meaningless. They may be used together with tension results
which are sufficiently large so that the stress intensity factors on both
sides of the crack are positive. The functions 9at and Jpy are obtained
from the results given in [29] as follows:

gAt(s) = /5 ¢ b.sz(j'1) ,s=L/h, : (45 )
1 J
/__ n .j"'.[ ' 4
gAb(S) = Vrs ? csS , 5 =1L/h _ (.7)

where the constants b and cJ are given in Table 2 which is based on the
stress intensity rat1os shown in Table ¥ (see [ 29]). Extensive resuits for

multiple part-through cracks of various configurations will be provided in
a subsequent report.
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Fig.s Stress intensity factors for a semi-elliptic (dashed lines)

and a rectangular (full lines) surface crack in a plate of
finite width under uniform tension N§2'
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Fig. 9 Stress intensity factors in a plate of finite width contain-

ing two symmetrically located quarter elliptic corner cracks
and subjected to uniform tension sz or bending M22
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The problem of a plate having a finite width with the emphasis on collin-
ear partchrough cracks and corner cracks was considered in [24]., Figures 8
and 9 show some sample results for central and corner cracks. Figure 8 shows
the comparison of the stress intensity factors along the crack front for a
symmetrically located, semi-elliptic and a rectangular surface crack in a
plate under uniform tension. The normalizing stress intensity factors Kto and

Koo shown in Figures 8 and 9 are defined by
N 6M., L
2
= (BB g(sy) » Ko = (20 B gy(sg) & 5o = 7 (48)

and are the corresponding plane strain values for an edge-cracked strip under
tension or bending. Figure 9 shows the stress intensity factor at the free
surfaces of the plate Xy = b in a plate containing two symmetric corner cracks
under uniform tension or bending with crack length being the variable.

The form of the integral equations such as that given by (31) and (32) is
quite general and is applicable to a great variety of part-through crack prob-
lems in plates and shells, The details of the problem influence only the ker-
nels k . The analysis and extensive results for collinear surface cracks and
for corner cracks in a plate of finite width are giveén in Appendix A of this
report.

Extensive results for an infinite cylindrical shell containing an external
or internal, axial or circumferential part-through crack under local membrane
loading or bending moment may be found in [9] (see, also [23] for some of the
results). Tables 4 and 5 show some sample results for a 24 in. diameter pipe.
The crack profile is again semi-elliptic which is defined by (43). The nommal-
izing stress intensity factor K used in these tables is the corresponding edge
crack plane strain value and is def1ned by (48a) for N22 Neo # 0, M22 = Mo =0
and by (48b) N22 = 0, M22 = Mo # 0.

2.5 Conclusions

Despite its simplicity, if carefully applied the Tine spring model may
give very useful results for certain group of three-dimensional surface and
internal cracks which are otherwise analytically intractable. The application
of the model to the plasticity problems in plates and shells appears to be
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also highly promising [19], [20], [25]. If the material has no strain harden-
ing, then the plastic line spring reduces to some version of the Dugdale model
which can be analyzed in a relatively straightforward manner [9], [23], [26].
The extension of the model to mixed mode part-through crack problems in plates
and shells is being studied and appears to be quite feasible,
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Table 1

Table 1. The dimensionless gquantities used in plate and shell problems.

X = x1[a,y = xz/a: zZ= Xs/a s
u = uT/a, v = uz/a, W= u3/a .
BX'=BT’ $y=32 )

yo_ 2 at b _ _.2 at
1 '12('[-\). ) ’ﬁ'z'ﬁ-.[-z' s ;\2 12(1-v2} h-z'R'é"z'a

>
1

2 h2

‘12(1-\?2) %2' s K = m

-~
F
1}

R1,R2: principal radii of curvature
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Table 2.

The coefficients bjand Csi

for the shape

functions gay and 9ap (egs. 46" and 47).

J bj (oh]
1 0.7071 0.1013
2 0.4325 -2,7775
3. -0.1091 90.3734
4 7.3711 -862.4307
5 -57.7894 4843,4692
6 271.1551 -17069.1142
7 -744.4204 38813.4897
8 1183,9529 -56865, 3055
9 -1001.4920 51832.694]
10 347.9786 -26731.2995
11 . 5959.4888
Table 3. Stress intensity factors for a centrally cracked
plate subjected to tension (N) or bending (M)
under plane strain conditions, (o=N/h, m=6M/h?;
Fig. 5b). |
K K
ovmL/2 mvrL/2
0.05 0.1500
0.1 1.0060 0.3000
0.2 1.0246 0.6004
0.3 1.0577 0.9031
0.4 1,1094 1.2135
0.5 1.1867 1.5435
0.6 1.3033 1.9179
0.7 1,4884 2,3918
0.8 1.8169 3.1113
0.9. 2.585 4,6653
0.95 4,252 6.8526
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Table 4. K/K, in a line pipe with 0D = 24 in., h = 0.344 in.

/Ao lo2 o3 |04 |05 (06 {07 | 08 | 0.9
a/h¥ Quter circumferential crack, No#0, Mw»=0 |
770 10.945 [0.817 |0.664 ]|0.508 |0.366 |0.247 [0.147 | 0.0/3 | 0.033
2.0 10.967 10.882 |0.766 {0.628 |0.481 [0.340 10.210 | 0.106 | 0.043
3.0 |0.976 {0.911 {0.817 |0.695 |0.553 |0.405 [0.257 | 0.132 | 0.060
4.0 10.980 10.928 [0.847 {0.739 {0.604 10.455 {0.297 | 0.155 ! 0.070
5.0 10.983 [0.938 |0.868 |0.769 |0.642 {0.493 {0.329 | 0.175 | 0.080
6.0 10.985 (0.945 |0.882 [0.791 [0.670 |{0.524 |0.357 | 0.193 | 0.088
7.0 |0.987 |0.950 {0.892 {0.807 {0.692 |[0.549 {0.380 | 0.209 | 0.097
8.0 |0.987 10.953 10.899 [0.819 10.709 10.570 [0.400 | 0.223 | 0.104
Quter circumferential crack, Ne=0, Mw=#0
1.0 10.944 ]0.805 |0.627 ]0.443 [0.273 |0.133 [0.040 [-0.0¥t |-0.034
2.0 10.966 |0.874 |0.741 |0.581 |0.407 [0.242 {0.109 | 0.020 |-0.028
3.0 10.975 [0.905 {0.798 {0.657 |0.492 [0.318 [0.164 | 0.048 }{-0.021
4.0 lo.980 l0.923 |0.832 |0.707 |0.551 |0.376 [0.209 | 0.072 }-0.012
5.0 |0.983 |0.934 |0.854 [0.741 {0.594 {0.421 |0.246 0.094 [-0.004
6.0 10.985 [0.941 |0.869 [0.765 |0.626 |0.457 |0.277 | 0.114 | 0.005
7.0 |0.986 |0.946 {0.880 |0.783 |0.651 |0.485 |[0.303 | 0.131 | 0.013
8.0 {0.987 [0.950 |0.888 [0.797 [0.670 {0.508 {0.325 | 0.146 | 0.020
: Inner circumferential crack, NoZ0, Ms=0
7.0 10.944 [0.814 |0.659 |0.503 ]0.367 ]0.243 [0.145 ] 0.073 | 0.033
2.0 |0.965 10.877 {0.756 [0.615 {0.467 |0.327 |0.201 | 0.102 | 0.048
3.0 10.974 |0.904 {0.803 {0.675 [0.530 [0.383 [0.241 | 0.124 | 0.058
4.0 |0.978 [0.919 {0.831 |0.714 [0.573 [0.423 {0.271 | 0.7141 | 0.066
5.0 |0.981 |0.929 {0.849 {0.740 |0.604 |0.453 [0.296 | 0.156 | 0.074
6.0 10.983.10.935 |{0.862 {0.759 {0.628 {0.477 {0.316 | 0.168 | 0.080
7.0 10.984 |0.940 {0.871 |0.773 |0.646 {0.497 |0.332 | 0.179 | 0.086
3.0 {0.985 {0.943 [0.878 |0.784 [0.660 |0.513 |0.347 | 0.189 | 0.091
___Inner circumferential crack, No=0, M#0
1.0 10.943 10.801 |0.621 |0.436 [0.267 [0.129 [0.037 [-0.012 [-0.034
2.0 10.964 |0.868 |0.729 |0.565 (0.390 |0.226 {0.099 | 0.015 {-0.030
3.0 {0.973 |0.897 |0.782 |0.634 [0.463 [0.297 |0.143 | 0.037 |-0.024
4.0 10.977 |0.914 [0.813 [0.677 |0.513 |0.337 |0.177 | 0.055 |-0.018
5.0 |0.980 {0.924 {0.833 {0.706 [0.548 [0.372 {0.204 | 0.070 |-0.012
6.0 10.982 10.931 {0.846 |0.728 |0.575 {0.399 {0.227 | 0.084 {-0.007 -
7.0 10.983 {0.936 [0.856 |0.743 [0.595 [0.421 |0.246 | 0.095 |-0.002
8.0 10.984 10.939 10.864 10.755 i0.611 {0.439 0.261 | 0.105 | 0.003
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Table 5. K/K0 in a line pipe with OD = 24 in.,'h = 0.344 in.

/hil o1 lo.2 (0.3 |04 |05 |06 {07 | 08 | 0.9
a/h+ Quter axial crack, Ne#0, Ms=0
T.0 10.946 [0.820 [0.668 |0.512 0.370 10.250 |0.149 0.074 | 0.033
2.0 10.968 |0.887 [0.774 |0.639 [0.492 0.350 10.217 | 0.110 | 0.050
3.0 10.977 10.917 10.829 |0.712 |0.574 0.425 {0.273 | 0.142 | 0.063
4.0 10.983 10.935 |0.863 |0.762 [0.634 0.485 10.323 | 0.171 0.077
5.0 {0.986 {0.947 {0.886 |0.797 0.679 10.535 1{0.367 | 0.200 { 0.090
6.0 10.988 [0.955 [0.902 [0.824 [0.715 0.577 (0.406 | 0.227 | 0.103
7.0 10.990 [0.961 [0.914 [0.844 [0.744 0.611 10.441 | 0.253 | 0.117
8.0 {0.991 10.965 |0.924 {0.860 0.767 10.640 10.472 | 0.277 | 0.130
Quter axial crack, Ne=0, M.#0 _ :
1.0 10.944 |0.807 [0.631 [0.448 [0.2/8 0.137 10.042 [-0.010 {-0.034
2.0 10.967 10.879 {0.750 |0.593 |0.421 0.255 10.118 | 0.025 {-0.027
3.0 |0.977 10.912 |0.811 |0.678 0.517 10.343 {0.183 | 0.059 |-0.016
4.0 10.982 {0,931 {0.849 [0.734 0.586 |0.415 (0.241 0.092 [-0.005
5.0 10.985 [0.944 {0.875 |0.775 |0.639 0.473 10.292 | 0.124 { 0.008
6.00 10.988 i0.952 |0.893 |0.805 0.681 10.521 {0.338 | 0.155 | 0.022
7.0 10.989 10.959 |0.907 [0.828 0.713 (0.562 [0.378 | 0.183 | 0.036
3.0 10.991 [0.963 [0.917 |0.845 10.740 0.595 {0.413 | 0. 2]0 0.050

Inner axial crack, Nef0, Me=0

0.944 10.815 |0.660 |0.504 |0.362 [0.244 [0.145 0.073 | 0.034
0.966 |0.879 10.760 |0.620 [0.472 [0.332 [0.205 | 0.104 | 0.049
0.975 (0.908 10.810 |0.685 |0.542 [0.394 [0.250 | 0.130 | 0.060
0.980 |0.925 {0.842 [0.730 ]0.593 {0.443 |0.288 | 0.151 | 0.071
0.983 |0.937 |0.864 {0.762 |0.632 [0.483 [0.321 | 0.172 | 0.081
0.985 |0.945 10.880 [0.787 [0.664 [0.517 10.351 | 0.191 ! 0.090
0.987 |0.951 10.892 |0.807 10.690 |0.546 [0.378 | 0.209 i 0.099
0.988 10.956 |0.902 |0.823 {0.713 {0.572 |0.402 | 0.226 | 0.108

0O ~4 O N F= LW N —)
- - - - - - * L]
OOOOOOOO

Inner axial crack, Neo=0, MoF0

0943 10.802 10.622 [0.437 [0.268 [0.129 [0.038 [-0.012 }-0.034
0.965 {0.871 [0.734 |0.570 {0.396 {0.232 |0.103 | 0.017 }-0.029
0.974 10.902 {0.790 |0.646 |0.478 |0.305 |0.154 | 0.043 1-0.022
0.979 10.920 }0.825 {0.696 |0.537 |0.362 |0.198 | 0. 066 |-0.014
0.983 (0.932 |0.850 {0.733 {0.583 [0.409 }0.236 | 0.09C }-0.005
0.985 [0.941 |0.868 |0.762 |0.620 |0.449 |0.270 | 0.110 | 0.004
0.987 10.948 |0.882 [0.784 [0.650 [0.484 [0.301 | 0.131 | 0.013

00 ~§ O Ut = L3 DY
€ + 8 8 ¢ & .
OO0 OO0 0

0.988 10.953 |0.893 {0.803 10.676 [0.514 {0.330 | 0.150 | 0.022
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3, THE INTERACTION BETWEEN FLAT INCLUSIONS OF FINITE
THICKNESS AND CRACKS

3.1 Introduction

In studying the strength and fracture of welded components it is often
necessary to take into account, among other factors, the effect of the imper-
fections in the material. Generally such imperfections are in the form of
either geometric discontinuities or material inhomogeneities. For exampie,
in welded joints, various shapes of voids, cracks, notches and regions of
lack of fusion may be mentioned as examples for the former and variety of
inclusions for the latter. From a viewpoint of fracture mechanics two impor-
tant classes of imperfections are the planar flaws which may be idealized as
cracks and relatively thin inhomogeneities which may be represented by flat
inclusions. _

Few unusual results aside, the problem of interaction between two
cracks is relatively well-understood in the sense that the resulting stress
field or the stress intensity factors would either be amplified or reduced
as the distance between the cracks decreases. Atlmost in all cases the qual-
jtative nature of the result could be predicted intuitively. For example,
if the cracks are parallel then they would be in each other's shadow and
there would be a reduction in the stress intensity factors. On the other
hand if the cracks are co-planar then one would expect an ampTification in
the stress intensity factors. The exception or the unusual result in this
case is the reduction in the stress intensity factors at the inner crack tips
for certain relative crack locations in plates with relatively smaller thick-
nesses. Some specific problems relating to interaction between cracks were
discussed in the previous veport [1].

Intuitively what is not as well understood is the problem of interaction
between cracks and flat inclusions. Separately both flaws have singular stresses
and consequently are locations for potential fracture initiation. However,
the inclusions are also "stiffeners" and. therefore, properly oriented, they
should tend to arrest crack propagation. For this reason in this study it is
found to be worthwhile to undertake a detailed investigation of the problem
on which the technical literature seems to be extremely weak. Particularly
interesting in this problem is the behavior of the stress state around the ends
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of the inclusions and at the points of intersection between inclusions and
cracks. The details of the analysis of this crack-inclusion interaction prob-
Tem and very detailed results are given in Appendix A of the previous report
[1]. Additional results on the special case of the inclusion intersecting the
crack are given in Appendix B of this report. The interesting problem in this
case is the peculiar stress singularities at the end of the inclusion which
terminates at the crack surface rather than the crack tip which was discussed
in [11.

The correct way of modeling an inclusion would perhaps be to consider it
as an elastic continuum fully bonded to the surrounding matrix. In this case,
however, the crack-inclusion problems are generally difficult and only simple
geometries and orientations can be treated analytically (see, for example, [31],
[32]). A simple feature of such crack-inclusion interaction problems is that
generally the stress intensity factors are magnified if the stiffness of the
inclusion is less than that of the matrix and are diminished if the inclusion
is stiffer than the matrix. For certain types of "flat" inclusions a simpler
way of modeling may be to represent them as either a membrane with no bending
stiffness or a perfectly rigid plane stiffener with negligible thickness. In
these prob]ems one may use the basic body force solution as the Green's function
to derive the related integral equations. On the other hand, since the flat
inclusion with an elastic modulus smaller than that of the matrix would itself
have a behavior similar to a crack, it needs to be modeled basically as a
"cavity" rather than a "stiffener'.

