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of fatigue crack propagation and fracture in single edge notched specimens
under tension and bending. The material used in these experiments was 5/8 in.
thick X70 pipeline steel. The purpose of these experiments was to collect
baseline data on the fatigue crack propagation rates in pipeline steels, to
gain some insight about the ductile fracture behavior of the material, and

to test the va]idity'of the ductile fracture instability model developed in
the theoretical part. The second study on the plates involved the fatigue
crack propagation and ductile fracture in an X70 steel plate containing a sur-
face crack. This is a limiting case of the pipe problem when the diameter
becomes infinitely Targe. Since it has a great variety of practical applica- |
tions, the problem is also important in its own right. The experimental
investigations on the pipes were carried out by using 20 in. diameter (0D)
0.344 in. thick standard X60 line pipes as test specimens. Approximate?y

18 ft. long sections were tested under four point bending. After introducing a
circumferential initial cut, thé‘pipes were subjected to fatigue by means of
hydraulic jacks. The loads were then gradually increased until the pipe
nfailed" due to ductile fracture or inelastic buckling. The results are then
analyzed by using the theoretical mode]l developed earlier,

Following are some of the findings and conclusions:

‘The fatigue crack propagation rate in pipes containing a surface crack
can be predicted from the baseline data obtained for simple standard speci-
ments of the same materia]-provided a2 reliable estimate of the stress intensity
factor is available. ‘

For this purpose an analytical fEchnique was deyveloped for an accurate
calculation of stress intensity factors in pipes and relatively thin walled
cylinders containing an axial or a circumferential part-through or through
crack. Extensive calculated results are given for certain standard line pipes
“and for various practical crack geometries.

A ductile fracture model for pipes containing a through or a part-through

crack is developed, The model is based on a shell theory and elastic plastic -
analysis. It may be used in estimating the fracture instability load in

pipes or in flat plates, It may also be used, in conjunction with the critical
crack tip opening displacément concept, to aobtain a conservative estimate of
the ductile fracture initiation load.
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1.2 Brief Survey of the Field

For the purpese of a brief review one may consider the research efforts
regarding pipeline fracture anafysis in the following categories:
(i) theoretical work aimed at the calculation of quantities such as stress
intensity factor, crack opening displacement, or J-integral which may bé_used
in an appropriate fracture or fatigue theory as the representative'of the exter-
nal loads and flaw geometry, (ii) the theoretical and experimental work aimed
at the development of proper "models," "criteria," or “theories" for fatigue
crack .propagation, corrosion fatigue, stress corrosion cracking, and fracture
in pi?e]ine materials, (ii1) experimental work aimed at the verification or
demonstration of the related theories in pipes, including crack morphology studies,
(iv) dynamics of crack propagation in pipelines. The technical literature in
the field is quite extensivé (see, for example, [1] for an extensive list of
" references and 4 critical review). Most of the theoretical work in category (i)
which is relevant to pipeline studies has been on the elastic solutions for part-
through cfatks in plates and for through cracks in shells. Some of the signifi-
cant solutions and results regarding the part-through cracks in plates may be
found in [2]. Reference [3] reviews most of the recent results and gives per-
haps the most accurate solution of the part-through crack problem to date.
The problem of a through crack in cylindrical and spherical shells has been dis-
cussed in a recent review article [4] where, in addition to a nearly complete
1ist of references, a summary of the existing results has been inc]udéd. The
plasticity effects in cylindrical shells with an axial crack have been considered
in [5-7]. References [8] and [9] summarize some of the recent approximate and
finite element results on the thick-walled cylinders with a part-through crack.
The phenomena of brittle and quasi-brittle fracture, and the sub-critical
crack propagation due to fatigue, corrosion fatigue, and stress corrosion crack-
ing appear to be, at least from an empirical viewpoint, we]l—understbod‘and the
models dealing with such phenomena have been adequately standardized (sée, for
. example, [10-13]). The stress intensity factor is almost universally accepted
and used as the primary correlation parameter in all these models. However,
in the presence of relatively large scale plastic deformations the effects of
specimen and crack geometry, elastic-plastic stress-strain behavior of the
material, and the nature of the external loads on the fracture initiation and
propagation is much too great to permit the treatment of the phenomenon by
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means of a single parameter (such as KIC’ GIC’ or JIC)' Thus, the relatively
successful ductile fracture models contain more than one material constant. For
exampTe,'the crack extension resistance curve {R or KR - curve) [14] is a
continuously distributed parameter model and Newman's criterion [15,16] is a
two-parameter model. A discussion of these and other ductile fracture models
and related references may be found in a recent review article [17]. References
[18] and [19] contain applications of some of these fracture theories to

welded bridge structures and pipes. A good deal of work on pipeline fracture
has been done at Battelle-Columbus Laboratories. A partial summary of the
results and the techniques used in these studies may be found in [20]. Frac-
ture instability of type 304 stainless steel pipes containing a circumferential
'through crack was investigated in [21] under load controlled conditions. An
extensive review of fracture mechanics approaches dealing with girth weld dis-
continuities is given in [22]. Reference [23] describes the results of a study
dealing with the tensile failure of girth weld repair grooves in pipes, The
results of other studies dealing with the application of fracture mechanics

‘to girth weld failures in pipelines may be found in [24-27].

Studies of the factors dealing with the specification of tolerable defect
sizes in pipelines are described in [28] and [29]. A summary-review of analy-
tical methods and related expérimental data dealing with the rupture of 1ight
water reactor piping is.giveh in [30].

The importance of dynamic problems lies in the fact that in natural gas
pipelines once the axial through crack appears in the pipe wall it rapidly
grows and reaches a ve1ocity:which is generally greater than the decompression
wave velocity of the gas in the pipe. Hence, the crack is subjected to a con-
stant driving force and, unless it is arrested by some obstacle or is diverted
in the hoop direction, it may run rather long distances causing considerable
damage to the surroundings. The papers in Reference [31] provide a good sampling
of the recent work in this area (see also [32] for more recent work and refer-
ences, and [33] for work in finite volume containers).