Even though the technical Titerature on cracks, voids and inclusions which
exist in the material separately is quite extensive, the problems of interaction
between cracks and inclusions do not seem to be as widely studied. Such prob-
lems may be important in studying, for example, the micromechanics of fatigue
and the fracture in welded joints. In this section a simple model for flat
elastic inclusions is presented and the crack-inclusion interaction problem is
considered for various relative orientations.

3.2 Integral Equations of the Problem

The plane strain or the generalized plane stress interaction problem under
consideration is described in Fig.10. It is assumed that the boundaries of
the medium are sufficiently far away from the crack-inclusion region so that
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their effect on the stress state perturbed by the crack and the inclusion
may be neglected and the plane may be considered as being infinite.
Referring to Fig. 10 we define the following unknown functions

g4(xy) = 5;? [v (x],+0)-v1(x1,-0)] , ($<x1<b) , | (49)
hy(xq) = 5;? [u. 1(x7:40)-uy (x,-0) ], (a<xy<b) (50)
g,(x,) = ax2 - [vp(x55+0)- vz(xz, 01 , (e<xy<d) (51)
ho(x,) = sxz [ug (X, +0)-ty(%55,-0)] » (c<xy<d) (52)

where u and v are, respectively, x and y components- of the displacement vec-
tor in the coordinate systems shown in the figure. It is assumed that the
inclusion Fills a flat cavity the initial thickness of which is ho(x) which
is "small" compared to its length 2a1. It is also assumed that the thickness
variation of the stresses.and the strain elx in the inclusion are negligible.
T.ius, for the plane strain case, from the Hooke's Law we obtain the following
stress-strain relations in the inclusion

. T-v -2\) i . .
i i _ 1 '
Eyy(x]) _'('-_)'— yy X]) s EX_Y(X]) Y ny(x'[) s (53)

where EO, Vs Mg are the elastic constants of the inclusion. Now, by observing
that '

el (x7) 2 [vq(xp40)-v4 (xg5-0) /g (7)) (54)

2ed (%)) 2 [ug(x70) =t (g =0 /g (x) (55)
and

EO = 2uo(]+vo) s Kg T 3-4vo R (56)

from (1), {2) and (5)-(8) we find
K +] .u X

U;y(xﬂ = % _-[ ‘—(zl')'[ 91(t)dt s (57)
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u X1

i _ 0
ny(x1) = E;TETT J h1(t)dt . (58)
a ‘ _

- If we Tet the medium to be uniformly loaded away from the crack-inclusion
region as shown in Fig.10, for the stress components along the Xy and X, axes
we obtain

0‘1m
yy

czm
Yy

o 1w - =
Uyy s O'Xy(X1 ,0) - ny

L]

(X]:O) 3 (59)

oo 2 5 0 ) - - . 60
oyycos 6 + o, sin’e Zcxy.s1necose . ( )7

(x5,0)

2w

- o _ @ . o 2 edinl
cxy(xz,o) (Uyy cxx)s1necose + ¢_ {cos2s-sin%e) . 61)

Xy

From the basic dislocation solution given in, for example, [33], referred
to the coordinate system Xys¥q the stress state at a point (x],y]) in the plane
due to the displacement derivatives g],h] defined by (49) and (50) may be
expressed as

b _

I (xyayy) = | L6, (xq5yq5)gq (£) + B (xpaypsthny(£)1dt (62)
a
b

11 |

oy (gyy) = | 18, 0y 0y (8) + Hy eyt (8)1dE (63)
a
b .

O';I(;,(X-lsy]) = J [ny(x1 s.Y'] :t)g](t) + Hyy(x-[ :.y] :t)h'I(t)]dt s (64)
a

where
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6 (xoyst) = ACEx)[(Ex)2-32]

ny(x,y,t) = A(t-x)[3y2+(t-x)?] ,

6y (%:¥st) = Ay[y2-(t-x)2] ,

Ho (oyst) = AY[y2+3(t-x)21 (65)
Hyy(X9Yst) = Ay[y?_.,(t_x)z:l s

ny(x,y,t) = A(t-x)[(t-x)2-y21 ,

2 1
A(XJ:t) = (11-11-r<) [t-x)2+yZ]Z °

and ¢ and « are the elastic constants of the medium (p=E/2(1+v), «=3-4v for
plane strain and «=(3-v)/{1+v) for generalized plane stress). Similarly,
referred to the axes X0 1Yp the stress state c%?, (i,j=x,y) in the plane due
to gz,h2 may be obtained from (14}-(17) by substituting {c,d) for {a,b) and
(XZ"YZ) for (X1 ,y]) and (92’h2) for (g-l sh-l)-

The integral equatiohs to determine the unknown funcfions 91,h1,gz,
“and h2 may be obtained from the following traction boundary conditions along
(y1=0, a<x]<b) and (y2=0, c<x2<d):

oamxq.0) + 5120100 + ays(ag.9) - S,00) 5 (asxg ) s (86)
al100) + 012(x140) + 0,7(x1.0) = g (xq) » (a<xyb) (67)
02 (x:0) + o5 (x,0) + 55;(x2,d) =0, (caxyed) (68)
02(x40) + 5By (%9,0) + oar(xp:0) = 0 s (cexped) (69)

where all except the coupling stresses in the second column are given by
(57)-(65), The coupling stresses have the following meaning: c;§(x1,0) is
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the normal stress on y1=0 plane due to the displacement derivatives Qz(xz) and
hz(xz) and 03;(x2,0) is the normal stress on yé=0 plane due to gy, h], etc.
Thus, after making the necessary stress transformations similar to (60) and

(61), we obtain

d
12 a2 12 .
dyy(x1,0) = [ny(x],t)gz(t) + Hyy(xl’t)hz(t)]dt , (70)
c
d
12 _ [ ral2 12 '
oxy(x1,0) = [ny(x1,t)92(t) + ny(x1,t)h2(t)]dt . (71)
c
b .
21 _ 21 21
Ty xg:0) = [ L85y egatlgy(8) + Hy(xpo 2y (011 (72)
21 21 2 :
B10p00) = | 164 (xg ) gy (8) + Mg gty (€]t (73)
: a
where from
12 _ 22 ) 22 . 22 .
ny(XT,O) cyy(xz,yz)cos 8 + ol sin?e + o sin2e (78)
calculated at Xo=X1 €S8, y2=-x]sine we have
G;i(x1,t) f ny(xTcose,-x1sine,t)cosze + Gxx(xlcose,-x1sine,t)
+ ny(x]cose, x;sine,t)sin2s , (75)
12 _ v ad 2 %57
Hyy(XT,t) = Hyy(xlcose, x1s1ne,t)cos 5 + Hxx(x1cose, x]s1ne,t)
+ ny(xlcose,-x]sine,t)sinZB . | (76)

Similar expressions for the remaining kernels in (71)~{73) are obtained
by using the stress transformations
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12 22 22, .
ny(x]’o) [cxx(xz,yz)-cyy(xz,yz)]s1necosa

22

+ cxy(xz,yz)(cosze-sinze) » (x,=x;c0s9, y2=-x151ne) . (77)
55;(x2,0) = c;;(x1,y1)cosze + o;l(xl,yT)sinze
| - ql}(x1,y1)sin?e,'(x1=x2cosa, y1=x231né) , (78)
cii(xz,o) = [c;;(x1,y])-oli(x1,31)]sinecose
+ ci;(x],yl)(cosze-sinze), (x1=x2cose, y1=x251ne) . (79)

Thus, from (62-)-(73) and (77)-(79) it follows that

12,0 oy - .
ny(x1,t) = [Gxx(x,y,t)-ny(x,y,t)]s1necose
+ ny(x,y,t)c0529, (x=x1cose, y=-x1sine) , (80)
le(x t) = [H, (x>¥st)=H, (x,¥,t)Isinecosse
xy 'l E] XX X!.y 1 yy ’,YS 0
+ ny(x,y,t)c0528, (x=x1cose, y=—x]sine) , (81)
21 = t)cos2e + G (x,y,t)sine
ny(xzst) ny(x"y’ ) XX .
- ny(x,y,t)sinZB N (x=x2cose, y=x251n6) > (82)
21 = t)cos2s + H . (x,y,t)sin%e

- - - 83
- ny(x,y,t)s1n26 , (x=x2cose, y-xzswne) . (83)
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21 _ .
G (xz,t) [G (x,y,t)—Gxx(x,y,t)]s1necose

+ ny(x,y,t)c0526 R (x=x2cose, y=xo81n )

21(

ny

[Hyy

Xo t) (x,y,t)—Hxx(x,y,t)]s1necoss

+

ny(x,y,t)cosze , (x=x2cose, y=x251ne) .

b X d
1
12
L L [ alrla()dt + ¢ | Gyylxtlgy(tice
a a c
d
12 _
t ¢, J Hyy(x],t)hz(t)dt = ~Colyy > (a<x1<b) ,
c
b X1 d 1
1 1 |
L g mtwe + [ HOqIn (Bt + < [ a2ttt
a . a c
| d
* ¢, [ ]2(x1,t)h (t)dt = '°o°§y= (a<xq<b) »
C
b b d
21 21 1 1
¢, I ny(xz,t)g1(t)dt g [a Hyy(xz,t)h1(t)dt - [C 5 g
a

= . » 2046 sin2e-o . Si <xn<d
co(cyycos g+, S1n 8 cxys1n29), (c 2 Y,

-40-

(84)

(85)

From (66)-(69) the integral equations of the problem may then be obtained as

(88)



bl 1 : b

b b d
2 .
¢, J 621 (xpot)aq (£)dt + [ H2T (%o ) ()dt + [ L, (t)dt

XYy XYy Tt
a a ¢
= ~C0[(c; -cix)sinecose + oinOSZSJ, (c<x2<d) . (89}
where ( Y ) :
(k1) ke +1
c = -[1(. . G(X ) = - o 0 1 .
) 2u 1 2u(x°-1) hO(XT)
) = - 2o ] (%0
(q) == =R tqT )

If there is no crack in the medium, 92=0=h2, the integral equations
uncouple and (86) and (87) give the unknown functions gy and h]. For example,
if the inclusion has an elliptic cross-section given by

ho(x) = bO/T:SEzw , (91)

{ 86) becomes

L [1 IL J T g (e ’ (92)
—_— - g :-c G
mlEX T

where _
no{I+e) (T )

Cq = —7 (93 )
1 Zubo(KO 1) |

and without any loss in generality it is assumed that a=-1, b=T, X =X. The
solution of {92) is found to be

co.
- .oy _t , (-T<t<l 94
g4(t) e, rer (-1<t<1) - {04)

which, for u0=0 reduces to the well-known crack soTutipn. By using the follow-
ing definition of the stress intensity factor

ky(t) = -TTT %%t V2({1-X) g1(x) , (95)
.

X
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from (94) it follows that

®
163

k](1)=T¥%—:‘- ) (96)

Similarly, in the absence of a crack from (87), (90) and (91) it may be

shown that
R SO (97)
h(t) = - —, (=T<t<] 97
] Moy sz
a. p (1+¢)
o xy A
k) =gy » 2~ “ab, ©8)

As another special case if we assume that the stiffness of the inclusion
~0 then the functions G and H defined by (90) vanish and the integral equa-
tlons (86)-(89) reduce to that of two arbitrarily oriented cracks shown in
Fig. 10.

3.3 Stress: Intensity Factors

In the linearly elastic medium under consideratidn the intensity of the
stress state around the end points of the crack and the inclusion is goverhed
by the singular behavior of the displacement derivatives 91> 9p» h1 and h2
which are defined by (49)-(52). If we assume the following standard definition
of Modes I and II stress intensity factors

k.(a) = 1im v2{a-x{) o (x ,0) - {99)
1 1 1
X1>2
kz(a) = 1im +2(a- XT’ ( ,0) - (100)
X1>a
ko{c) = 1im v2{c-x,) o2 (x,,0) , etc. , (107)
1 XprC 2/ Tyy 72

and observe that the system of integral equat1ons (86)-(89) which has simple
Cauchy type kernels has a solution of the form
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G, (t) H.(t)
. (1) = A, hy(t) = =
1 Jt)(t-a) Jld=t)(t-¢)

from (86)-(89) and (99)-(102) it can be shown that

, (i=1,2) , (102)

ky(a) = B yin /2Txa) 61(xp) (103)
X1
. 2u 4
k](b) = - T;E—l1zb J?lb-x]i 91(x1) , (104)
1 _
ky(a) = %%%-]im v2(Xy-a) hy(xq) > _ ~(105)
X, |
= . 2u 4 ‘
kz(b) il o l1Tb Jzib—x15 hl(xl) . | (106)
. _

The stress intensity factors ki(c) and ki(d), (i=1,2) may be expressed in
terms of g, and h, by means of equations similar to (103)-(106).

3.4 Results

The integral equations (86)-(89} are solved by using the technique
described in[28] and the stress intensity factors are calculated from (103-
(106) and from similar expressions written for the crack. For various crack-
inclusion geometries and stiffness ratios uO/u (uo being the shear modulus of
the inclusion) the calculated results are given in Tables 6-11. The main
interest in this paper is in relatively "thin" and flat inclusions. Hence
in the numerical analysis it is assumed that the thickness h0 is constant.
Table 6 shows the normalized stress intensity factors in a plane which con~
tains a crack equal in size and coplanar with an inclusion and subjected to
uniform tension and shear aWay from the crack-inclusion region (Fig.1la).
The inclusion model used in this analysis is basically a crack the surfaces
of which are held together by an elastic medium of shear modulus Hgye Thus,
for u0=0 one recovers the two crack solution. It may be observed that for
u0>0 there is a significant reduction in the stress intensity factors around
the end points Xy=a and x]=b (Fig.17a ). In Table 6 the variables are the
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stiffness ratio uo/u and the thickness of the inclusion ho/a1 with the
spacing a/a1 = 0.071 being constant, where 2a1 is the length of the inclusion
(Fig.11a). Similar results calculated by assuming that ho/a1 = 1/20 and
a/a1 is variable are shown in Table 7.

For various values of the stiffness ratio uo/u and fixed values of the
inclusion thickness (ho/a1=1/20) and the distance a (a/a1=0.!), the effozt
of the angle & on the crack tip stress intensity factors are given in Table
8. The geometry and the loading condition away from the crack-incliuston
region are shown in Fig.,11b. In this example, too, it is assumed that the
inclusion and the crack are of equal length (a2=a1). For the special case
of u =0, that is, for the case of two cracks of equal lengths oriented at an
angle o the stress intensity factors are given in Table 9.

The stress intensity factors for the symmetric crack-inclusion geometries
shown 1in Figures12a and 12b are given in Table 0, where the length ratio az/a-I
is assumed to be the variable. In both exampies the inclusion (half) length
3 is used as the normalizing length parameter and the relative distance
c/ay (Fig.12a) or a/ay (Fig.12h) is assumed to be constant.