1.3 Circumferential Flaws

Despite some interest recently shown to circumferential flaws in pipes,
most of the existinglstudies on the fatique and fracture of pipelines and
pressurized cylinders in the past have dealt with the Tongitudinal flaws in the
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- (b)
Figure 1.  The types of fracture: (a) Brittle fracture, R,; fracture

process zgng,.(b) ductile fracture, RD: energy dissipation zone, R;:
fracture initlation zone, Ry: the wake region of residual stresses.
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critically dependent on the details of the inelastic stress and deformation
states'in Rp. The important consequence of this observation is that, for the
purpose of calculating the energy available for fracture a(U-V), one may assume
that the stress state in the fracture process zone RP is also elastic. The
energy A{U-V) can then be calculated quite simply by using the elastic crack
solution. Thus, if the solid is linearly elastic and is under Mode I loading
and if Ky is the stress intensity factor, using the concept of crack closure
engrgy it can easily be shown that for a unit length along the crack front
(Figure la)

4 (o) = (2)

where E1 = E for pTane stress and E1 = E/(1-v2) for plane strain, E and v
being the elastic constants. Combined with the notion that the fracture resis-
tance is independent of the crack size, i.e., '

%I%=GIC | S (3)

is a material constant, from (1-3) it follows that

K°

B
The simple form of the energy balance criterion as expressed by {4) shows that
the low energy or brittle fracture can be characterized by a single parameter,
the-fracture\toUaness GIC'or'its equivalent the critical stress intensity
factor KIC being the related fracture resistance parameter.

On the other hand in high energy or ductile fracture the energy exchange
process during fracture propagation is much more complex. The most important
characteristic features of the process are that (a) the characteristic size p
of the energy dissipation zone Ry around the crack front is of the same order
as (or greater than) the characteristic crack length a, and (b) as the crack
propagates (i.e., as a increases), generally the dissipation zone size p a1§o
increases (Figure 1b). The physical consequence of these observations is that
géneraI]y the fracture resistance of the solid increases with the increasing
crack length and it is not possible to characterize the fracture process by a
single parameter. On closer examination of thé phenomenon one may distinguish
three regions around the crack front which may-be involved in the energy

> Gy or Ky 2 Ko = By S
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exchange process during crack propagation. One is the main dissipation zone Ry
where the material is plastically deformed (Figure 1b). The second is the

wake region Rw of the residual stresses which develops behind the plastic zone
as the crack propagates. Finally one may conjecture the existence of a very
small fracture initiation zone Rj at the crack tip where the actual rupture
separation takes g1ace For a progressively propagating crack under in-plane
lToading cond1taons even though the actual size and shape of the reg1ons R and
Rw may be very heavily dependent on the part -crack geometry and on the 1oad1ng
conditions, it is reasonable to assume that the conditions regarding the stresses
and deformations in Ry would remain unchanged. It can therefore be argued that
for a crack to propagate two conditions must be satisfied. One is the necessary
condition regarding the fracture initiation at the crack tip and requires that
a certain local strength parameter representing the intensity of the applied
loads and the crack geometry reach and remain at a critical value. For a given
‘type of in-plane crack propagation one may assume that this critical strength
parametef is a material constant, The second condition is the fundamental
global energy balance condition expressed by (1) where the dissipation enerqy D
is a function of the crack length, The condition simply states that to create
a new fracture surface AA the input energy a{U-V) must be equal to or greater
zhan the'dissipation energy Al. If a is a Iength parameter character1z1ng the
fracture area A, then the stability condition for a propagating crack may be
expressed as ’

A

0 , stable crack propagation,
0 , equilibrium crack, (4)
0 , unstable crack propagation.

& (U-v-D) {.
da2 ,

v

In ductile fracture initially there is always a slow stable crack growth and
the magnitude of the external loads needs to be increased in order to keep the
crack growing. However, at a certain critical value of the load the third
condition in (4) is satisfied and the crack growth becomes unstable.

" The “high énergy" fracture is gernerally geometry-dependent and is a highly
comp?iéated phenomenon to model. Therefore, it is bften discussed in three
different categories, namely the elastic-plastic fracture, post-yield or ductile
fracture, and net section collapse or rupture. It is true that beyond brittle -
fracture the microstructural mechanisms leading to the fracture of the component
may be the same in all three types of fracture. The basic meghanism here 1is
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known to be the formation, growth, and coalescence of "holes" in the high strain
region ahead of the crack tip, invariably at the inclusions or inclusion boun-
- daries. Hence, from the metallurgical viewpoint, the distinction seems to be
rather minor. On the other hand, in attempting to calculate the load bearing
capacity of a certain component with a known flaw geometry, the materials con-
siderations alone do not seem to be sufficient, the mechanics of the problem
must also be taken into account. For example, for relatively high constraints
and small crack sizes, the plastic or energy dissipation zone RD (Figure 1}
may be confined to some limited region around the crack front. In this case,
the related fracture process is sometimes characterized as "elastic-plastic”
fracture and may be dealt with either by a plasticity correction in the standard
fracture toughness type analysis or by the plastic intensity factor calculated
from the (small deformation) nonlinear analysis. The other extreme may be the
gross yielding of the entire net section of the component in which case the exis-
tence of the crack would play no significant role in calculating the rupture
Toad. The large class of problems falling between the elastic-plastic fracture
and the gross yie]ding of the component is generally called post-yield or duc-
tile fracture problems, The characteristic feature of ductile fracture is that
fhe-p]astic zone size around the crack front is relatively large and increases
noticeably wfth increasing crack size, and the fracture takes place in the form
of progressive tearing. : _
Generally, in a well-defined two-dimensional crack geometry (for example,
in a plate or shell component containing a through crack), even though the
"ductile fracture" process cannot be characterized in terms of a single strength
parameter, an analysis based on a crack extension resistance curve may be used
quite effectively to predict the fracture instability load. This is basically
the application of the general energy balance concept. The resistance curve
(R-curve) itself is dD/da vs. the crack extension aa where D is the total
dissipated energy during crack propagation. The standard R-curve concept of
determining the instability load (Ucr) is shown in Figure 2. The concept
applies to fracture problems in which the total fracture area can be represented
by a single length parameter a (i.e., mostly two-dimensional crack geometries}.
In the diagram given in Figure 2, the load factor representing the intensity of
the applied load and. the severity of the crack geometry is assumec to be G, the
strain energy re]ease rate, and the corresponding resistance parameter of the
material GR is assumed to be a known (i.e., experimentally determined) function
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A - AG < AGp