Table 11 gives the stress intensity factors for a crack perpendicular
to the inclusion where, referring to Fig.10, s=n/2, a=0, u0=u/20 and c/aq=
0.05 are fixed and a9 is variable. _

It should be noted that since the superposition is valid, the tables
give the stress intensity factors for the most general homogeneous loading
conditions away from the crack-inclusion region. Also, the tables give the
stress intensify factors which are normalized with respect to c?j/3¥'where 2a.I
is the length of the inclusion and (i,3)={x,y), (Fig.10). The notation used
in the tables is

ky(a) k,(a) ky(c) |
Kia = = = Kpa = = = ki = == » &t (107)
U1J a-l G.ij a] O.'IJ a"

where-k1 and k2 are, respectively, Modes I and II stress intensity factors
defined by equations such as (99)-(107 and calculated from the expressions
such as (103)-(106).
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Table 6. Modes I and II stress intensity factors for the case of a crack
Tocated in the plane of the inclusion in a medium subjected to
G;y or'c:y away from the crack-inclusion region (Fig. 11); ¢=-a,

d=-b, a/a1=0 01, k= (c)/o /5; Kyg ( )/c /__ k2c 2(c)/c vays
Kog=ko(d) /o 375 Kqq k (a)/c 731> kZa kz(a)/c f“ kyp (_)/c

Koy 2( )/c /—_ a-I (b a)/2.
2h0 uo/u

b-a 0 0.0b .1 0.25 0.5 1.0 2.0 5.0

0.07 |1.2063 .1578 L1031 L0535 | .0303 .0163 .0085 .0035

k]b 0.02 {1.2063 .2320 .1578 . 0888 .0535 .0303 .0163 .0068
0.1 1.2063 .5146 L3713 .2320 .1578 L1030 .0634 .0303 -

0.2 |1.2063 | .6836 | .5146 L3323 | .2320 L1578 | .1031 L0535

0.07 12.9642 5725 | .3908 .2104 . 1207 .06h4 .0342 .0140

k]a 0.02 |2.9642 . 7941 .5725 L3404 | .2104 | .1207 0654 .0276

0.1 2.9642 11.5036 {1.1620 L7947 | .5725 . 3908 .2478 . 1207

0.2 2.9642 11.8803 11.5036 {1.0636 . 7941 .5725 .3908 2104

0.01 [2.9642 i1.1795 {1.1045 [1.0479 {1.0255 j1.0132 |1.0067 11.0027

kTC 0.02 [2.9642 {1.2952 {1.1795 {1.0870 (1.0480 |1.0255 |1.0132 [1.0054

0.1 2.9642 11.7825 |1.5321 [1.2952 [1.1795 {1.1045 {1.0583 11.0255

0.2 12.9642 |2.0764 |1.7825 |1.4645 [1.2952 |1.1795 |1.1045 |{1.0479

0.07 11.2063 {71.0176 |1.0063 {1.0027 11.0014 {1.0007 [1.0004 1.0001%

k 0.02 11.2063 {1.0211 {1.0116 |1.0051 |1.0027 |1.0014 1.0007 {1.0003

1d 10.1 1.2063 11.0693 {1.0432 {1.0211 !1.0116 {1.0063 |1.0033 {1.0014

0.2 11.2063 {1.1019 [1.0693 |1.0366 {1.0211 |1.0116 [1.0063 {1.0027

0.07 11.2063 .3106 L2159 1275 .0810 .0482 L0269 0117

kZb 0.02 [1.2063 .4368 . 3106 L1910 L1275 .0810 .0482 L0221

0.1 1.2063 .8214 .6500 .4368 .3106 L2159 L1459 | 0810

0.2 1.2063 .9673 L8214 .5946 .4368 . 3106 .2159 L1275

0.07 [Z2.9642 |1.00/5 . /480 4743 L3122 . 1900 . 1076 L0470

k2a 0.02 12.9642 (1.3214 (1.0075 .6747 L4743 .3122 | .1900 . 0885

0.1 2.9642 12.1749 |1.807%1 {1.3214 11.0075 . 7480 .5345 . 3122

0.2 |2.9642 {2.4785 |2.1749 |1.6847 i1.3214 [1.0075 . 7480 4743

0.07 [2.9642 [1.4272 }1.2691 [1.1366 {1.0778 |1.0425 |1.0225 1.0093

kZC 0.02 [2.9642 |1.6463 {1.4272 {1.2298 [1.1366 |1.0778 |1.0425 }1.0182

¢.1 2.9642 [2.3136 12.0183 |1.6463 (1.4272 {1.2691 {1.1622 |1.0778

0.2 2.9642 |2.5619 {2.3136 }1.9221 |1.6463 |1.4272 {1.2691 |1.1366

0.01 [1.2063 |71.0330 [1.0188 i1.0085 [1.0045 {1.0023 {1.0012 {1.0005

kZd 0.02 [1.2063 |1.0549 {1.0330 {1.0156 {1.0085 {1.0045 ;1.0023 |{1.0010

0.1 1.2063 [1.1292 11.0954 {1.0549 [1.0330 !1.0188 {1.0103 }1.0045

0.2 1.2063 11.1583 {1.1292 11.0846 {1.0549 {1.0330 {1.0188 {1.0085
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Table 7. Modes I and II stress intensity factors for the case of a crack
located in the plane of the inclusion in a medium subjected to

[==]

Syy OF c:y away from the crack-inclusion region (Fig. 11); c=-a,

d=-b, ho/a]=]/20.

2a ' Yo/ K
b-a 0 0.05 0.7 0.25 0.5 | 1.0 2.0 5.0

0.01 {1.2063 | .3713 | .2611 | .1578 | .1031 | .0635 | .0366 | .0163

ka 0.5 1.0517 | .3544 § .2513 | .1527 | .0998 | .0615 | .0354 | .0158

1 1.0280 | .3493 | .2479 | .1508 ; .0986 | .0607 | .0350 | .0156

2 |1.0125 | .3453 | .2452 | .1492 | .0976 { .0601 | .0347 | .0154

0.01 12.9642 |1.7620 | .8751 | .5725 | .3908 | .2478 | .1454 | .0654

1a 0.5 §1.1125 ¢ .3877 | .2768 | .1693 | .1110 | .0685 | .0395 | .0176
1 §1.0480 | .3604 | .2564 | .1563 | .1023 | .0630 | .0364 | .0162

2. |1.,0176 | .3481 | .2474 | .1506 | .0985 | .0607 | .0350 | .0156

0.07 [2.9642 [1.5321 1.3433 {1.1795 |1.1045 }1.0583 11.0313 [1.07132

klc 0.5 11,1125 {1,0229 ;1.0130 {1.0057 |{1.0030 {1.0015 {1.0008 {1.0003

1 (1.0480 |[1.0096 [1.0054 {1.0024 {1.0012 |1.0006 !1.0003 {1.00017

2 {1.0176 |1.0035 |1.0020 [1.0009 |1.0004 |1.0002 i1.000% |1.0000

0.07 {1.2063 [1.0432 {1.0253 }1.0116 {1.0063 {1.0033 i1.0017 {1.0007

'k1d 0.5 {1.0517 |{1.0104 {1.0058 {1.0026 |1.0013 }1.0007 {1.0003 |1.0001

1 11.0280 (7.0056 |1.0031 {1.0014 {1.0007 }{1.0004 {1.0002 {1.0001

2 {1.0125 {1.0025 |1.0014 {1.0006 {1.0003 {1.0002 }{1.0001 [1.0000

0.071 {1.2063 | .6500 | .4845 | .3106 | .2159 | .1459 | .0943 | .0487

k2b 0.5 |(1.0517 | .6031 | .4576 | .2979 | .2084 | .1412 | .0914 | .0467

1 11.0280 | .5925 | .4503 | .2938 | .2057 | .1395 | .0903 | .0461

2 11.0125 | ,5849 | .4449 | ,2905 | .2035 | .1380 | .0893 | .0456

0.01 {2.9642 {1.8071 {1.4340 [1.0075 . 7480 .5345 L3601 . 1800

k2a 0.5 1.1125 | .6498 | .497% | .3272 | .2302 | .1567 | .1017 | .0520

{f 1 11.0480 | .6081 | .4636 | .3035 § .2129 | .1446 | .0937 | .0479

2 ]1.0176 | .5889 | .4483 | .2930 | .2053 | .1393 | .0902 | .0461

0.07 12.9642 12.0183 [7.7299 |1.4272 11,2691 {1.7623 [1.0937 |1.0425

k2c 0.5 J1.1125 ;1.0523 {1.0344 |1.0172 {1.0095 {1.0050 |{1.0026 |1.0011

1 11.0480 1.0222 |1.0145 {1.0072 !1.0040 |1.0021 |1.0011 {1.0004

2 _{1.0176 11.0087 [1.0053 |1.0026 {1.0014 |1.0008 |1.0004 {1.0002

0.01 [1.2063 [1.0954 (1.0637 |1.0330 {1.0188 [1.0104 {1.0055 {1.0023

K 0.5 |1.0517 |1.0239 |1.0157 |1.0078 |1.0043 {1.0023 |1.0012 {1.0005

2d 1 11.0280 {1.0129 |1.0084 (1.0042 {1.0023 |1.0012 [1.0006 {1.0003

2 11.0125 [1.0057 {1.0038 {1.0019 [1.0010 |{1.0005 [1.0003 {1.0001
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Table 8. The effect of angular orientation & and the modulus ratio

uo/u on the stress intensity factors in a medium under general
in-plane loading {Fig.10); c=a, d=b, Zho/(b-a)=1/20, 2a/{b-a)=C.1.

| g | k EN
30| 60 90 T 120 [ 750 | 180
| A S
ke | 0-2624 | 0.8047 | 1.0961 | 0.8097 | 0.2654 0
= |kpe {-0.4711 [-0.4636 | 0.0163 | 0.4737 | 0.4585 0
XX k4 | 02560 | 0.7618 | 1.0106 | 0.7562 | 0.2518 0
koq (=0-4378 |-0.4253 | 0.0122 | 0.4432 | 0.4383 0
kie | 0-6402 | 0.2232 |-0.0311 | 0.2749 | 0.8366 | 1.1094
. Koo | 0.4596 | 0.4217 |-0.0483 |-0.5019 |-0.4771 0
yy kqq | 0-7052 | 0.2221 |-0.0109 | 0.2568 | 0.7702 | 1.0250
koq | 0-4105 | 0.3981 |-0.0386 |-0.4636 |-0.4493 0
Kqo (-0.5020 1-0.5895 | 0.2839 | 1.1440 | 1.0302 0
o |k, | 0.3394 |-0.5681 {-1.0010 |-0.3793 | 0.7098 | 1.2367
Ky kqq |-0-9072 |-0.8566 | 0.0354 | 0.9049 | 0.8903 0
kpq | 0-4353 |-0.5284 |-0.9911 |-0.4631 | 0.5521 | 1.0567
uo/u = 0.1
kqo | 0.2552 | 0.7786 1.0613 | 0.7908 | 0.2608 | O
o |ky. |-0.4593 [-0.4546 | 0.0095 | 0.4610 | 0.4512 0
Txx kyg | 0.2534 | 0.7570 | 1.0066 0.7540 | 0.2512 0
kpq {-0-4366 |-0.4291 | 0.0072 | 0.4395 | 0.4366 0
kzé 0.6535 | 0.2334 |-0.0181 | 0.2628 | 0.8003 | 1.0643
o~ |ky | 0.4533 | 0.4238 !-0.0293 |-0.4758 |-0.4605 0
°yy {kqq | 0-7248 | 0.2350 -0.0058 | 0.2540 | 0.7615 | 1.0143
kg | 0.4219 | 0.4145 |-0.0215 |-0.4506 |-0.4425 0.
kqe |-0-6023 |-0.6717 | 0.1849 | 1.0482 | 0.9749 0
= |kp | 0.3956 |-0.5401 {-0.9996 |-0.4197 | 0.6414 | 1.1699
XY kg -0-8892 |-0.8588 | 0.0230 | 0.8910 1 0.8817 0
koq | 044617 |-0.5172 |-0.9943 1-0.4762 | 0.5343 | 1.0374
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Table 8 - cont.

0.5
0.2478 | 0.7537 0.7622 | 0.2535 0
-~ -0.4414 |-0.4405 0.4418 | 0.4397 0
XX 0.2509 | 0.7517 0.7511 | 0.2503 0
1-0.4341 [-0.4322 0.4347 | 0.4341 0
k 0.7013 | 0.2427 0.2523 | 0.7620 | 1.0158
. 0.4381 | 0.4288 -0.4448 |-0.4407 0
Oyy 0.7446 | 0.2469 0.2510 | 0.7527 | 1.0033
0.4312 | 0.4292 -0.4371 |-0.4353 | 0
-0.7657 |-0.8011 0.9166 | 0.8971 0
0.4738 |-0.5057 -0.4766 | 0.5420 | 1.0479
-0.8712 |-0.8639 0.8726 | 0.8702 0
0.4970 |-0.5046 -0.4938 | 0.5094 { 1.0105
2 —
0.2484 | 0.7504 0.7535 | 0.2510 0
- -0.4356 |-0.4354 0.4356 .4349 0
XX 0.2503 | 0.7505 0.7503 | 0.2501 0
~0.4333 |-0.4328 0.4335 | 0.4333 0
0.7317 | 0.2473 10.2505 | 0.7531 .0042
- 0.4330 | 0.4314 -0.4363 |-0.4352 0
Yy 0.7487 | 0.2492 0.2503 | 0.7507 | 1.0009
0.4326 | 0.4321 -0.4341 |-0.4336 | 0
k. [-0.8318 [-0.8460 0.8801 | 0.8748 0
ok 0.4947 |-0.5001 -0.4932 | 0.5122 | 1.0139
XY 1k, |-0,8674 |-0.8655 0.8678 | 0.8672 0
k 0.4976 |-0.5013 |-0.9997 |-0.4983 | 0.5026 | 1.0029




Table 9. Interaction of two cracks (Fig. 11b); uo/ﬁ1=0, c=a, d=b,

2a/(b-a) = 0.1.
50

30 60 90 120 150 180

k]a "0.1834 -0,0122 | -0.1604 -0.1271 -0.0361 0

Ko 0.1293 0.0928 0.2122 0.2877 0.1946 0

Kb -0.1471 -0.1373 | -0.0666 -0.0113 0.0024 | 0

- k2b 0.1825 0.2323 0.2104 0.1371 0.0588 0

“xx ch 0.3637 1.0032 1.2370 0.8684 0.2790 0
k2C -0.5576 -0.4950 0.0577 0.5791 0.4810 0. .

k1d 0.3073 0.8057 1.0308 0.7633 0.2536 0

k2d -0.3956 -0.3708 0.0477 0.4591 0.4441 0
k.Ia 10.5843 0.9140. 1.2370 1.3954 1.4643 | 1.4914

k2a -0.1912 -0.0242 | -0.0577 -0.1080 | -0.0730 |. 0
kib 0.9210 1.0081 1.0308 1.0567 1.0994 | 1.1220

- Ko, 0.021% -0.0427 | -0.0477 -0.0168 0.0054 0
Tyy Kic | 0.4051 -0.1004 | -0.1604 0.3999 1.1497 | 1.4914
Koo 0.6195 0.4264 | -0.2122 -0.6987 | -0.6027 0
k1d 0.4666 0.0652 | -0.0666 0.2821 0.8481 | 1.1220

k2d 0.1916 0.1811 | -0.2104 -0.5795 | -0.5082 0

k-[a 0.1842 0.7402 0.6381 0.3381 0.1384 0
k2a . 1.1741 1.1315 1.0152 1.1777 1.4058 | 1.4914

k]b 0.4327 0.1938 0.0748 0.0610 0.0532 0
- k2b 0.5851 0.7960 0.995Q0 . 1.1104 1.1305 [ 1.1220

Xy k]c -0.4402 -0.4311 0.6381 1.4876 1.2302 0
k2C 0. 3095 ~-0.6671 -1.0152 -0.2462 0.9347 | 1.4914

-k]cl -1.1414 -0.8951 0.0748 0.9554 0.9234 0
Koy 0.1531 -0.6362 | -0.9950 -0.4219 0.6115 | 1.1220
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Table 10.

P |

Stress intensity factors for the case of a crack perpendicular
to the inclusion, uO/u=1/20, ho/a1=1/20f

o« k a5/
0.1 0.5 7.0 5.0
k1a=kqp | -0-0088 | -0.0479 | -0.093% | -0.1449
. Kpg==Kop | =0.0058 | -0.0820 | -0.1428 | -0.2729
Fig. 3a xx Ky +1.0636 1.1671 1.1572 1.1256
a=-be-a, k1q 1.0320 1.0245. 1.0109 1.0029
c/24=0.1 Ky2Kqp 0.3424 0.3441 0.3441 0.3438
: . Kp,==Koy | 0.0006 0.0039 0.0039 0.0033
%y | ke -0.1220 | -0.0896 | -0.0632 | -0.0255
K1 g -0.0988 | -0.0116 0.0067 0.0021
kig==K7p | -0-0004 | -0.0162 | -0.0850 | -0.5164
. Ko =Kop 0.5703 0.5162 0.4502 0.4199
Txy Koo -0.7288 | -0.9533 | -1.0730. | -1.2431
Kog -0.7856 | -1.0338 | -1.0638 | -1.0200
Ky, 0.0208 | -0.1238 | -0.2149 | -0.2773
e Ky 0.0006 | 0.0100 0.0234 | -0.1170
. O kyekyg | 1.0037 | 10053 | 1.0101 | 3.0026
Fig. 3b Kp=-kog | -0.0011 | -0.0074 | -0.0107 | -0.0045
c=-d=-a, ¢ 2d
a/a;=0.1 | Kyg 0.3476 0.3543 0.3764 0.3057
= Ky 0.3416 0.3418 0.3416 0.3469
Yy k1eK1q 0.1584 | -0.0186 | -0.0324 | -0.0048
koe==koq | -0.0353 0.0460 0.0406 0.0073
Kos 0.6514 0.5903 n.4304 0.0544
. Ko, 0.5808 0.6066 0.6315 0.3702
Iy kyc=-ki4 | =0-4813 | -0.2431 | -0.7012 | -0.0010
KoeKoyq | -1.3694 | -0.9632 | -0.9372 | -0.9946

-50-




‘Tab1e 11.

S
T A

Stress intensity factors for a crack perpendicular to the
inclusion (Fig. 1); e=r/2, a=0, 2c/(b-a)

=0.O5,'u0/u=1/20,
ZhO/(b-a)=O.05.

- a9/
. ‘ %
0.1 0.5 1.0 5.0
Ky, .0399 .2055 .3675 1.1277
Ko .0128 .0418 .0555 .1125
K1p .0005 .0035 -.008T -.0715
. Kop .0021 .0402 .1107 . 3050
Txx Kie 1.0762 T1.7674 T.1729 T.1435
Ko .0162 -.0056 -.0311 -.0740.
K14 1.0310 1.0274 1.0143 1.0018
Ko g .0207 .0212 .0115 -.0015
K1 L3574 3776 3797 . 3884
Ko .0092 .0283 .0390 .0533
Kyp .3414 .3411 .3418 .3456
o Kop .0001 -.0010 -.0036 -.0062 .
Oy K. -. 0490 -.0607 -.0514 =, 0250
Ko -.3157 -.2298 -.1863 -.0933
Ky 4 -.0468 -.0250 -.0084 -.0009
Kog -.1943 -.0830 -.0464 -.0048
K1, . 0887 L3237 NCLY) T.1795
Ko .6265 .7947 .9710 1.9112
K1p .0002 .0001 .0079 .2709
. Kop .5805 .5910 5713 .4743
xy Ky 1.1620 L6411 L4373 .1825
Koo -1.0423 -1.1380 -1.1889 -1.2670
Kqg .6504 .1454 .0426 .0045
Kog -.9292 -,9710 -1.0075 -1,0117

=57~




Fig. 10 The geometry of the crack-inclusion problem
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Fig. 11 Special crack-inclusion geometries used in numerical analysis
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Fig. 12  Special crack-inclusion geometries used in numerical analysis

54—



1.

10.

11.

12.

13.

14,

15.

4. REFERENCES TO PART I
F. Erdogan and R,P. Wei, "Fracture Analysis and Corrosion Fatigue in Pipe-
1ines", Annual Report, DOT, RSPA Contract DTRS 56 82-C-00014, Sept. 1983.

C.D. Lundin, "The Significance of Weld Discontinuities - A Review of Cur-
rent Literature”, W.R.C. Bulletin, No. 222, Dec. 1976.

"Proposed Assessment Methods for Flaws with Respect to Failure by Brittle
Fracture", Welding in the World, Vol. 13, No. 1/2, 1975.

S.T. Rolfe and J.M. Barsom, Fracture and Fatigue Control in Structures,
Prentice Hall, 1977. '

Fatigue Crack Propagation, ASTM-STP 415, 1967,

M.S. Kamath, "The COD Design Curve: An Assessment of Vaiidity‘Using Wide
Plate Tests", The Welding Institute Research Report 71/1978/E, Sept. 1978.

J.D. Harrison, "The 'State-of-the-Art' in Crack Tip Opening Displacement
Testing and Analysis", the Welding Institute Research Report 108/1980,
April 7980.

J.D. Harrison, M.G. Dawes, G.L. Archer, and M.S. Kamath, "The COD Approach
and its Application to Welded Structures", ASTM-STP668, 1979.

F. Erdogan, "Theoretical and Exﬁérimenta] Study of Fracture in Pipelines
Containing Circumferential Flaws", Final Report, DOT-RSPA-~DMA-50/83/3,
Sept. 1982. '

V.L. Hein and F. Erdogan, "Stress Singularities in a Two-Material WEdge";
Int. J. of Fracture Mechanics, Vol. 7, pp. 317-330, 1971.

J.R. Rice and N. Levy, "The Part-Through Surface Crack in an Elastic Plate",
J.  Appl, Mech., Vol., 39, Trans. ASME, pp. 185-194, 1972.

J.K. Knowles and N.M. Wang, "On the Bending of an Elastic Plate Contain-
ing a Crack", J. of Mathematics and Physics, Vol, 39, p. 223, 1960.

N.M. Wang, "Effects of Plate Thickness on the Bending of an Elastic Plate
Containing a Crack", J. of Mathematics and Physics, Vol, 47, p. 371, 1968.

R.J. Hartranft and G.C, Sih, "Effect of Plate Thickness on the Bending
Stress Distribution around Through Cracks", J. of Mathematics and Physics,
Vol. 47, p. 276, 1968. ' '

E. Reissner, "On Bénding of Elastic Plates", Quarterly of Applied Mathe-
matics, Vol. 5, p. 55, 1947.

-55-



DR
vkl

(References - cont.)

16. E. Reissner and F.Y.M. Wan, "On the Equations of Linear Shallow Shell
Theory", Studies in Applied Mathematics, Vol. 48, p. 132, 1969.

17. F. Delale and F. Erdogan, "Transverse Shear Effect in a Circumferentially
Cracked Cylindrical Shell", Quarterly of Applied Mathematics, Vol. 37
p. 239, 1979, .

18. F. Delale and F. Erdogan, “The Effect of Transverse Shear in a Cracked
Plate under Skewsymmetric Loading", J. Appl, Mech., Vol. 46, Trans.
ASME, p.

19. D.M, Parks, "The IneiaStic {ine Spring: Estimates of Elastic-Plastic
Fracture Parameters for Surface Cracked Plates and Shells", Paper
80-C2/PVP-109, ASME, 7980,

20. D.M. Parks, "Inelastic Analysis of Surface Flaws Using the Line Spring
Model", Proceedings of the 5th Int, Conf.on Fracture, Cannes, France, 1981.

21. F. Delale and F. Erdogan, "Line Spring Model for Surface Cracks in a
Reissner Plate", Int. J. Engng. Sci., Vol. 19, p. 1331, 1981. '

22, F. Delale and F, Erdogan, "Application of the Line Spring Model to a
Cylindrical Shell Containing a Circumferential or an Axial Part-Through
Crack", J. Appl. Mech., Vol. 49, p. 97, Trans, ASME, 1982.

23. F. Erdogan and H, Eziét, "Fracture of Pipelines Containing a. Circumferen-
tial Crack”, Welding Research Council Bulletin 288, WRC, 1983.

24. F. Erdogan and H. Boduroglu, "Surface Cracks in a Plate of Finite Width
under Extension or Bending", Theoretical and Applied Fracture Mechanics,
Vol. 1, 1985 (to appear).

25. J.R. Rice, "The Line Spring Model for Surface Flaws", The Surface Crack,
Physical Problems and Computational Solutions, J.L. Swedlow, ed. p. 171,
ASME, New York, 1977.

26. F. Erdogan, G.R. Irwin and M. Ratwani, "Ductile Fracture of Cylindrical
Vessels Containing a Large Flaw", ASTM-STP601, p. 191, 1976.

27. F. Erdogan and F. Delale, "Ductile Fracture of Pipes and Cylindrical Con-
tainers with a Circumferential Flaw",J. Pressure Vessel Technology, Trans.
ASME, Vol. 103, p. 160, 1981.

28. F. Erdogan, "Mixed Boundary Value Problems in Mechanics", Mechanics Today,
S. Nemat-Nasser, ed. Vol. 4, p. 1, Pergamon Press, Oxford, 1978.

29. A.C. Kaya and F. Erdogan, "Stress Intensity Factors and COD in an Ortho-
tropic Strip", Int. Journal of Fracture, Vol. 16, p. 171, 1980.

-56-



(References - cont.)

30. T.C. Newman and T.S. Raju, "Stress Intensity Factor Equations for Cracks
in Three-Dimensional Finite Bodies", ASTM STP 791, 1983.

31. F. Erdogan and G.D. Gupta, "The Inclusion Problem with a Crack Crossing
the Boundary”, Int. J. of Fracture, Vol. 11, pp. 13-27, 1975.

32. F. Erdogan, G.D. Gupta and M. Ratwani, "Interaction Between a Circular
Inclusion and an Arbitrarily Oriented Crack", J. Appl. Mech., Vol. 41,
Trans. ASME, pp. 1007-1013, 1974, :

33. J. Dundurs, "Elastic Interaction of DisTocations with Inhomogeneities",
Mathematical Theory of Dislocations, T. Mura, ed., pp. 70-115, ASME,
New York, 1969, _

~57~-



APPENDIX A

SURFACE CRACKS IN A PLATE OF FINITE WIDTH

UNDER EXTENSION OR BEND!ING

by

F. Erdogan and H. Boduroglu
Lehigh University, Bethlehem, PA

ABSTRACT

In this paper the problem of a finite plate containing collinear
surface cracks is considered. The problem is solved by using the line
spring model with plane elasticity and Reissner's plate theory. The
main purpose of the study is to investigate the effect of interaction
between two cracks or between cracks and stress-free plate boundaries
on the stress intensity factors and to provide extensive numerical
results which may be useful in applications. First, some sample results
are obtained and are compared with the existing finite element results.
Then the problem is solved for a single {internal) crack, two collinear
cracks and two corner cracks for wide range of relative dimensions.
Particularly in corner cracks the agreement with the finite element
solution is surprisingly very good. The results are obtained for semi-
elliptic and rectangular crack profiles which may, in practice, corre-
spond to two limiting cases of the actual profile of a subcritically
growing surface crack.

1. Introduction

Surface cracks are among the most common flaws in structural com-
ponents, particularly in welded structures. Under cyclic loading or
under static loading in the presence of corrosive environment any sur-
face flaw has the potential of subecritically growing into a surface
crack. Analysis of the structure containing such flaws is needed for
modeling and prediction of the corresponding crack propagatfon rate. A
review of the subject and a number of articles dealing with the analysis

of the surface crack problem in plates may be found in [1]. At this
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point the analytical treatment of the problem appears to be intractable.
Therefore, the reliable solutions of the problem seem to be based on
numerical techniques, most notably on the finite element method (see,
for example, [2] for the solution of a wide plate containing a semi-
elliptic surface crack}). In recent years, however, there has been some
renewed interest in the application of the line spring model! which
was first described in [3] to the analysis of surface crack problems.
The method was used in [4] in conjunction with Reissner's plate theory
and the stress intensity factors for a semi-elliptic and a rectangular
~ surface crack were calculated for a wide plate under tension or bending.
The semi~elliptic crack results described in [4] compare very favorably
with the finite element solution given in-[2].

In this paper the general problem is considered for a plate having
a finite width. Analytically, it is known that if the stress fields
of more than one crack or that of a crack and a stress-free boundary
of the plate interact, there would be some'magnification in the stress
intensity factors. The problem may therefore be important in plate
structures having more than one initial surface flaw or having a flaw
" near or at the boundary. Extensive finite element results For a single
central or corner surface crack in a plate of finite width are given -
in [6] and [6] . Empirically developed expressions for stress intensity
factors based on the results given in [5] are also described in [7].
The present study was undertaken partly to show that the line spring
model may be used for cracks in finite plates, particularly for corner
cracks just as effectively as the infinite plate and partly to supple-
ment the results given in[5] and [6] by, for example, considering the

cases of a rectangular crack profile and collinear surface cracks.

2. The General Formulation of the Problem

The problem under consideration is described in Fig. 1. It is
assumed that x1x3 and x2x3 planes are planes of symmetry with respect
to loading and geometry and the length of the plate in Xy direction is

retatively long compared to the width 2b so that in formulating the
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perturbation problem one may assume the plate to be infinitely Jong.
Even though the numerical results are given for ﬁniform tension in X,
direction and cylindrical bending in x2x3 plane applied to the plate

away from the crack region, as will be seen from the formulation of the
problem, there Is no restriction on the external loads provided in |
 the absence of any cracks the membrane and bending resultants in x1x3
plane can be obtained for the given plate geometry and the applied loads.

The problem is formulated for the collinear cracks shown in Fig. 1.
The single central crack and the edge or the corner cracks are then
considered as the special cases. One of the advantages of the line
spring model is that the crack profile (as described by the function
L(xi) giving the crack depth) can be arbitrary. However, the actual
crack morphology studies indicate that for a given length 23 and a
depth Lo the crack profile may be boﬁdded by a sémi-eilipse and a rec-
tangle. Hence, in this paper the calculated results will be given only
for these two limiting crack shapes.

Ordinarily, the problems of in-plane loading (as expressed as a
generalized plane stress problem) and bending of a plate are uncdupted.
Consequently, the corresponding through crack prob]éhs can be solved
independentiy. For the plate geometry shown in Fig. ! the plane elasti-
city and plate bending solutions are given in [8] and [9] , respectively.
In the case of surface cracks, because of the absence of 5ymmetry in
thickness direction, the membrane and bending problems are c!eakly
coupled. As in'[9] in this paper, too, a transverse shear theory is used
to formuiate the bending component of the problem. The particular
theory used is that of Reissner's [10] which is a sixth order theory
and accounts for all three boundary conditions on the crack surfaces
separately. .

Referring to Appendix a for normalized quantities and, for example,
to [11] for the general formulation, the basic equations of the plate
problem may be expressed as follows:

V=0, | (1)
V= 0, - (2)
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V2p = ~w=0 |, (3)
:cj—;—‘iv%z-{wo , (4)
“x g;;-(h¢) » Oy gf} (he) , o, =~ axay (he) (5)
Bx=%+%ﬁK§$’By-%‘l‘;K%§’ (6)
Mo = F%”'[ gi + v %§$-+ g—(l-v)z';izi 1 > | (7)
Myy 7 ,hi‘* [azw gig -5 G- 53%] ’ (8)
O R K2 B
%=%+-m)_+%, | (10)
v, =.§$---§-(r-v) 2y gg- (11)

where, in the usual notation, F (or ¢) is the Airy stress function,
Nij’ Mij’ and Vi, (i,j=1,2) are the membrane, bending, and transverse
shear resultants, 81 and 82 are the components of the rotation vector,

nte

uy, U, and u, are the components of the'dispiacement vector, a is a

Tength paramgter representing the crack size (a =a for O<c<d<b and a’ *=d
for c=0, d<b, Fig. 1), E and v are the elastic constants, the constants
k and A are defined in Appendix a, ¥ and Q are auxiliary functions
defined In [1T], and the dimensicns h, a, b, ¢, and d are shown in Fig. t.
Because of symmetry, it is sufficient to consider the problem for

05}1<b, 0<x,<= only. Thus, the membrane and bending problems of the

2 _
plate must be solved under the foliowing boundary and symmetry conditions

stated in terms of the normalized quantitfes (Fig. 1 and Appendix a):

u(q,y) =0, N _(0,y) =0, Ogy<=, - (12)

N B'ry) = 0, N (b7,y) = 0, Ogy<= , | (13)
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ny(x,O) = 0, O<x<b’, ‘ (14)
1 .
Nyy(x,O) =g [o,x) +o(x)] , cf<x<d' , (15a)
v(x,0) = 0, O<x<c', d<x<b' ; ' {15b)
8. (0,y) =0, ny(O,v) =0, V (0,y) =0, Ogy<= , (16)
Mxx(b',v) = 0, Mxy(b'.Y) = 0, Vx(b',Y) = 0, Ogy<= , (17).
Moy (x:0) =0, v, (x,0) = 0, 0<x<b’ | (18)
My (6,0) = g [m () = mG) ], clexed' , (19a)
Sy(x,o) = 0, O<x<c', d'<x<b' . (19b) .