(stabie)
B_ - AG > AGR
(unstable)

Figure 2.  Typical crack extension resistance curve.
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Figure 3. Resistance curve based on J-integral.
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of a. In the terminology of the energy balance concept mentioned earlier
(Eqs. 1-4) G is d(U-V)/da, Gg is dD/da, and Figure 2 clearly show the stability
condition expressed by (4). It is seen that as applied in the manner shown in
F1gure 2 R- -curve represents a continuous parameter characterization of the
fracture propagation process. '

Most of the practical early applications of the R-curve concept were
based on the stress intensity factor K and Kp {(with or without plasticity cor-
rection) for analytical simplicity. In recent years, the tendency is toward
using a parameter which is more representative of the'state of plastic deforma-
tions around the crack front such as crack opening displacement, or particularly
J-integral. Figure 3 shows the crack extension resistance curve based on J-
integral. Initia]iy,ethe material may behave in a somewhat nonlinear elastic
manner and there may be some crack extension without rupture due to blunt1ng
After tear1ng or fracture starts (at C), typ1ca11y the fractura res1stance of
the material increases with the increasing crack size. This is primarily due
to the increased plastic zone size for larger craeks. One may observe that
even though the application of the technique to a given problem may not be very
easy or convenient'(1argé1y because of the fact that JR’ the resistance para-
meter is generally geometry-dependent), the concept is sound, However, one may
also note that it is mostly restricted to two-dimensional crack geometries.

2.2 Formation of a Through Crack in Plates or Cylinders

Pipelines and pressurized containers are relatively thinwwa11ed’structures
with a constant wall thickness. In such structures generally a fracture fail-
ure may evolve as follows: (i) as a first step a fatigue or corrosion fatigue
crack may be initiated around the imbedded or the surface flaw having the worst
possible combination of geometry and loading conditions. (ii) Next this domi-
nant flaw may grow subcritically into a part-through surface flaw rupturing
the weaker net 1jgament if theuinitial flaw is an imbedded defect. Gradually
the surface flaw may take roughly a semi-elliptic shape growing both in length
and thickness direction.(see Figure 4a). At the initial stages of the subcri—'
tical crack_propagation_the cylinder wall would be mostly elastic and the plas-
tic deformations would be confined to a region along the crack border only
(Figure 4b). ~(i1i) As a result of increased crack depth the net ligament
through the cylinder wall becomes fully plastic and the rate of subcritical

13-
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 Figure 4. Evolution of a through crack. (A) initial flaw and sub-
critical crack propagation, (b) part-through crack with confined plastic
zone and largely elastic net ligament, {c) part-through crack with '
fully yielded net ligament, (d) progressive growth of part-through crack,
(e) plastic necking of the net ligament, (f)} through crack with rela-
tively large plastic zones. o
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crack growth would increase very markedly (Figure 4c). ({iv) Finally, under

the peak Jload the net ligament would become unstable and rupture .
(Figure 4f). Depending on a combination of factors which consists mainly of
relative magnitudes of the fracture resistance of the material and the crack
driving force, the resulting through crack would either be arrested or would
continue to grow in an unstable fashion. These phenomena are respectively known
as the "leak" or the "break".

In fracture safety analysis it is usually assumed that an unfavorable flaw
always exists and the time needed for its transformation into a dominant fatigue
crack is insignificant in comparison with the expected life of the structure,
For phase (i), namely the subcritical crack propagation, phenomenologically the
process is well understood and there are highly effective and reliable analytical
models to estimate the crack propagation rate. The primary correlation parameter
used in these models is the stress intensity factor. For ekamp?e, if the pro- -
cess is a fatigue crack growth the surface crack would assume a shape for which
the Mode I stress intensity factor along the crack border is approximately con-
stant and the crack propagation rate may be expressed as (see, for example,
[12,34]1)

G = FlaKs CpannnsCy) | (5)
where ¢ represents the crack size at an arbitrary location along tne crack
border, n is the number of load cycles, AK is the stress intensity amplitude,
and the constants CT""’Ck represent the secondary factors such as the average
and the threshold stress intensity factors, and the fracture toughness, At
this stage while the net ligament is still mostly elastic (Figure 4b), if for
some reason the maximum stress intensity factor exceeds KIC’ theh the cylinder
wall would rupture in a brittle manner. However, this possibility can be pre-
vented by a proper fracture anélysis, design, and material selection. Up to
this point the fracture analysis is based on essentially the stress intensity
factor which can he calculated by solving the related linear elastic problem
for the part-through crack. |

For a giveh.]oad level when the crack depth d reaches a certain value the
yield zone'spreags through the entire net ligament and part of the cylinder wall
as seen in Fi;uré ﬂc. In this case the important problem is the development of
a realistic mode? for the analysis of the net Tigament rupture and the ensuing
phenomenon of leak or break. Physical observations of the fracture of deeply
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edge-notched plate specimens indicate that there are actually two different
mechanisms which may be active in the fracture of the net ligament, One is

the progressive crack growth shown in Figure 4d. The second mechanism is the
plastic necking of the net ligament shown in Figure de, In the latter case the
plastic deformations and the stretch in the net ligament is extensive and the
final rupture takes place as a result of plastic necking instability. Under
static loading in high toughness materials the final stage of the rupture pro-
cess may always be the net Tigament plastic instability. However, under cyclic
toads of relatively low magnitude (and for relatively low toughness materials
under static loads) the mechanism of progressive crack growth may be active

for the entire fracture process.