The conditions stated above refer to the perturbation'problem in whiéh
the crack surface tractions are the only nonzero external loads. Conse-

quently, in addition to (12)-(139) it is required that

N Y(x,m) 0, O<x<b' , ' (20}

G, N X,®
y xv( )

]

M, (x,2) mnwu@)=gv¢&ﬂ=o,%gw.' (21)

The input functions o_ and m_ which appear in (15a) and (19a) are
defined by

0, (%) = N, (x,,0)/h, m_(x} = 6M,,(x,,0)/h? | (22)

where N?j (xl,xz) and M?j(x1,x2), (i,j=1,2) are the membrane and moment
resultants in the plate under the actual applied loads in the absence
of any cracks. The functions o(x) and m(x) are unknown and are defined

by N(x,) s« 6M(x,)  6M{a*x)
g(x) = h] = N(Elh X) , m(x) = h&'l - — X | (23)

where the membrane load N(x1) aﬁd the bending moment M(x1) represent -

the stress componeht ozz(xi,o,x3) in the net ligament c<x1<d,
_h h
T<X3<-2-r- L.
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tn the bending problem the solution of the differential equations
(2)-(4) satisfying the symmetry conditions (16) and the regularity

conditions (21) may be expressed as follows [9]:

oo

wix,y) = %-f (A 1HYA, Je ™ cosax da
+ %-f (C,coshBx + C,xsinhBx) cosBy dg , . (24)
: 2 . 2 . .
Qx,y) = ;-f B.e sinax do + ;—j B, sinh r,x singy d8 , (25)
o
pi{x,y) = %-f [-A +(2Ka-y)A ]e cosax do
+ %-[ [k(C1+2KBC2)costh-C2xsinth]cosBy dg, (26)

e/

where Ai(a), Bi(a) and Ci(B), (i=1,2) are unknown functions and

1 1
= a2 2 z - a2 2 z
=l oyl =B ey T (27)

By substituting from (24)-(26) into (7), (9)-(11) and by using five
homogeneous conditions (17) and (18) five of the six unknown functions
may be eliminated. The mixed boundary condition (19) would then deter-
mine the sixth.

Similarly from the plane stress solution of the plate satisfying
the conditions (12}, (14) and (20) the stresses and the y-component

of the displacement may be expressed as [8]
o

N (x,y) = - I h1(a)(1-ay)e-ay cosax do

XX

2
™
- %—j [h (B)cosh8x+8xh (B)SInth]cosBy ds , (28)
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2
Nyy(x,y) = E'J h, (a) (1+ay)e Y cosax da
o o
+ %-J. [(h2+2h3)cosh8x+8xh3sinth]cosBy dB, .  (29)
o
ny(x,y) = - %-J ayh1(a)e’ay sinax da
0 “
+ %-[ [(h2+h3)sinh8x + ﬁxh3cosh8x]sin8y d8 , (30)

(]+K

I+v vix,y) = %—J + ay)e” ™ cosax do

Q

sinhBx]sinBy dB . (31)

%.J [( 2 I+K h )costh + xh,

]

in this case the unknown functions h1, h2 and h, are determined from

3
the remaining boundary conditions (13) and (15).
3. The Integral Equations

If we now replace the mixed boundary conditions (15) and (19}

respectively by

3

W-V(Xgo) = 91 (X) » 0_<__X<b y (32)
g&- By(x,O) = g,(x) , O<x<b (33)

it is seen that by using (17), (18), (13), (32) and (33) all nine
unknown functions A., B., C., (i=1,2) and hj’ (j=1,2,3) which appear
in the formulation of the problem given in the previous section may be
expressed in terms of the new unknown . functions 94 and 95+ From the
definitions (32) and {33) it also follows that conditions (15b} and

(19b) are equivalent to

Y



ol |

g;(x) =0, Ox<c' , d'<x<b’, (i=1,2) , S (34)
dl
[ sitaax =0, G=1,2) . (35)

cl

The functions 94 and g, may now be determined from the two remaining
conditions (15a) and (19a). Referring to [8] and [9] for details, the

following integral equations may be obtained from these two conditions:

dl

o (x)
obd . L .f [E:;; T K OE) -k x-0)]gy (E)dt = 2, (36)
c!
() af=2) [ (1-v)
m(x a“(1-v 3+v 1 b (1-v 1
6E ~ 2TmhA" [ tl ol v B [ = (t+x)d]
c! .
- TéG'[El_' K, {y]t=x|) + —=— 1 = K (Y|t+x|)] + kz X, t)
_ ' m_{(x)
- kz(x,-t)}gz(t)dt = —zg— » c'<xd' (37)

where Kz-is the modified Bessel function of the second kind, the
Fredholm kerneIS'kl(x,t) and kz(x,t) are given in Appendix b and the

constant y is given by

v2 =2 (38)

The functions o(x) and m(x) which appear in (36) and (37) are

. defined by (23) and represent the membrane and moment resultants of

the tensile stress Tyg in the net ligament c'<x<d'. By using the pléne
strain solution for an edge crack occupying (h/z)-L<x3§h/2 in a strip
of thickness h (Fig. 1) under membrane load.N(x]) and bending moment
M(xt) (applied in XyX3 plane) and by expressing the rate of change of
the potential energy in terms of crack closure energy and the change of

compliance, o(x) and m(x) may be expressed in terms of the crack opening
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displacement 2v(x 0,0) and the crack opening angle 28 (x,0) as follows
(see [1] and [4] for details):

a{x)

EEytt(x)v(x) + Ytb(x)BY(x)] s (39)

m(x) = 6E [y, (x)v{x) + Ybb(X)By(X)] . (L0)

where the functions Yis , {i,j=t,b) depend on the local crack depth L{x)
and hence are |mpI:cnt functions of x. The algebraic expressions of

these functions are given in [4] . From (32), (33) and (34) by observing
that

X ' X :
1) = [ g (0t , 8 (x,40) = | gy(e)ee (u1)
¢’ c!
and by using (39) and (40), the integral equations‘(36) and. (37) may
then be expressed as

X d!
Ytt(x)J gf(t)dt - %J [E—l?+ -t—l;+ ke (x,8) - kg (x,-t)]g1(t)dt
c' c!
X
+ Ytb(x)J gz(t)dt .=::—cm(>'<) , clex<d' , (42)
c! '
X X » d!
1o 0 [, g0t + v 0] gpmar - EUEL [ L
c! c' c!
1 v be(l-v) ] ] |
¥ t+x} T T v [ (t~x)3 + (t+x)5] * l+v[ t-x KZ(Y[t—xI)

b o K Grlesx])] + ky(x,t) = kylx,-t) Ta, (£t
='5']Emm(X) , clexed! . (43)

From the following asymptotic behavior of the Bessel function Kz(z) for
small values of z
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1 _
K,(2) = 2 - 3+ 0(z2log 2) , (44)

it can be shown that, as in (42), the integral equation (43) has a
simple Cauchy type singular kernel. We also note that the system of
singular integral equations (42) and (43) must be solved under the
additional conditions {35). |

After solving the integral equations (42) and (43} for g, and g,
the Mode | stress intensity factor K at the leading edge of the crack
may be obtained by substituting from (39)-(41) into the following expres-
sion giving K in a strip containing an edge crack of depth L and sub-

jected to the membrane load ¢ and bending moment m [4]:

K{x) = vh [U(x)gt + m(x)gb] | (45)

where 9 and g, are functions of L/h and are obtained from the correspond-
ing plane strain solution. From the results given in [12] the expressions

for g, and g, valid in 0<L/h<0.8 may be obtained as follows:

vrs (1.1216 + 6.5200s2 - 12.3877s* + 89.0554s®

g (s) =
- 188.6080s" + 207.3870s10 - 32.0524s12) | (46a)
gb(s)_= vrs (1.1202 ~ 1.8872s + 18.0143s2 - 87.3851s3

+ 247.9124s" - 319.9402s5 + 168.0105s6) , (46b)

where s = L(x)/h.
We now note that for 0<c'<d'<b the solution of the system of singu-

lar integral equations is of the form
G, (x)

-, c'<x<d' , (i=1,2) ,
(x-c’)%(d'-x)% ci<x =1, -

g, (x) =

where the bounded unknown functions G4 and Gz may easily be obtained
by using the technique described, for example, in [13] .
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The general crack geometry shown in Fig. 1 has two special cases.
The first is the case of a symmetrically located Singte crack along
-d'<x<d', (i.e., ¢'=0, d'<b'}. |In this problem by using the symmetry
considerations and by observing that gi(t) = -gi(-t), (i=1,2), the

integral equations {42) and (43) may be somewhat simplified as follows:

X d’
ytt(x)J g1(.t)dt - f-;f [t—l—;+ kg (x,t)]g1(t)dt
-d! wg!
X .
P v 50 = Fo 0, -drexar (48)
..d’ '
X 2y d?
th‘*’f gq (t)dt + Ybb(X)f 9, (t)dt - %é%:§¢l'f [ ¥ =
-d? -d! -d!
_ e (1-v) 1 L 1

T+v  (t-x}°  T+v t-x_KZ(Ylt‘xt) * kz(x,t)]gz{t)dt

='g%-mm(x5 , ~d'<x<d . (49)

By using (44) it may again be shown that (49) has a simple Cauchy kernel
and the solution of the integral equations is of the following form:
F.(x)

g () = ——r , ndtex<d' , (1=1,2) . (50)
" (d'2-x?)®

The second special case is that of corner cracks for which O<c'<d'=b'.
In this case it may be shown that as x and t approach the end point b'
simultaneously, the kermels k, and k, in {42) and (43) become unbounded.
As shown in [8] and [9] the singular part of these kernels may be separ-

ated and may be shown to be

1 6lb'-x) ., b(btex)?
A T LR = S A

kis(x,t) = kZS(x,t) =

where
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ki(x,t) = kis(x’t) + ki (X,t) » (i=],2) . (52)

f

and klf and sz are bounded. Together with the Cauchy kernel 1/(t-x} in
(42) and (43), (51) constitutes a generalized Cauchy kernel. It may

be observed that the generalized Cauchy kernel kg(x,t) = 1/(t-x)+kis(x,t)
has the property that kg(x,b“) = 0, kg(b',t) = 0 and consequently gI(t)
and gz(t) are nonsingular at t=b' [8] . Also, in this case the single-
valuedness conditions (35) are not valid and, as pointed out in [8],

are not needed for a unique solution of the Integral equations.

k. The Results

First, some sample problems are solved in order to compare the
results obtained from the line spring medel in this paper with that
obtained from the finite element solutions given in [5] and [6] . 1in [5]
the single symmetric semi-elliptic surface crack problem is considered
for a finite plate under uniform tension or cylindrical behding (i.e.,
c=0, d<b, Fig. 1}. It is assumed that the half length of the plate is
£=5d. Figures 2 and 3 show the comparison of the normalized stress
intensity factors calculated along the crack front by the two methods.
The normalizing stress intensity factor KN shown in these figures fis
defined by

Ky = 0u/TL /E(K) , k = /1-177d? (53)
and is the stress intensity factor at the location Xy = 0, X, = 0, Xy =
Lo’ (i.e., the end points of the minor axis) of a flat elliptic crack
(with semi axes d and Lo)-in an infinite solid subjected to uniform
tension Opg = O in X, direction (¢=0, Fig. 1). Note that, considering

-]

the simplicity of the line spring model, the agreement is not bad. One

may also note that at the intersection point of the crack and the plate
surface x = x1/d = 1 the results based on the line spring model would
not be expected to be very good. Furthermore, at the singular point on

the free surface the power of the stress singularity seems to be less
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than 1/2 [lhj . Hence, theoretically the stress intensity factor defined
on the basis of conventional 1/2 power should teﬁd to zero as the point
on the crack front approaches the free surface at an angle of w/2. Thus,
strictly speaking, the bounded nonzero stress intensity factor given by
the finite element solution at the surface do not seem to be correct either.

Figures 4 and 5 show the comparison of the stress intensity fac-
tors for a corner crack having the profile of a quarter ellipse and
obtained from the line spriﬁg model and the finite element solution given
in [6] . !t should be noted that the finite element results are obtained
for a finite plate in which the half length is equal to the total width
of the plate and the crack is only on one corner (see the insert in
Fig. 4). However, since the crack length-to plate width ratio in both 3
cases is relatively small (2a/2b = 1/10 in line spring and 2a/b = 1/5
in finite element_solution), the streés intensity factors for the twe
geometries should be approximately equal. The figures again show that
the agreement is gquite good.

The calculated stress intensity factors are given in Tables 1-11,
All stress intensity facfors were calculated as a function of x = x1/a*,
(a*=d for a single crack, a*=a for two cracks, Fig. 1) defining the
Iocatioh along the crack front and of the relative dimensions of the
crack and the plate., The folloWing notation and normalizing stress

intensity factors are used in presenfing the results:

(Fr00x,) 5 2 / (54)
g r,0,x,) = s, X = x,/a%* , 5
bh22 1 Vi 3

| . Ko (x) |
°tzz("°’x1) = , X = x,/a% (55)

where supscripts b and t correspond to plates under bending and tension,
respectively, Goy is the cleavage stress around the crack front, r and @
are the usual polar coordinates at the crack front in XpX3 plane (Fig. 1)
and Kb and Kt are the corresponding Mode | stress intensity factors.

The results are given for uniform membrane load sz = N_ and cylindrical
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bending moment M22 = M, away from the crack region. The normalized

stress intensity factors shown in the tables are defined by

SR SR L (56)
k. {x) = ,» k (x) = , 5
b 0 Ot Kto
Ncn
Ko = (G 7P g (s}, s =L/, (57)
6M_
I<bo = (TFTJ h gb(so) > 35 T Lo/h (58)
where Lo is the maximum crack depth and the functions = and g, are
giVen by

(45) and (46). One may note that gt(so) and gb(so) are the
shape factors obtained from the corresponding plane strain solution of

a plate with an edge crack of depth L0 and, for the values of Lo/h s hown
in the tables, are given by [i2] .

5, = Lolh 0.2 0.4 0.6 0.8
gt(so)/f%so  1.3674 2.1119 4,035 11.988
gb(so)//wso 1.0554 1.2610 1.915 4,591

Table 1 shows the normalized stress intensity factors at the deep-
est penetration point of a centrally located single semielliptic surface

crack (i.e., ¢=0, d<b, Fig. 1) in a plate under uniform tension N_ or
bending M_. Here the crack profile is given by

L2 x?
o
or
Li{x) = Lofl-xZ , (x = x1/a* , a*¥ = d) (60)
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and hence x=0 is the deepest point on the crack front. This is also
the point where kt assumes its maximum value. Fo} b/k = 10 relatively .
complete and for other plate dimensions some sample results showing
the variation of the stress intensity factors along the crack front
are shown in Tab!eé 2 and 3. Similar results are shown in Tables &
and 5 for a single surface crack with a rectangulér profile {i.e., for
L{x) = Lys ~1<x<1). One may observe that, as expected, generally the
stress intensity factors for the rectangular crack are higher than that
for the semi-elliptic crack.

The results for two collinear semi-elliptic surface cracks (Fig. 1)
are sh&wn in tables 6 and 7. Here the crack profile is defined by

(Fig. 1)

p—— x,~{cta} .
L{x) = L, 1-x2 |, x = "LE"""“" , ~l<x<t, (61)

Table 6 shows the value ki(x*), (i=b,t) and the location x = x* of the
maximum stress intensity factor for various crack geometries in a plate
for which b = 10h and a = h. The factor D = a/{a+c} determines the crack
location. Table 7 shows some sample results giving the distribution of
the stress intensity factors along the crack front for two extreme crack
locations considered. The skewness in this distribution does not seem
to be very significant.