Because of the large scale plastic deformations, 11near elastic fracture
mechanics is genera]1y not a suitable approach to analyze the net ligament
fracture prob]em. In particular, the stress intensity factor will not be a
proper correlation parameter to develop an analytical model for the process,

A realistic model will have to be based on a parameter which is a reasonably
accurate representative of the intensity of the local plastic deformations
around the crack tip. There are only two such parameters currently used in
fracture mechanics to model various aspects of ductile fracture, namely the
J-integral and the crack opening stretch, . From an application viewpoint J-
integral is still a two-dimensiona) concept and aTmost always requires exten-
sive numerical calculations based invariably on the finite element method.
Hence, at this point its direct use in the cylinder problems does not seem to
be very practical or even possible, Therefore, partly because of the absence
of any other suitable plasticity related fracture parameter and partly because
of ana]ytica1 expediency with regard to its evaluation in cylinder problems,
in this study the crack open1ng stretch W111 be used to modei the ductile
fracture probtem. o

_ There is some experimental evidence indicating that for a given material
and thickness the value of the crack opening stretch at the crack initiation is
approximately constant [35,36]. Referring to Figure 1b and to the general dis-
cussion given in the previous section, this implies that one can use the
critical crdck opep1ng stretch as the necessary local condition for fracture
initiation, whe»her the ductile fracture occurs as a result of progressive
crack growth or net ligament plastic necking instability would depend primarily
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on the relative crack depth d/h, the yield behavior and toughness of the material,
and the nature of the external loads, The following section gives some results
showing the application of the crack opening stretch concept to the ductile
fracture problem in cylinders with an axial crack.

2.3 Ductile Fracture of Cylinders with an Axial Crack: An Example

Let a relatively thin-walled pressurized cylindef contain a surface crack
which is sufficiently deep and long so that under the -given pressure the net
Tigament and the cylinder wall around the crack are plastically deformed. Using
a plastic strip model and the bending theory of shells one can calculate the
crack opening stretch along the leading edge of the crack [5,7]. Figures 4c
and 4f show the geometries of the part-through and the througn crack, respectively.
A cample result for the crack opening stretch & calculated at the tips of a
through crack on the mid-surface of the cylinder is shown in Figure 5 where
N0=p0R is the membrane resultant in hoop dir‘ection,.oY is the flow stress repre-
senting the yield behavior of the material, and the shell parameter i and the
normalization factor d] are given by

A = [12(1-v2)TF a//RR , d, = dacy/E - (6)

R, h, and 2a being the'mean‘she11 radius, the wall thickness, and the crack
length, respectively. The curve A=0 corresponds to the flat plate results.

One can use such results in three different ways. First, if one assumes
that the critical crack opening stretch can be used as the Tocal crack initiation
criterion, then based on Figure 5 and on similar results obtained from a pért-
through crack solution a set of design curves may be prepared which would give
the load carrying capacity of the cylinder against crack initiation. These
curves are shown in Figure 6 where the varying parameter 6/d1 correspohd to
the prescribed critical crack opening stretch ratio (which is a property of the
material). Note that the results are general and may be used for any material
for which the critical stretch falls between 0.4 d] and 12 d]; Some sample
results for a part-through crack are shown in Figure 7. Here 8¢ is the maximum
crack opening stretch which is at the deepest penetration point (or the mid-
poiqt) of the crack. The dots on the right hand side of the figure correspond
to the Toad carrying capacity of the cylinder having a through crack of the same
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Figure 5. Crack opening stretch at the crack tip and on the mid-surface
of a cylindrical shell with an axial through crack..

-18-



8 /d,

1.0, 0.4
3 -0.8
1.2
0.8 2
3
N/ha, 4
0.6 6
' 8
12
0.4
0.2¢
0.0 1 | i 1 1 | !‘ "I | |
Q I 2 3 4 5
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through crack against crack initiation.
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Figure 9. Comparison of the calculated (Figure 6) and expehimeﬁta] [20]
instability loads in pipelines with an axial through crack. -
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Figure 10. Comparison of the calculated (Figure 6) and experimental [20]
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Figure 11. Results of the successive approximation calculations to
determine the burst pressure (N is the number of iterations).
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level, is a constant) and let 8, be the ayerage net ligament stretch (i.e,, total
elongation over the yielded gage length) calculated at the midpoint of the net
1igament, then the nominal value of the average tensile strain in the net tigament
may be expressed as

€, = SZ/C(h-d) . _ (7)

For the development of plastic necking in pipeline steels it is estimated that
e, > 0.1. In [20] near conditions of failure e, was found to be above 0.15,
We now note that the instantanecus net Tigament thickness may be expressed as

tn = (1 + ey) {(h ~ do) . (8)

Also note that (the current value of) the effective crack depth is approximately
given by ' _ '
d=h-t . - )

Thus, from e, = -, and (7)-(9) it follows that -

h - do‘ : .
8 . (10}
Ctn Z

d = d0 +
The constant C is related to the current value of the average strain e,. The
net Tigament thickness t, too may be considered as a function of ei. Therefare,
for any strain e, greater than 0.1 the effective crack depth d may be expressed
as '

4= dg + a(ez)éz NG

where a(sz), except for certain limiting trends, is not known. For large values
of e,y dn dy + f5y| and |5y| v 8y, hence a(sz) would approach unity, where 8§
is the total contraction in y (or thickness) direction. Therefore, if one
assumes that a(s%) is_a:given function, by observing that for given dimensions
R, h, a and d0 and pressure p., ¢, is a function of the crack depth d which can
be:.calculated (by using the elastic-plastic shell theory) and by taking (7)
into consideration, in principle d can be calculated from (11), Since (11) is
a highly nonlinear equation, this can only be done numerica11y;.for_example,

by setting up the fo]]owing successive approximation scheme:

Y
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d{0) = do_. GZ(O) =5, s € (@) = ¢ _
. doap=p0 d=d0’ p:po

d{N+1) = c!0 + a(eZ(N))ﬁz(N), N=20,1,2,... - {12)

Now, if d has an equilibrium value it can be obtained from (12) as the
limit for Nsw, Clearly for the given pressure if the success1ve approximation
formulated by (12) is convergent giving a finite value wh1ch is less than the
thickness h, then there would be a load redistribution around the crack accommo~
dating a stable net Tigament thickness. On the other hand the divergence of
the successive approximation technique (as defined by d exceeding h) would mean
the fracture due to net ligament plastic necking instability.

As an illustration of the technique to estimate the failure pressure in
cylinders we donsidev the tests carried out on full scale line pipes at
Battelle [20]. Following is the relevant information regarding the tests.

Dimensions: R = 18 in, h = 0.403 in, d, = 0.201 in,
| 2a = 3.8 in, oy = 64.6 ksi;

Test Pressure po(ksi): 1.0 1.2 " 1.25 1.29 :
so(mills): 29 60 80 - Failure

Here 5, is the measured crack opening displacement on the outside surface of
the cylinder and at the center section of the crack correspondihg to the
pressure levels shown. In applying the technique it was assumed that

+ 2 ksi, afe,) = 0.46 + 0.54 (1 - 0.1y | (13)
“z -

% 7 %s
The calculation was carried out for the pressures 1.0, 1.2, 1.25, and 1. 267
ksi. The result is shown in Figure 11, The ordinate in the figure is the '_
crack ppening displacement 60 on the madd1e surface of the cylinder and at the
center section of the crack. Which one of the quantities 60, se and d is
used as an ordinate in the figure is, of course, immaterial. It is seen that
the_calculations for the first three pressures‘are convergent meaning that
these pressures are below the instability or failure value. For Po = 1.267
ksi the calculations diverge, implying that this pressure is equal to or greater
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than the failure value. The figure also shows, for each pressure, calculated
values of the average net ligament strain £, and 6e, MNote that the fteration
technique predicts the failure pressure quite accurately. However, particularly
at smaller pressures, the predictions for §, are not good. This is somewhat
understandable, as the model js based on large scale yielding and Targe plas-

tic strains which may not in fact exist at lower pressures,

3. CIRCUMFERENTIAL CRACK IN A PIPE: ELASTIC SOLUTIONS

The types of problems one may encounter in a complete fracture analysis
of pipelines and pressurized cylinders were described in the previous section.
Again, Figure 4 may be used as a rough guide for this purpose, From the figure
it is seen that one needs reliable analytical tools for modeling of such diverse
phenomena as fatigue crack propagation of a part-through.or a through crack in
‘the c¢ylinder wall, elastic-plastic fracture, post-yield fracture, and net liga-
ment plastic necking instability of the cylinder wall containing a'part~thrdugh
surface crack, and static or dynamic ductile tear of the cylinder wall with a
through crack. Analytically, the corresponding three-dimensional crack prob-
lems -appear to be intractable., Most of the existing solutions are therefore
based on some type of a numerical technique. The two widely used methods
along these 1ines have been the finite element method (see, for example, [38]
and [39]) and the boundary integral ecquation method [40]. Related solutions
for a flat plate containing a semielljptic surface crack may be found, for
example, in [41-45]. The finite element method is used in [41-43], and the
successive approximations or the alternating method is used in [44] and [45].

The main objective of this study is the fracture analysis of pipelines and
pressurized cylindrical containers. The radius~-to-thickness ratio in these
Stkuctures varies generally from 40 to 50 in pipelines to approximately 100
in tank cars. It is therefore clear that ope could treat the cylinders as
"shallow shells" and try to take advantage of Certain simplifications offered
by the shell theory in solving the crack problems,

In this section we first develop the elastic solutions for a cylinder
containing a part-through surface crack or a through crack, These solutions
are essential for estimating the subcritical crack growth rate and, if
necessary, the residual stréngth of the cy]indef against a possible quasi-brittle

27



fracture. The solutions are also needed for the application of the plastic
Tine spring model to study the ductile fracture problems in pipelines and pres-
sure cylinders,

3.1 Through Crack Problem: The Transverse Shear Zffect

Chronologically, even though the through crack solution corresponds to the
last stage of the fracture process, it will be treated first for the following
reasons:  a) the problem can be treated analytically and very accurate results
can be obtained without costly numerical analysis, b) the solution is needed
for introducing the curvature effect into the development of approximate tech-
niques to calculate the stress intensity factors for the part-through cracks
in shells, and c) it is the starting point for the elastic-plastic ana1yéis
of .the part-through crack problem. ‘

Bacause of the complexity of the problem the early studies of the cracked
shells were based on the relatively simpler classical shell yheory (see, for
example, the review article [4]}. The classical shell theory is an eighth
order theory which can analytically accommodate only four conditions on the
boundary. On the other hand, referring to the shell element given in Figure
12, it may be seen that there are five physical conditions on the boundary.

For example, along a part of the boundary described by X] = constant the membrane
resultants Nyps Nygs themoment resultants Mll’ Mo and the transverse shear
resultant V1 woujd have to be prescribed as the stress boundary conditions.

Thus, to make the number of the boundary conditions compatible with the order:

of differential equations, in the classical shell theory the conditions regard--
ing the transverse shear and the twisting moment are combined into a single
boundary condition as the Kirchhoff's effective transverse shear resultant,

For example along Xy = constant the four conditions would then be in terms of

_ 9
IR PR TR Bl Vel PR (14)

The consequence of the Kirchhoff assumption is that in a narrow Tayer
along the boundary generally the so]ution is not sufficiently accurate. In
crack problems since the crack tip is in the bouhdary layer the discrepancy
can be significant. For exampie in a symmetrically-loaded cylindrical or
spherical shell having a through crack along the X, axis (Fiqures 12,13) the
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Figure 12. Notation for the stress and moment resultants in a shallow
shell, . ' '

X2

B
Caz

Figure 13. The cylinder with a circumferential through crack.
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classical theory would give the following asymptotic results for the stress
distribution around the crack tip [4]:

or{'](r,e) 34/2: (5 cos %-— cos STG) ,

b, . Ky X 2 8. 2 5

o]](r,e,x3) g_zgg_gﬁ-[-S(T-v) cos » + (1-v)® cos 7?J,

e (A | e (15)

where ch and c (1,J = 1,2) are respect1ve1y membrane and bending components
of the stresses, km and kb are the membrane and the bending stress intensity
factors and r and & are the local polar coordinates in X]XZ plane. The physics
of the problem would indicate that the discrepancy between the angular distribu-
tions of membrane stresses and bending stresses and the power of singularity of
the effective transverse shear Qy are unacceptable. Also, because of the dif-
ference between the angular distributions, it is difficult to interpret and com-
~bine the stress intensity factors km and kb in any fracture analysis.