The results for a plate containing two corner cracks having a pro-
file of a quarter ellipse are shown in Tables 8 and 9 (Fig. 1). In
this case the crack profile {or the crack depth) L is defined by

— x,={c+a)
LR =L 1-EGRT R e iar (62)

Table 8 shows the normalized Mode | stress intensity factors at the
maximum penetration point of the crack which is on the plate boundary

x =b' (i.e., for x; = b or x=1lorlLs= L,). Some results showing the
distribution of the stress intensity factors are given in Table 9. The

results were similar for all crack geometries in that for plates under
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tension énd for those having shallow cracks under bending the maximum
stress intensity factor was on the boundary x = B', whereas for deep
cracks in plates under bending K was maximum at the surface Xy = ¢ or
x = c¢' (Fig. 1). For corner cracks with a rectangular profile results
similar to those shown in Tables 8 and 9 are given in Tables 10 and 11.
For this crack geometry too one may note that generally the stress
intensity factors for rectangular cracks are higher than those for the
elliptic cracks.

From the formulation of the problem it may be seen that all results
in the surface crack problem are dependent on the Poisson's ratio v
of the plate. The stress intensity factors given in this paper are cal-
culated for v = 0.3, However, as shown [9] , since the stress intensity
factors are not very sensitive to the Poisson's ratio, the results

given in Tables 1-11 should be valid for nearly all structural materials.
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Appendix a

The definition of normalized quantities

x = xy/a% , y = x,/a% , z = x3/a* y {A.1)
u = u}/a* , V= uzfa* , W= u3/a* , (A.2)
b= == , B =8, ,8 =8 (A.3)
a*<hE ’ "x 17 % 2 : ‘ '
Ty = 044/E , Oy Ty0/E Oy = a4,/E , (A.4)
Vg = T Mog =R (@B = Goy) L (L) = (L), (A.9)
v, = V,/hB , vy = V,/hB . (A.6)
_5 E - _E b . y2)a%2/m2
B-E.ZH'\) ,K‘—g'i-q_-,l —IZ(I\J)G* /h . (A.?)

b' = h/a% , c' = ¢/a% , d' = d/a*

In the problem described by Fig. 1, a* = a = (d-c)/2 for O<c<d<b and
a* = d for ¢.= 0, d<b.
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Appendix b

The Fredholm kernels k1 and k2 which -appear in the integral
equations (36) and (37)

o«

-(zb"‘t)s -ZBb‘
ky(x,t) = f =T hsb. {-[1+(3+28b")e JcoshBx
1+4gb'e
-ZBxe-ZBbI sinhBx~[28x sinhBx+(3-28b"
+e-28b’)costh][l-ZB(b'“F)]}dB , (B.1)
= ' -28x -
_ (e 3wy | 1w . 14e -{2b'~t=-x)B
)
=2rox |
2c(1=v) 1+e °'2 o ~(b'=t)ry _ -(b'-t)8y _=(b'=x)ry
- T+v : "ZI'Zb' (B e Brze ).e
-a _
-2b'R
28 _ 2b'g2 1+e ) -28x 3 ~2Bx
* [(l-v +v l-e -2b'g’ (1+e ) ¥ 15 1+v (kB (14e )
2 - - Vep
+ o x(1-e728%) L X g(1ae )] Lo o7(200mtms
-(b'-x)B -(b'-t)rz 2 -2rox -{b'-t)B
.+ Dye 1- ]+v Ber, (1+e ) D [D
-2b'B
o-(bi-t)ry q1-e -{b'-x}ry
+ 2 ]] _Zblrz e }dB 3 (B-Z)
zs -2b'8, f+e 2D T2 -2b'8
D, = (l ") g 2(1+e )
1=-e
-2b'8 ot
# o [1-(b-0)]-(1-9) [ (b'-t)-kB2](1-e"P'B)
(B.3)
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P T 3
= 2 N

- 1
eZb I’z

?
_ 28 1+
D, = 75773

2 Y&

(1-e"2P'By L a2(1-v) (1-e™22'8y . (B.4)
1-e

- wlila !
D = 4b'p2e 2b'6 | (%?%—s + 2cB3) (1-e 4b B

Rt
1+e 2b'ry

Tre _ —
2 {26717

- 2 :
+ 282¢r (1-e Zb'B) (8.5)
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form tension or bending (v=0.3).

C P B
ot

The normalized stress intensity factors at the maximum
penetration point (x=0) of a symmetrically located
single semi-elliptic surface crack in a piate under uni-

L = 0.2h L = 0.kh L = 0.6h L = 0.8h
b d Qo - [o] o Q
h h .
kb(O) kt(O) kb(o) kt(O) kb(o) kt(O) k, (0) kt(o)
.709 | .729 | .308 | .390 | .0518] .175 |-.0290 | 0.0503
.737 1 .755 | 342 | (421 | .0705) .192 |-.0257 .0555
777 .792 | .398 470 .104 L2217 |-.0188 L0648
.805 | .818 | .443 | .508 | .132 | .246 |-.0121 .0730
.837 | .848 .501 .559 74 .282 [-.0014 L0848
.876 | .884 | .584 | .630
.930 | .934 | .723 | .752 | .390 | .44 | .0726 .155
.953 | .956 | .800 | .819 | .499 | .556 | .127 .203
.967 | .969 | .853 { .865 | .592 .634 .180 .256
.975 | .976 | .885 | .893 | .659 | .689 | .249 .305
.976 |°.977 .887 .89k .664 .693 .264 .310
.977 | .978 | .891 | .898 | .672 | .700 | .264 .318
.709 | .729 | .308 | .390 | .0519) .175 !-.0290 .0503
.738 | .755 |- .342 | .421 )} .0706} .192 |-.0256 .0556
.778 4 .792 | .399 { .k70 § .104 | .221 [-.0188 .0649
.805 | .818 | .44k | .509 | .133 | .247 |-.0120 L0731
.877 | .885 | .586 | .632 | .246 | .341 | .0189 .105
.932 | .936 | .730 | .758 | .4oo | .472 | .0774 .159
.957 .959 814 .830 .525 .576 b4 L216
.971 | 972 | .867 | .876 | .626 | .660 | .223 .282
972 | .973 | .872 | .880 | .635 | .667 | .233 .290
0.5 { .710 | .729 | .307 | .391 | .0521}| .176 {-.0289 .0503
0.6 | .738 | .756 | .343 | .22 | .0710{ .192 |-.0256 .0556
0.9 | .794 | .807 | .424 } .h92 | .122 | .235 |-.0152 .0693
1.2 | .827 | .839 | .483 | .543 | .160 | .270 |-.0051 .0807
1.5 | .851 | .861 | .530 | .583 | .196 | .301 | .0046 .0910
3 .915 | .920 | .681 | .715 | .341 | .423 | .0531 137
-k .930 | .934 | .723 ] .752 | .390 | .464 | .0726 .155
5 .953 ! .955 | .802 | .818 | .507 | .560 | .136 .208
5.77 | .963 | .964 | .839 | .850 | .576 | .616 | .187 .250
5.88 | .964 | .965 | .844 | .855 | .587 | .625 .258
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Table 1 (cont}

b| 4 L, = 0.2h L, = 0.4h .| L = 0.6h L, = .8n.
h h . ‘ . . . ‘
kb(o) ktCO) kb(0) kt(b) kb(0) kt(ol ky (0) (0)
0.5 | .711 | .730 | .309 | .392 | .0528| .176 |-.0289  .0504
0.666! .755 | .771 | .366 | .ubi 0839| .204 {-.0231 .0591
0.8 | .780 | .795 | .ho3 | 474 | .106 | .223 |-.0184  .0653
4 1 .809 | .821 | .450 | .514 | .137 | .250 {-.0112 - .0738
1.33( .843 | .853 | .512 | .568 | .183 | .289 0006 : .0866
1.5 | .856 | .865 | .540 | .531 | .204 | .307 | .0068 . .0929
2 .886 | .893 | .608 | .650 | .265 | .358 | .0257 .111
3.92| .95% | .953 | .800 | .815 | .519 | .565 ] .152 .218
0.5 | .716 | .735 | .316 | .398 | .0557] .179 |-.0287 . .0508
0.6 | .77 | .763 | .355 | .431 | .0768] .197 |[-.0249 | .056k
0.8 | .791 | .80h4 | .421 | .488 | .117 | .232 {-.0166 | .0671
, | 0.9 | -808 | .820 | .450 | .513 | .136 | .248 |-.0121 | .0722
1.0 | .823 | .843 | 477 | .537 | .156 | .265 [~-.0072 | .0774
‘43 ) .864 | .872 | .561 | .608 | .224 | .321 | .0118 | .0961
1.9 { .916 | .919 | .701 | .726 | .385 | .450 | .0754 | .150
1.96 | .920 | .924 | .718 | .740 | .B11 | .471 | .0903 | .162
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Table 2. Distribution of the stress intensity factors along

the crack front in a plate containing a single sym=

metric semi-elliptic surface crack {b/h = 10, v =
0.3, x ='x1/d).
k, k, ky | k, ky | ke Ky | K
Lo/h 0.2 0.4 0.6 0.8
X . b/h=10, d/h =0.5, v=10.3
0.929 §0.628 |.547 1.428 [.340 }.191 .152 L0486 |.h4ik
0.828 | .672 |.609 |.392 }|.349 |.154 |.156 | .0314 |.472
0.688 | .694 |.656 |.361 [.364 |.123 |.162 | .0113 |.S510
0.516 | .704 |.691 [.336 {.376 |{.0924 [.169 |-.0061 {.512
0.319 .708 1.715 {.318 |.385 {.0672 |.173 {~.0187 }.502
0.108 { .709 {.727 |.308 }.390 {.0535 [.175 |-.0276 |.503
0 .709 |.729 |.307 }.390 ].0518 {.175 |-.0290 |.503
b/h=10 , d/h =1, v = 0.3
0.929 | .631 {.545 {.505 |{.391 |.272 |.205 | -.0809 }.0649
0.828 | .709 {.639 |.496 |.426 |.239 215 | .0621 |.0677
0.688 | .756 {.710 |.480.].457 {.209 |.226 | .0396 |.0718
0.516 .783 |.762 |.464 |.482 |.177 .236 L0183 1.0729
0.319 | .798 {.798 |.451 |.499 |.149 |.243 | .0163 |.0724
0.108 | .804 !.816 !.444 1,507 1,134 1.246 !-.0103 |.0728
0 .805 {.818 |.443 [.508 [.132 |.246 |~-.0121 |.0730
b/h =10, d/h =4 , v =0.3
0.929 | .623 |.535 |.561 |.h420 |.402 |.285 | .168 [.121
0.828 | .739 |.661 |.626 |.517 |.420 }.339 | .163 |.137
0.688 | .819 |.763 |.666 |.601 |.426 .387 . 1AL 150
0.516 | .875 |.84k4 |.695 |.671 |.518 |.h25 | .120 {.156
0.319 | .910 {.90% |.713 {.722 }|.402 {.45%1 | .0953 |.156
0.108 | .927 |.930 {.722 |.748 {.391 |.463 | .0756 |.155
0 .930 }.934 }.723 |.752.1.390 |.464 | .0726 |.155
b/h =10, d/h =8 , v = 0.3
0.929 | .622 }.533 |.571 |.423 |.453 1.316 } .238 .170
0.828 | .747 [.667 |.665 |.542.].513 |.403 | .260 |.209
0.688 .837 {.778 [.735 |.653 }|.560 87 .261 .240
0.516 | .501 |.868 [.791 [.749 |.586 |.558 | .245 |.256
0.319 | .94k [.931 |.830 |.821 [.593 {.607 | .219 {.259
0.108 | .965 |.965 {.850 |.860 |.592 {.631 | .194 |.256
0 .967 [.969 |.853 |.865 [.592 |.634 { .190 |.256
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Table 2 (cont.)

Kp | % 1Ry | ke kg | ke Ky Ky

/A | 0.2 0.5 3.3 0.5

X b/h = 10 , d/h = 9.8 , v = 0.
6.929 | .629 1.538 |.597 |.uk2 |.508 |.355 | .312 | .225
0.828 | .753 |.673 |.692 |.562 |.572 |.hkg | .341 | .270
0.688 | .84k |.78% |.763 |.675 {.626 |.536 | .345 | .305
0.516 | .909 |.875 |.822 |.775 |.658 |.614 | .328 | .323
0.319 | .952 |.939 |.865 |.851 |.670 |.669 | .298 | .32k
0.108 | .97% |.973 |.888 |.892 |.672 |.697 | .268 | .319

0 .977 |.978 |.891 |.898 {.672 |.700 | .264 | .318
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Table 3. Distribution of the stress intensity factors
along the crack front in a plate containing a single
symmetric semi-elliptic surface crack (b/h = 2,4,6;

v=0.3).
Ky ’ Ke | % I ke | K l ke %b Ky

L /h 0.2 0.4 0.6 0.8

x b/h=2, d/h=1, v=0..3
0.929 |.646 |.559 |.542 |.421 |.306 |.232 | .0941 |0.0752
0.828 |.726 |.654 |.533 |.456 |.271 |.2ko | .0736 | .0768
0.688 |.774 1.726 |.517 |.487 |.238 |.249 | .0k92 | .0796
0.516 |.801 [.779 |.500 {.511 |.204 {.257 | .0261 | .0793
0.319 {.816 |.81%k |.486 [.527 |.174 |.262 | .0077 | 0777
0.108 {.823 |.832 |.478 |.536 |.158 |.264 |-.0053 | .077h

0 |.823 {.834 {.477 |.537 |.156 |.265 |-.0072 | .0774

b/h=k, d/h=1, v=0.3

0.929 |.634 |.548 |.512 |.397 |.278 |.210 | .0833 | .0668
0.828 |.713 |.642 |.5o4 |.432 |.245 |.220 | .o06k2 | o069k
0.688 |.760 |.713 |.488 |.463 |.21h |.230 | .ok1k | .0733
0.516 |.787 {.766 |.471 |.488 |.182 |.2h0 | .0198 | .07h1
0.319 |.802 |.801 |.458 [:505 [.154 {.246 | .0028 | .0734
0.108 |.808 {.819 |.451 |.513 |.139 |.249 |-.0094 | .0737

o 1.809 |.821 [.4B0 |.51k |.137 |.250 |-.0112 | .0738

b/h =6, d/h = 1.2, v = 0.3

0.929 |.632 |.545 |.522 |.ho2 |.296 1.221 | .0921 | .0723
0.828 {.717 |.645 |.523 |.446 |.266 |.234 | .0732 | .075k
0.688 |.770 |.722 |.513 |.483 |.237 |.2k7 | .0501 | .0796
0.516 [.801 {.778 |.501 |.512 |.206 |.258 | .0277 | .0808
0.319 |.819 [.817 |.490 |.532 [.178 |.266 | .0096 | .0802
0.108 |.827 |.836 |.474 |.5h1 |.162 |.270 |-.0032 | .0806
"0 {.827 |.839 |.483 |.543 |.160 {.270 |-.0051 | .0807
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The normalized stress intensity factors at the center
(x=0) of a single symmetric rectangular surface crack

" in-a plate under tension or bending (v=0.3).