To eliminate these undesirable features of the solution given by the
classical theory it is clear that a higher order theory compatible with the
number of physical boundary conditions must be used. Such a theory for spe-
cially orthotropic sha11owzshelTs has been described in Appendix A which for
symmetric 10ad1ng cond1t1ons g1ves “the fo]10w1ng asymptotic stress distribution
around the crack tip: -

k4K -2x3/h

b ' R 56
ap1(rs8,Xy) o - (5 cos 5 - cos 5) 5 -
1l 3 a2 T2
k. +k, 2X./h
czz(r,e,x3) 3;JE—JL-$L—-(3 cos %-+ cos %?) s
4v2r
ok _+k, 2X,/h .
oqp(rss45) v B F (Lsin 34 sin 3
4/2r
V1(r;e) g_kt¢F"sin é cos % - ' (16 a-d)
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where again km'ahd'kb are the membrane and bending stress intensity factors.
Equations (16 a-c) indicate that, as expected the membrane and bending stress
components have the same angular distribution. Equation {16d) simply gives the
expected result, namely under symmetric loading the transverse shear resultant
has no singularity. One may also note that the angular distribution of the
stress state around the crack tip given by (16 a-c) and obtained from the higher
order shell theory is identical to the results obtained from the twof'dimensiona1
elastic crack solution. '

Another important difference between the results given by the classical
and the higher order shell theories is that whereas in the classical theory
the standard shell parameter i, = [12(1-u2)]‘ a/v/Rh is the only dimensionless
geometric var1able enter1ng the analysis and affecting the resu?ts, the h1gher
order theory contalns, in add1t10n to X5, a/h as a separate geometric var1ab1e,
where 2a, R, and h are, respectively, the crack length, the mean rvadius of the
qy]1nder, and the thickness. In both theories, the Poisson's ratio v enters.
the analysis separately as well as through Ao In the spec1a]1y orthotropic
materials v is replaced by /"__"'and the ratio E;/E, appears in the analysis
- as an additional material constant :

3.2 The Results for the Cylinder with a Circumferential Through Crack

The detailed analysis of the problem for a cylindrical shell containing
a circumferential through crack and subjected to arbitrary symmetric external
loads is given in Appendix A. Figures 12 and 13 show the basic notation for
the stress and moment resultants and for the crack geometry. The stress
intensity factors for an isotropic cylinder obtained from the solution under
uniform membrane Toading and uniform bending moment (on the crack surfaces)
are given. by FTQUFES 14-17 and by table 1 of Appendix A. WNote that in the
shell problem the membrane and bending results are coupled and the stress
intensity factors are linear functions of the distance X3 from the neutral
- surface. Thus, referrTng to Figure 13, the Mode I stress intensity factor
for the symmetric shell problem may be defined as

ky(X3) = ;1%&‘0{—3 o1 (0:XosXs) . (17)
2
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Figure 14. Membrane component of the stress intensify ratio for a
circumferentially cracked cylinder under uniform membrane loading
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0.2

Figure 15. Bending component of the stress intensity ratio for a
circumferentially cracked cylinder under uniform membrane ]oad1ng
(Nyy #.0, My = 0).
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Figure 16. Bending component of the stress intensity ratio for a
circumferentially cracked cylinder under uniform crack surface bending
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Figure 17. Membrane component of the stress intensity ratw for a
circumferentially cracked cy11nder under uniform crack surface bending
moment (NII =0, Mp # 0)
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or

kp(Xg) =k + kbx3/(h/2)_

ky = K3(0) » ky = ki (h/2)-k;(0) , | (18 a-c)

where km‘and'kb_are the membrane and bending components of the stress inten-
sity factor, | o | |
The figures show the stress intensity factors normalized with respect

to a corresponding flat plate value. For example, in the cy]inder under only
uniform loading in X] (axial) direction (i.e., for Nyq # 0, M]] 0) the cor-
respond1ng flat plate stress intensity factor 1s j

kp = amVE', O = N]]/h', | | (19)
and the normalized stress intensity factors kmm and-?kbm shown in Figures 12
and 13 are defined by - | S

=k [0 /A, K b/crl/— - (20

bm -

Also, if the cyilnder is subJected only to pure bending M11 on the crack
surface (i.e., NH = 0), then the norma11z1ng stress 1ntens1ty factor is
K, = 0,3 5 0, = —b1 3 (21)
P b 2 3
and the stress intensity factor ratios shown in Figures 16 and 17 are defined
by

. _ b _ _m | o
k - ) kmb = . . (22)

In the isotropic shells since the Poisson's ratio v enters the analysis
explicitly as well as through-lz, a value for v had to be selected in the
numerical calculations. The results given in Figures 14-17 are. ‘based on

= 1/3. The effect of v on the stress 1ntens1ty factors is separately
studied for a spec1f1c geometry. The results obta1ned for Ay = 3-and a/h =
are shown in Table 2 of Appendix A. The effect of the Poisson's ratio on the
two primary stress intensity ratios kmm and kbb does not seen to be significant.
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Therefore, the results obtained for v = 1/3 can be used for nearly all struc-
tural materials in which v varies between 0.2 and 0.4,

' In Figures 14-17 the stress intensity ratios are given as functions of
‘the shell parameter Ao with the second dimensionless variable a/h as a dis-
crete parameter. For given a and h as R > « the shell becomes a flat plate,
hence the shell results should approach the corresponding stress intensity
factors in flat plates. The figures, in fact, show tht as R » . Ao approaches
zero, k +~ 1 (or k -+ k ), and kbb approaches the values obtained for a flat
plate. A]so, for f1at plates since the membrane and bending problems are
uncoupled, as Ay + 0 the coupling components of the stress intensity factors
(kbm and k b) approach zerg. '

Comparing the shell results given in this report with those obtained
from the classical theory as, for example, given by [34] the fo]Towing obser-
vations may be made: the stress intensity ratios k - obtained from the two
theories become identical as a/h + «. In fact the resu]t given in Figure 14
for a/h = 10 is indistinguishable from that obtained in [34]. However, for
values of a/h smaller than 5 the thickness effect on kmm becomes noticeable
and for small values of a/h it may be significant. One may add that the
thickness effect on kmm is on the nonconservative side. On the other hand
the convergence of the results of a higher order shell theory to that of the
classical theory for a/h + « (or for h - 0) appears to be valid only for kmm
The behavior of the remaining three stress intensity factors with respect to
varying h/a ratio indicate no such trend. Also, the results obtained from
the two theories for kbm’ kbb,'and kmb are generally quite different,

Sample results showing the bulging of the shell around the crack region
are given in Figures 18 and 19. The figures show the displacement component
. perpend1cu1ar to the shell suyrface a?ong the crack line, W(0, X2,0) in a cir-

- cumferentially cracked cylinder under uniform membrane Toading and pure

bending. It should be emphasized that the technique of superposition is used
to solve the crack problem described in Appendix A. This means that in the
perturbation prob]am cpnsidered the crack surface membrane stress is compres-
sive and the bend1ng moment is applied in such a way that the outer Tayer of
the shell on the crack surface is again compressive. As may be seen from
Figures 18 and 19, under these loads the crack surface displacement W is in
outward direction. -
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Two most common loading conditions in pipelines and in relatively long
pressure cylinders giving axial stresses are the uniform axial loading caused
by internal pressure or axial constraints and the gross bending. The stress
1htensity factors corresponding to these loading conditions are given in
Appendix A, Tables Al and A4. : : .

The quantity which is a great deal of interest ir fracture studies is
the strain energy release rate G. In Mode I plane problems G is related to
the stress intensity factor ky by '

2
'rrk1

£

G =

(23)

where E, = E for plane stress and Ey = E/(1-v2) for plané strain. Here G is
the energy released per unit crack extens1on and per unit thickness. In the
symmetric shell problems, the Mode I stress intensity factor k] consists of
membrane and bending components, 7. e,, k] is a function of the thickness coor-
dinate z. Thus in a smal] neighborhood of the crack tip x=0, y=a the cleavage
stress and the crack opening displacement may be given in temms of the follow-
ing asymptotic expressions:

(0,%,.%.) qs) (24)
a 3 3 S oee— :
11(0:X5:X3 2T ,-

' - 2K (Xg) |
1 (0,X55X3) = uy(0,%5,0) * Xty = I 2T (25)
ky(X3) =k + ke Xo/(h/2) , B o (26)

_where k and kb are, respect1ve1y, the membrane and the bending component
of the Mode I stress intensity factor. The strain energy release rate
(at one crack tip, per unit crack extension and per unit thickness). may then

be obtained from

- _dv -
G dA . dA h da,
| h/2 da : '
-h/2 o '
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Figure 20. Comparison of the Mode I stress intensity factors in a
cylindrical and a spherical shell under uniform membrane ioading.
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Figure 21. Comparison of the Mode II stress intensity factors in a
cylindrical and a spherical shell under torsion.
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where V is the strain energy. Substituting from (24-26) into (27) we
find

2

- 2 |
G-—E(km * &k 7/3) (28)

The importance pfl(28) lies in the means it provides to deal with prob]eMs of
fatigue crack pro%agation and fracture in plate and shell structures in which
the bending component of the stress intensity factor is not zero.

3.3 Comparison with Other Crack Geometries

The results given in this section show that the shell curvature may have
a very significant adverse influence on the strength of pipes and cylinders
containing a through crack. Needless to say, the stress intensity factors are
dependent on the orientation of the crack in the cylinder as well as on the
crack and shell dimensions. To compare the severity of a circumferential.
crack in a cylinder with that of an axial crack in a cylinder and of a meridional
crack in a spherical shell, some sample results are shown in Figures 20 and 21,
Figure 20 shows the membrane component km of the stress intensity factor in.
the shells subjected to uniform membrane loading {e.g., internal pressure).
Similar results for the shells under torsion (i.e., uniform in-plane shear)
are shown in Figure 21. Note that for the same dimensional constants the
stress intensity factor is highest in spheres., Also note that in cylinders the
stress intensity factor for an axial crack is greater for membrane loading
and Tess for torsion than the corresponding values for a circumferential
crack.

To give an idea about the possible fnf]uenée of material orthotropy
(which may result, for example, from roliing), some limited results for an
axially cracked cylindrical shell are shown in Figures 22-24. The modulus
ratios E1/E2 = 26.67 and 1.38 correspond respectively to a highly orthotropic
(e.g., a fiber-reinforced composite) and to a mildly orthotropic {e.qg., a
ro11ed metallic sheet) material. Similar results for an axially cracked
cylinder under torsion are shown in Figure 24.
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Figure.ZZ. The effect of material orthotropy on the Mode I stress
intensity factor in an axially cracked cylindrical shell under uniform
membrane Toading {a/h = 10, v = 0.3).
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Figure 23. The effect of material orthotropy on the membrane and
bending components: of the stress intensity factor in an axially cracked
- cylindrical shell under uniform (local) bending (a/h = 5, v = 0.3)f
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Figure 24. The effect of the material orthotropy in an axially cracked
cylindrical shell under torsion (a/h = 3, v = 0.3).
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3.4 The Part-Through Crack Problem in Pipes

The initial stage of a fracture failure in pipes and cylinders usually
is the formation and propagation of a fatigue crack from a surface flaw
(such as a scratch or an arc burn). For a mumber of reasons it is essential
that one ought to have a good estimate of the subcritical fatigue or corrosion
fatigue crack growth rate in the structure under the given loading conditions.

- Since the stress intensity factor is used a]most universally to correlate the
subcritical crack propagation rate, this in turn requires carrying out the |
elastic solution of a shell which contains a part-through surface crack.
Ideally, the preblem is a three-dimensional elasticity problem and is analy-
tically intractable. The existing finite element type numerical solutions are
expensive and do not lend themselves to simple parametrization. In this
research program therefore the simpler line-spring model [46] is used to

solve the problem. The details of the analysis as well as some general results
are given in Appendix B. The Appendix also shows the comparison of the results
- obtained from the line spring model and from the three-dimensional elasticity
solution given by the finite element method [38]. The agreement appears to

be quite satisfactory. - ' '

The problem has also been solved for a flat plate containing a surface
crack [47], where again the calculated results have been compared with those
obtained from the finite element solution. In addition to its relative sim-
plicity, an advantage of the technique described in Appéndix B is that the
profile of the surface crack can he prescribed numerically or analytically in
an arbitrary manner. The plate problem is described in Figure 25 and the
stress intensity factor at the deepest penetration point of a semi-elliptic
surface crack in a plate under tension and under bending is given in Figures
26 and 27, respectively. The results for a crack with a rectangular profile
(i.e., with constant depth L=L ) are given in Figures 28 and 29, The normal-
ization factor K, used in these figures is the corresponding stress intensity
factor in an edge-cracked strip under plane strain conditions subgected to
uniform tension N, or bending M, of the same magnitude and having the same
crack depth ratjo LO/h (Figure 1b) as the plate with the semi-elliptic surface
crack. The factor K, for tension and bending is given by