L = 0.2h L = 0.5h L = 0.6h L = 0.8h
b d ] Q o [e}
R| R
kb(o) ktto) kb(o) kt(O) kb(o) kt(ol kb(o) kt(O)
0.5 {.765 |.784 |.340 |.429 .0607 |.194 |-.0316 |.0599
o | 2 {.915 j.922 |.652 |.699 .284 | .388 L0261 |.122
5 .970 .973 .847 .868 .5hh 611 .134 .222
9.8 |.995 1.999 |.987 |.989 914 |.927 .557 1.603
0.5 1.766 |.785 |.340 |.429 | .0608 |.194 |-.0316 |.0599
g | 1 .853 |.865 |.496 |.563 .154 |.276 {-.0105 |.0851
L [.963 |[.966 |.814 |.84o 487 | .562 1ok |.195
7.84 1.998 {.938 }.982 |.985 .892 |.907 .503 |.554
0.5 |.766 1.785 {.341 |.429 {0.0610 |.194 |-.0316 {.0600
g |1 .855 1.867 |.h98 |.566 .155 1.277 |-.0103 |.0854
3 .951 |.955 |.767 |.797 414 |.500 .0721 {.165
5.88 1.997 .998 .975 .978 .857 .378 434 L4917
0.5 |.768 |.787 1.343 |.431" |0.0619 |.195 |-.0315 |.0602
L | .85 |.870 |.505 |.571 .159 [.281 |-.0095 |.0863
2 .930 |.936 1.690 |.732 .320 |.h419 .0370 {.133
3.92 [.996 .996 .959 .965 .797 |[.826 “ 34 . 408
0.5 1.776 |.794% |.352 |.439 L0655 {.198 |-.0312 |.0609
, |1 .880 [.890 |.545 |.606 .186 |.304 |-.0041 {.0923
1.5 |.941 |.945 |.710 |.749 .334 | .432 .0395 |.135
1.96 1.990 |.991 |.916 |.927 666 |.715 .205 |.285
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Table 5. Distribution of the stress intensity factors along
the crack front in a plate containing a single sym-
metric rectangular surface crack, x = x1/d.

Ky L ke |k | Ky % LR | Ky ¢

LO/h 0.2 : 0.4 0.6 0.8

X b/h =2, d/h =1, v = 0.3
0.929 {.585 {.618 [.233 |.334 .0289 }.159 {-.0295 |0.0458
0.828 |.737 |.759 |.354 |.44O L0798 [.209 |[-.0261 .0619
0.688 |.814 [.829 [.439 |.514 .122 .248 |-.0190 L0741
0.516 |.852 |.864 |.495 |.562 . 154 .276 i-.0120 .0831
0.319 {.871 {.881 |.528 |.591 L1748 .294 j-.0070 .0890
0.108 |.879 |.889 |.543 |.605 . 184 .302 |-.0044 .0920

0 .880 1.890 |.545 |.606 .186 .304 |-.0041 .0923

b/h = 6, d/h =1, v = 0.3

0.929 |{.566 .601 |.210 }.314 L0181 {.149 {-.0302 .0439
0.828 |.715 {.738 1.321 |.4n L0623 |.194 |-,0283 .0586
0.688 |.789 |.806 |.399 {.480 .0996 |.228 |-.0227 .0684
0.516 {.827 |.841 |[.451 |.524 127 .253 {=.0169 0773
0.319 |.846 |.858 |.482 |.551 . 145 -}.269 t-.0127 .082¢%
0.108 |.854 |.866 |.496 |.564 154 .276 |-.0105 .0851

0 .855 1.867 |.498 |.566 L1585 §.277 |~.0103 .0854

b/h = 10, d¢/h = 1, v = 0.3

0.929 .423 i.470 1.112 |.228 ~.0172 (.108 |-.0293 .0309
0.828 |.574 }.609 }.191 (.298 .0038 {.138 [-.0343 L0417
0.688 |.667 |.694 |,252 .352 .0250 {.160 }-.0350 .0492
0.516 _.72] 784 1,297 |.390 L0421 |.177 {-.0339 .0545
0.319 |.751 |.771 [.325 |.415 .0539 {.188 |-.0325 .0580
0.108 |.764 |.783 [.339 h27 L0599 .193 (-.0317 .0597

0] .765 {.784% |.340 {.429 .0607 {.194 }-.0316 .056399
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Table 6. The location x=x* and magnitude kp(x*) and ke (x%) of the
normalized stress intensity factors in a plate containing
two collinear semi-elliptic surface cracks, p=a/(a+c).

L = 0.2h L = 0.hh L = 0.6h L =0.8h
[} o] Q Q :

kb(x*) kt(x* .kb(x*) kt(x* kb(x*) kt(x*) kb(x*) kt(x*)

0.112 | x* 0.2 0.05 | .929 | .319 | .929 | .929 | .929 | .929
k (x*) .831 .839 | .649 .554 .4o9 .308 | .138 .107

0.125 | xx 0 0 .929 . 040 +929 .108 .929 .516

k {x*) 812 824 | .522 .518 .287 .523 .867 | .756

.250 | x* 0o 0 |+.929 0 .929 0 .929 {+.516

k(x*) | .807 | .820 | .509 | .512 | .275 | .248 | .0822 | .735

0.5 X 0 0 -.929 0 -.929 0 -.828 .516
k {x*) .81 .823 | .521 .517 .285 .251 .0858 | .o74h4

0.75 | x* [-0.50 0 -.929 |-.050 {-.929 |-.108 {-.929 |-.488

kix*) | ..818 .829 | .550 .528 .310 .259 .0951 | .786
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Table 7. Distribution of the normalized stress intensity
factors along the crack front in a plate contain-
ing two collinear semi-elliptic surface cracks,

% = [x1-(c+a)]/a (Fig. 1).

L. /h 0.2 0.4 0.6 0.8

X b/h=10, d/h=1, D=a/(c+a)=0.112, v=0.3

0.929 |.688 {.596 |.649 |.505 {.409 |.308 | .138 !.107
0.828 |[.766 [.689 {.623 |.527 |.351 {.300 | .106 |.102
0.688 |.805 )}.754 |.584 |.541 |.297 {.294 | .0720 |.0975
0.516 }|.824 }.798 |.548 {.550 |.246 {.289 | .0411 |.0915
0.319 |.831 }.827 |.519 |.554 |.204 [.285 | .0175 |.0858
6.108 |.831 {.839 |.500 {.553 {.178 |.280 { .0013 |.0829
0 .829 1.839 }|.494 {.550 {.173 |.278 |-.0016 |.0821
-0.108 |.826 |.835 |.491 |.5h6 [.172 |.275 |-.0004 |.0814
-0.319 }.816 |.814 |.492 |.532 |.18% [.269 | .0117 |.0809
-0.516 |.799 |.776 |.500 |.512 {.209 |.261 | .0293 |.0818
-0.688 |.769 |.721 |.513 |.48L |.,240 |.250 | .0516 |.0814
-0.828 |.720 |[.649 {.526 {.450 |.270 |.239 | .0751 |.0780
-0.929 |.640 }.553 {.533 |.413 {.303 |.229 | .0949 |.0758

b/h=10, d/h=1, D=a/(c*+a)=0.75, v=0.3

0.929 |.637 {.551 {.521 |.4ok [.288 }.217 | .0872 ;.0698
0.828 |.716 |.645 |.514 |.4Lo .25k {.227 | .0678 |.0721
0.688 |.764 {.717 |.499 |.472 |.224 |.237 | .okb6 |.0757
0.516 |.793 [.771 |.484 |.498 |.192 |.247 | .0225 |.0763
0.319 {.809 [.807 |.472 }.516 j.164 |.254 | .0050 |.0753
0.108. |.816 |.826 |.h67 |.526 |.149 |.258 {-.0075 |.0754

0 .818 |.829 |.467 |.528 |.148 |.258 {-.0093 {.0755
-0.108 |.818 |.828 .429 .528 {.151 {.259 |-.0073 .0755
-0.319 {.814 |.812 |.430 |.522 |.169 {.258 | .0057 {.0760
-0.516 |.801 {.778 |.497 }.509 |.200 |.253 | .0243 {.0778
-0.688 |.776 |.727 |.517 |.488 {.236 |.247 | .0481 {.0786
-0.828 |.730 |.657 [.538 |.h60 |.272 |.250 | .0735 |.0766
-0.929 }.651 {.563 |.550 {.427 {.310 |.235 { .0951 |.0757
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Table 8.

The normalized intensity factors on the

a plate containing two symmetric corner’

profile of a quarter ellipse (Fig. 1).

ik vEind

edges (x=%b') of

cracks having a

L =10.2h L_ = 0.4h L = 0.6h L = 0.8h
E_ a e} o] 0 O

h h kb(b ) kt(b ) kb(b ) kt(b ) kb(b ) kt(b ) kb(b ) kt(b )
0.25 .775 .790 .380 485 .0975 219 {-.0172 .0678
G.3 .797 .810 415 L4185 .120 .239 =.0117 L0743
0.4 .828 .840 473 .535 159 271 {-.0014 .0857

2 {0.5 .852 .862 .522 477 .197 .303 .0089 .0963
0.6 .872 .880 .568 616 .234 .334 .0199 107
0.7 .889 .896 .610 .652 .273 .366 0321 .118

0.8 .905 .910 | . .653 .638 .317 Lho1l .0h70 131
0.26 777 .792 .384 459 .102 .223 [-.0152 .0700
0.4 .821 .833 463 .527 .156 .269 .0003 .0873
0.6 .858 .867 .539 .593 .215 .319 .0179 .106

3 0.8 .883 .890 .597 .642 .264 .361 .0338 121
1 .901 .907 .64k .683 .310 . 399 L0492 | 136

1.2 .916 .921 .685 .718 .354 435 .0657 .150

A .929 .933 722 .750 .398 471 .0838 .166

.6 .935% 942 .756 779 443 .508 .105 .184
0.27 .781 .796 .391 JAash .106 .226 |{=.0140 071k
0.3 .792 .806 A10 481 .119 .237 {-.0105 L0755
0.6 .856 .866 .536 .591 214 .319 .0187 .107

5 0.9 .889 .896 .613 .657 .281 .376 L0409 128
1.2 .910 .916 .669 . 705 .337 422 .0609 47
1.5 .926 .930 .713 L7hh | .387 L6k .0809 165
1.8 .938 941 .750 .776 434 .503 | .102 .183
2.1 .948 .950 .782 .803 479 .540 124 .202
2.h .956 .958 81 .828 .523 .576 149 .223
.28 .785 .799 .397 470 110 .230 (~-.0129 0727
0.4 .821 .833 62 .526 .156 .269 L0004 .0875
0.8 .879 .887 .589 .636 .260 .358 L0343 122
1.2 .908 .914 .B65 .702. .334 420 L0607 147

8 {1.6 t .927 .932 .718 .748 .394 470 L0846 .168
2 .941 .94k .760 .784 A4y 514 .108 .189

2.4 .961 .953 .793 .813 gl .554 .133 .210

2.8 .959 .961 .821 .837 .538 .591 .158 .232
3.2 .965 .967 .845 .858 580 | .626 .186 .255




Table 8 - cont.

L = 0.2h L_ = 0.kh L = 0.6h L =0.8h
b a 0 0 o )
h h kb(b ) kt(b ) kb(b } kt(b ). kb(b } kt(b )} kb(b ) kt(b )
0.25 .772 .787 .376 452 L0967 .218 -.0165 | .0684
0.75 .873 .882 .576 .625 .249 .349 0307 | .118
1 .895 .902 .630 672 .299 .391 0483 | .135
1.5 .922 .927 .704 .736 .378 457 | L0786 | .163
10 2 .939 .943 .755 .780 440 .510 .106 .188
2.5 851 .953 .793 .813 49k .555 | .133 211
3.0 .959 .961 .823 + .840 .5h1 .594 | .160 L2348
3.5 .966 .968 .848 .861 .584 .630 | .188 .258
k.o .972 .973 .869 .880 624 664 | .218 .283
4.5 .976 .977 .888 .896 .664 .696 | .252 312
20 1 .895 .901 .629 671 .298 .390 { .0483 | .135
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Table 9. Distribution of the normalized stress intensity
factors along the crack front in a plate containing

two {elliptic) corner cracks, x = ]-(c+a)]/a
{Fig. 1).
kb kt kb kt kb kt kb kt
Lo/h 0.2 0.4 0.6 0.8

X1

b/h = 2, a/h =0.5, v=20.3

0.999 |.852 |.862 |.522 |.577 {.197 {.303 |.0089 {.0963
0.936 |.846 |.856 |.515 |.571 |.191 |.297 |.0073 |.0936
0.784 {.834 |.843 {.503 |.557 .182 1.286 }{.0050 |.0883
0.558 |.82h |.828 |.493 |.543 {.177 |.274 |.0064 |.083k
0.279 |.813 {.808 |[.492 |.528 {.184 |.266 |[.0138 |.0805
-0.026 |.799 |.777 |{.498 |.510 |.204 }.257 |.0263 |.0798
-0.329 |[.776 |.732 |.511 |.488 |.231 }.248 |.0450 |.0794
-0.600 |.736 |.669 |.526 |.460 {.261 |.2h0 |.0679 |.0768
-0.815 |.668 |.583 |.537 |.427 |.29% |.231 |.0882 |.0748
-0.953 |.549 |.460 |.532 {.390 |.336 |.232 |.112 }.0772

b/h = 8, a/h = 0.8, v = 0.3

0.999 [.879 1.887 1.589 1.636 |.260 [.358 |.0343 |.122
0.936 |.874 |.882 |.582 |.630 [.253 |.351 }.0317 [.118
0.784 |.866 |.872 |.570 {.617 [.242 ].339 [.0277 |.112
0.558 |.857 1.859 |.561 |.602 |.237 |.326 |.0281 [.105
0.279 1{.844 ].836 |.557 |.583 |.243 [.314 {.0357 |.101

-0.026 |.825 |.800 |.557 |.559 |.259 |.302 |.0489 |.09%0

-0

-0

-0

-0

.329 |.793 |.746 |.558 |.525 [.282 |.286 |.0677 |.0966
.600 |.751 [.671 [.558 |.481 [.304 1.269 |.0896 |.0917
.815 |.658 |.573 |.547 |.428 |.326 |.249 ].108 |.0869
.953 |{.521 {.h434 [.502 |.361 |.345 {.231 |.127 - |.0850°
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Table 10. The normalized stress intensity factors at the edges x = +b'
of a plate containing two symmetric rectangular corner cracks.
b L = 0.2h L = 0.5k L_ = 0.6h L = 0.8h
b | a o o 0 o}

R i ) i (') Tk (67) [k (6") [k (') 1k (67) [k (6') i, (b')
0.25 .821 .835 415 .49k .108 .238 -.0185 0773

2 10.5 .895 .903 .581 .638 .223 .337 -.0119 . 109
0.8 .954 .958 754 .787 .388 477 .0620 .156
0.26 .820 .835 RAL .497 112 .242 -.0163 0797

4 0.4 .860 871 .507 .574 A7k .285 L0014 .0985

| .937 .9h2 .716 .755 .359 453 .0595 | .154

1.6 .976 .978 .856 .876 .550 .617 .139 .227
0.27 .823 .838 Jh26 .504 117 .246 -.0149 10.0812

6 0.6 .891 .900 .589 645 .240 .353 L0227 .120

1.6 .956 .960 .788 .817 .453 .534 .0983 ; .190

2.4 .984 .985 .902 915 .648 . 700 .202 .283
0.28 .827 1 .84l 433 .510 .122 .250 -.0136 .0826

8 0.8 .912 .919 .648 .696 .294 .399 .0h09 | .138

12 .967 .970 .833 .856 .525 .535 .133 .222

3.2 .988 .‘989 1 .927 _.937 .74 .756 .255 .331
0.27 | .823 .837 .425 .503 117 .246  [-.0150 | .0811

10 1 .927 .933 .692 .734 34 .A39 .0573 .153
2.5 .974 .976 .864 .882 .581 .643 .165 .251

b .991 .992 .943 .951 . 761 .796 . 302 L3748
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Table 11. Distribution of the normalized stress intensity
factors in a plate with rectangular corner cracks,
X = [xl-(c+a)]/a.

X b/h = 2, a/h = 0.5, v = 0.3

0.999 {.895 ;[.903 ;.581 {.638 |.223 1.337 | .0119 |.109
0.936 |.892 {.901 {.576 |.634 {.218 {.332 | .0102 ;.107
0.784 |.887 |.896 |.564 |.623 |.207 }.323 | .0059 |.103
0.558 |.879 |.889 |.548 |.609 |.193 |.310 | .0003 |.0967

0.279 |.868 |.879 |.525 }.589 {.175 {.295 |~-.0057 }|.0902
-0.026 |.851 |.863 |.493 |.561 |.153 |.275 |-.0122 |.0828
-0.329 |.818 {.833 |.4&4k |,518 j.124 |.249 ;-.0195 ;.0739
-0.600 |.756 |.776 |.370 {.454 {.0852}.214 |-.0268 |.0626
-0.815 |.630 |.660 |.262 |.353 {.0373}.168 [-.031k |.048]
-0,953 .385 |.434 |.115 }.229 |-.0098.107 }-.0260 .0284

b/h'=8, a/h = 0.8, v = 0.

ol

0.999 |.912 |.919 |.648 |.696 |.254 |.399 | .0h09 |.138
0.936 |.911 |.918 |.643 |.692 |.289 |.394 | .0383 |.135
0.784% |.907 |.915 [.633 {.683 |.277 {.384 | .0322 }.129
0.558 |.902 |.910 |.619 |.671 }.261 [.370 | .0243 |.121
0.279 |.894 |.902 |.598 {.652 |.242 |.353 L0172 L.114
-0.026 {.880 |.890 |.567 |[.625 |.217 }.331 .0086 |.105
-0.329 |.856 |.868 }.520 |.58% |.183 |.301 L0015 {.0934
-0.600 |.809 |.824 |.4h6 }.520 |.137 |.260 {-.0133 ;.0792
-0.815 {.705 1.729 |.331 |.520 {.0759§.205 .0245 |.0610
-0.953 |.462 1.505 }.160 ;.270 |{.0073}.131 .0263 |.0367
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APPENDIX B

FURTHER RESULTS ON CRACK-INCLUSION
INTERACTION PROBLEM

Liu Xue-Hui and F. Erdogan

1. Introduction

The general formulation of the crack-inclusion interaction problem was
given in Appendix A of the previous report (Ref. 1 of Part I of this report).
The general problem considered in [1] is described in Fig, B1, The inclusion-
crack intersection problems studied in [1] included the cases of the common
end points (i.e., a=0, c=0, Fig. B1) and the crack terminating at the inclu-
sion. The intersection problem in which the inclusion end terminates at the
crack was not studied. The special case of 90 degree angle of intersection is
shown in Fig. B2 and is studied in this report.

2. The Formulation

The fdrmu]ation of the problem is identical to that given in [1], except
that in this case we have to consider two separate cracks along (-a<x<0, y=0)
and (O<x<b, y=0). The reason for this is that at (x=0, y=+0) the stress state
is expected to be singular with a power different than 1/2 and (-a,0), {0,b)
and (0,d) must be treated as three separate 1lines of displacement or stress
discontinuity, ' To formulate the problem we define the following unknown func-
tions:

5

X [uy(xsm)“uy(xs“o)] = Q](X) » O<x<b ,

3 -

oy LUy (X5+0)=u (x,-0)] = hy(x) , O<x<b ,
| - (Ta-e)
Z Luy (x,+0)~u, (x,-0)] = g5(x} , -a<x<0 ,

.éa-[ux(x,+0)-ux(x,-0)] = hy(x) 5 -a<x<0
p(y): distributed body force simulating the inclusion, O<y<d .
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The Green's functions for the dislocations g and h and the concentrated body
force p were given in [1]. The 1ntegréi equations for the unknown functions
defined in (1) are obtained from the boundary conditions on the crack surfaces
and the displacement compatibility condition along the stiffener. These con-
ditions may be expressed as (Fig. B2)

O'Idyy(x’o) + o'Zdyy(x,O.)‘ + cpyy(x,O) + oayy(x,O). = {0, O<x<b ,
c]dxy(x,o) + odey(x,O) + apxy(x,o) + caxy(x,O) = 0, O<x<b ,
onyy(x,O) + chyy(x,O) + cpyy(x,o) + cayy(x,o) = 0, -§<x<0 , (?a—e)
U'Idxy(x’o) + Gdey(x’O) + cr_pxy(x,O). + caxy(x,O) = (, -a<x<0 ,

€Tdyy(osy)'+ Ezdxy(09y) + spyylosy) + any(oay) = ES(Y): O<y<d,

where %idyy* Cidxy and €idyy are the relevant stress and strain components due
to the dislocation pairs_gi and h, (i=1,2), o and e are due to the

pyy® “pxy pyY _
concentrated body force p, and ¢ are the applied stress and strain

Sayy® “axy ayy _
components and ss(y) is the strain in the inclusion. If the stress state away
from the crack-inclusion region is given by c?j,‘(i,j=x,y), then the applied

stress and strain components are

o> o

cayy(x,O) = Oy craxy(x,O) = Oy

where ¢ is the shear modulus and K=344y for plane strain and «=(3-v)/{1+v)

for plane stress. By observing that the inclusion is under a longitudinal dis-
tributed force -p(y), the strain in the inclusion may be expressed as

d :

[ p(rar | (a)

Y

'|+Ks'
ES(y) = -ZSUSA

S
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where Kg and g are the elastic constants and AS is the cross-sectional area
of the inclusion per unit thickness in z direction. The expressions for all
the remaining terms are given in {1]. Thus, by using the kernels developed in

[1], the system of equations (2) may be expressed as follows:

b 0 d :
T (1) T-x tx 7 " 20(Tre) | tZExZ T (tZx)Z AP
0 -2 _ 0
= -7, » 0sxb (5)
b 0 d
2 hy(t)dt . hz(t)dt)- 1 ‘ LX(EEx) g
(k1) tex t-X 2m(1+c) tz+xz (tZ+x%)2 pitjde
0 -2 : 0
= -c;:y » O<x<b , ' (6)
b o - d
221 ( g](t)dt . gz(t)dt) ) 1 [(2+K)t t(3X2-t )] (t)dt
w(x+1) t-x t-x 2r(1+k) tedxs  (t4tx<)< P
' 0 -a
) ‘G;y » —a<x<0 , (7)
b 0 d
T(kHT) t=x Tx ! Zn(1¥x) t4+xZ ti+x2)2 P
o -a
= -c::y , —a<x<0 , (8)
t(t2+3y2)--——— t(t2-y?) : b y(y2-t2) - TL y(3t24y2)
1 (t)dt ++ e hy(t)dt
T (tz+yz_)z g1t = tZ+y2Y2- 1
0 . _ 0
© t(t23y2)~ 3= t(t2-y2) © yly2-t2) -3 y(3t24y2)
+ L Lhe (t)dt-Fl- T h,(t)dt
p (E74y2)2 9o (TZry2)2 2
-a

k+3+ %55 (e=1) g(t)d (1+K) T (3o o oo
* E'J t-y T 2AE ] p(t)dt + 5= e (Tre Gxx'?yy) g

O<y<d , (9)
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The integral equations (5)-{9) must be solved under the following single-
valuedness and equilibrium conditions: '

fo_gz(t)dt ¢ [ ge

=0, , (10)
-a
0 b
f hy(t)dt + f hi(t)dt = 0, )
-a 0
d
J, p(t}dt =0 . | (12)
4]

From Fig. B2 it is clear that the end points x=b, x=-a and y=d are points of
stress singularity with standard 1/2 power [1]. However, the nature of the
singularity at x=y=0 is not known and does not appear to have been studied
before. To study this and to soive the problem described by equations (5)-(12)
we express the unknown functions as follows:

(t) ~5E%~ h,(t) 2 eten)
g = s Eoe———a s <i< L]
(t) Fylt) ho(t gt (-a<t<0)
g = ~ s = y (=a<i< »
2 (-t)*(t+a)Ps ~ 2 (-t)%(t+a)Bu
HFs(t)
p(t) = - > (0<t<d) . ' (13a-e)
t%(d-t)"S

where F1,...,F5 are unknown bounded functions and

0<Re(a,8k)<T » (k=1,.,..,5) . ' (14)

By substituting now from (13} into (5)-(9) and by using the function
theoretic method (see, for example, [28])to perform the asymptotic analysis
near the crack and inclusion tips (x=b, y=0), (x=-a, y=0) and {y=d, x=0) we
first obtain the following standard characteristic equations:
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cotrg, =0 , (k = 1,2,3,4,5) ' (15)

giving By = 172, (k=1,..,,5). Similarly, the asymptotic analysis around the
singular point (x=0, y=0) yields

F,(0)

cotma _ F30) 4 ‘ FS(O) ez Ry (x)

0 a3 ®sinme d®5 2x%sin %% ! :
2 cotwe _ Fa@ 3 PO Oz
bB2 & a®*  %sinma d®5  2x%cos %% 2
SR I 1 s G e G
b1 Csinme a3 @ d®5  2x%sin %%- 3

00 1 Fal® cotra (0 Gpr(t-ediz (x)
bB2 x%sinme  af%  x® 45 2x%os T 4

2

F1(0) C3+C4a/2 . F2(0) C3-C4(1-u)/2 ) FB(O) 03?C4u/2

b3 2y%sin %%- bP2  2y%cos %% a®3  2y%sin %%

+ F4(0) c3-c4(1—a)/2 . F5(0) cgcotna

— = Rs(x) R (16a-~e)

a®%  2y%cos 5 sy

where the functions R1,...,R5 represent all the bounded terms near and at

(x=0,y=0) and the constants c; are given by

¢y = (K+3)/4-, ¢y = (e=1)/4 5 cq = 2(k-1}/(kH1) ,

Cy = 8/{(x+1) , Cg 2e/(<+1) . (17)

If we now multiply both sides of (16a-d) by x* and (16e) by y* and let
x=0, y=0 we obtain a system of five 1inear homogeneous algebraic equations in
F](O),...,FS(O). Since F1(0),...,F5(0) are nonzero, the determinant of the
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coefficients of thfs algebraic system must be zero, giving the following char-
acteristic equation to determine the power of singularity o

“{cg(2cos? %%--1) + [cz-(1-a)/2][c3-c4(1—a)/2]

- (c]-a/Z)(C3+C4a/2)}(1—cos2 2 cos2 %% =0, (18)
From (18) and (17) it may be observed that o is a function of « and hence,
for a given value of the Poisson's ratio v, would have slightly different
values for plane strain and plane stress cases, The values of « obtained from
(18) are given in Table B1. Around the point {(x=0, y=+Q) the stress state has
the behavior '
0. 2L (p2 = x2+y2) | _ (19)

1 L
J o

Table B1. The power o of stress singularity at (x=0, y=+0).

C

v PTane Strain PTané Stress

0 0 0
0.1 : - 0.1329561 0.1237571
0.2 0.2189266 0.1926872
0.3 (0.2888271 0.2416508
0.4 0.3500900 0.2794708
0.5 0.4053884 0.3100165

From Table B1 it may be seen that the stress _singularity for the plane stra1n
case is somewhat stronger than that for the plane stress case.
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3. The Stress Intensity Factors

The system of singular integral equations {5)-(9) is solved by normalizing
the intervals (0,b), (-a,0) and (0,d) and by using Gauss-Jacobi integration
formulas [28]. The normalization is accomplished by defining

=5 (M) L x = B (s41) L (0<(ast)eb, -Te(rus)<T) 5
t =-% (r-1) , x = %—(5-1) s (-a<{x,t}<0, ~1<(r,s)<1) ;
t = g- (r+1) , y = % (s+1) , (0<(y,t)<d, -1<(r,s)<1);

g](t) = G](Y‘)W-I(Y;) s h-{(t) =.Gz(r‘).w.l(r)‘ , W](Y‘) = (].H-.)'u('[_r.)"]/z "

9p(t) = G3lriwuy(r) 5 hp(t) = €4lrlwy(r) , Wztr) = (T-r‘)'a(1+r)_1/2_‘,

p(t) = Bg(rhwa(r) , wylr) = (1#r) (1) V2, (1cret) . (20)

With (20) the stress intensity factors at the singular points may be defined
and evaluated as follows: ‘

kp(b) = Tim /20eBT o, (x,0) = - AL B g () (21)
x=b vy | 2®

ky(b) = Tim /ZTEBY o, (x,0) = - ZL 2L g (1) (22)
X 2

ky(-a) = Tim /7—7-2 R o, (0,0) = LB g q), (23)
X3=b K 50

pl-a) = Tim /2T o, (x,0) - 2 zf 6,(-1) (24)
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im <L atagTe(y)
y+d-0

ky(d) = 1im  /2{y-d} o,,(0,y)
y-d+0

“ -y e s O (25)

At the singular point (x=0, y=+0) we define the stress intensity factors
in terms of the tensile and shear cleavage stresses as follows:

u(0) = Tin /2 5% oy (0,y) | (26)
Y
. = . ()
kg0) = 1 25 o (0.3) (27)

.From (26) and the solution of the problem k1 may be found as follows:

(o) = 21 (1-a)a%@y(~1) , (2-0)a%6y(-1)  (1-a)b64(1)
XX g0 ogin I 2cos = 2sin S5
2 2 2
a s
2cos T 2(x*1) o0 Sifma
> .
Also, from the general Tocal equilibrium condition
Oyy(*0s¥) = o, (-0.y) + p(y) = 0 | (29)
and from-lo | = [c | we obtain
a Ge(-1) .
y0) = -Tim { o) =) . (30)

(*) See [Ij Appendix A
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4, The Results

The only solution which was not discussed in [1] is the crack-inclusion
intersection problem shown in Fig. B2. Particularly important in this case is
the stress state around the point of intersection (x=0, y=+0) as it relates to
the initiation of a branching crack at this point. In calculating the results
it is assumed that away from the crack inclusion region the medium is subjected
to a uniform stress state given by c:x, q;y, c:y., Since. the superposition is
valid, the problem is solved by taking one of these three stress components
nonzerc at a time. The results are shown in Figures B3-B12. At the crack tips
the figures show the normalized Mode I and Mode II stress intensity factors
defined by

| ky(a) ko(a) ky (b)
ki(a) = ————, ky(a) = —, k(b)) = —,
oijfa72 cij¢a72 cijVE72
Kk (b) o) (1,5=%,¥) tsl d)
2 = T 3 TJ7Xs¥) a-
Uijm

At the inclusion tip {x=0, y=d) we define [1]

k(d) = ky(d)/k, » K, = -fﬁ;—zy_o‘;?j/a/za . (1.=x,y) . (32a-b)

The tensile and shear stress intensity factors at (x=0, y=+0) are normalized
as follows: -

ex(0) = Ky (0)/(oT3/T2) 4 Ko (0) = 2K, (0)/(o53/TE) , (i.doxy). )
(33a,b)

Figure B3 shows the normalized Mode I stress intensity factors at the

crack tips for a uniform stress o,

yy away from the crack-inclusion region. Note

(*) Note the factor of 2 in (33b); k;y is the "stress intensity factor" cor-
responding to p(y) at y=0 (see EQS. 29 and 30).
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that as the crack tip approaches the crack-inclusion intersection point (x=0,
y=0) the corresponding stress intensity factor becomes unbounded {see, also,
the results given in [1]). For this Toading condition the Mode II stress inten-
sity factors are very small and, hence, are not presented. Figure B4 shows

- the Mode II stress intensity factors at the crack tip for the pure shear load-
ing'c:y which are nearly identical to those shown in Fig. B3. Similarly, for
the shear loading the Mode I stress intensity factors are very small and,
therefore, are not presented. The normalized stress intensity factor at the
inclusion tip (x=0, y=d) is shown in Fig. B5 for the three uniform applied
stresses o, , o, and o, . In the results shown in figures B3-812 it is
assumed that the medium is under plane strain condition, the Poisson's ratio

of the plane is 0.3 and, unless stated otherwise, the stiffness parameter

_ulTeeg)

y = K;E;TT;ET (34)

has a value of 0.1. The effect of v on k](d) is shown in Fig. B6.

The effect of the relative location (a/b) of the inclusion on the stress
intensity factors kxx(o) and kxy(o) at crack-inclusion intersection point
(x=0, y=+0) is shown in Figures B7 and B8. Figures B9 and B10 show the effect
of the stiffness parameter y on kxx(o) and kxy(o). The effect of the inclusion
length d on the stress intensity factors is shown in Figures B11 and B12.
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Figure B1. The geometry and notation for the crack-inclusion problem,
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Figure B2. The crack-inclusion geometry.
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Figure B11. The effect of the inclusion length d on kyy(0), v=0.3, y=0.1,
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