Ke =7 /0 gt(Lo/h? » Ky = 7 A g (L /h) | - (29)

=]
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(b)

i - h crack.
Figure 25. Geometry of the plate with a part-throug
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Figure 26. The stress intensity factor at the maximum penetration point
of a semi-elliptic surface crack in an infinite plate under uniform
tension (v = 0,3). S
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Figure 27. The stress intensity factor at the maximum penetration point
?f a sem;—e11iptic surface crack in an infinite plate under pure bendin
v =0.3). '
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Figure 28. The stress intensity
surface crack in an infinite plat

factor at the midpoint of a rectangular
e under uniform tension (v =.0.3). '

51-



Figure 29. The stress intensity faétor'at the midpoint of a fectangu]ar
surface crack in an infinite plate under pure bending (v = 0.3).
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Figure 30. Comparison of the Mode I stress intensity factors obtained
from the line-spring shell model and the axisymmetric elasticity solution.
(a) External semi-elliptic surface crack, (b) internal surface crack,
(c) elasticity result for the exterpal axisymmetric crack, {d) internal
axisymmetric crack. (k, = 4.0350,/1,, kyy = 0.582kg, a/h = 8, og:
uniform axial stress) | ' :
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Figure 31.  Comparison of the line-spring shell stress intensity factor
at the deepest point of an internal axial surface crack (dashed lines)
with the corresponding plane strain cylinder result (full lines), a/h = 8.
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axisymmetric edge cracks in a thick-walled cylinder under uniform axial ten-
sion obtained fkom the elasticity solution, As Ri/R0 +~ 1 the stress inten-
sity factors approach that for an edge crack in a flat plate under plane
strain conditions. . The dashed lines are the stress intensity factors at the
deepest penetration point of a semi-elliptic surface crack which are obtained
from the line-spring model (Appendix B), The discrepancy between the axi-
symmetric crack and the semi-elliptic surface crack results is highest for
R1-/Ro =1 (i.e., for the flat plate), For the plate the maximum stress inten-
sity factor in a semi-elliptic surface crack (Figure 26, a/h = 0,8, Lo/h =
0.6) is only 58.2% of the plane strain value. This is, of course, due to the
fact that in the uniformly loaded plate containing the semi-elliptic crack
the section containing the crack carries less than the. average load per

unit plate width. One may note that because of the use of the shell theory,
the surface crack results given for Ri/Rg < 0.9 would be highly approximate.

Appendix D also gives the stress intensity factors in a thick-walled
cylinder containing an axisymmetric inner or outer edge crack due to thermal
and residual stresses.

Similarly, exact bounds for the axial surface crack problem may be obtained
by‘aésuming that the part-through crack in the axial direction is "infinitely”
tong. Consequently, the problem may be assumed to be a plane strain problem
for a thick-walled cylinder which contains a part-through radial crack. The
related elasticity problem is considered in Appendix E where the general solu-
tion and some extensive results are given. The partial results reprodiuced
in Figure 31 are qualitatively quite similar togthdse given for the circumfér-
ential crack problem (see Figure 30). As expeéted, for relatively long and
shallow cracks the plane strain and semi-elliptic surface. crack fesu]ts are
much closer to each other than the deep crack results. Other results given
in Appendix E include that of the imbedded .radial crack andrthe rotating‘
cylinder,

3.6 Stresses Due to Radial Weld Shrinkage

In solving the crack problems the general practice is first to'perform
the stress analysis of the structure separately by ignoring the crack, and
to calculate the normal and shear stresses in the plane of the crack. Then
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a "perturbation” problem is éo1véd for the cracked structure in which the _
equal and oppostie of the stresszes calculated from the first solution applied
to the crack surface are the only nonzero external Tcads. In relatively thin-
walled structures such as pipes and pﬁessurized cylinders these local stresses
are usually a combination of membrane, bending, and transverse shear resul-
tants. Many of the solutions for pipes and cylinders obtained by using the
shell theory may be found in published Titerature or may be obtained by some
elementary method. Two problems of special interest in this study are the
stresses in a cylindrical shell ceused by the radial shrinkage of girth welds
and those in a pipé_under four point bending.

If the pipe is not properly preheated beforé circumferential welding or
if the heating does not match the wald shrinkage, then upon cooling the pipe
may undergo "waisting" which results in gross residual stresses in the neigh-
borhood of the girth weld., It should be pointed out that in addition to this
gross residual stresses which may be obtained by using a shell theory, in
and around the weld seams there would be statica11y self-equilibrating residual
stresses the determination of which would require a three-dimensional elastic-
plastic analysis. A useful solution for the gross residual stresses may be
obtained by approximating the weld by a ring and by treating the problem as a
statically indeterminate ring-shell problem.

To do this, let us define the following quantities:

a,b: 1inner and outer radii of the cylinder,

R = (a+b)/2: mean radius,

h = b-a: wall thickness, .

AT:  the mismatch temperaturé,

| coefficient of thermal expansion of the weld,

fhe average weld width, ;

‘modulus of elasticity of the weld metal,

1 modulus of elasticity of the cylinder (base metal).

£ T8

0

The total displacement mismatch in radial direction may be expressed

W = RadT = w_ + W - (31)

where W, and'ww are the displacements of the c¢ylinder and the weld, respec-

tively. Let'Q0:be the (radial) resultant shear force acting along the
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ring-shell interfaces. In terms of Q, the radial displacement of the weld
may be expressed as
QOR2

W = o= (32)
W htEw

For a cy1indrica1 shell acted upon by axisymmetric transverse shear force
Q, the maximum radial displacement is found to be [48]

QR? rar1ov2)®
W, = o [3(1-v2)1 : (33)
c vRh
From (31-33) Q, may be obtained as
. 2thE E /RN
% = Rz /iR + tE,[3(1-v2) T}

adT - (34)

Once AT 1is estimated and Qo is evaluated, the maximum bending moment {which -
is also under the load) may be obtained as [48]

/R
(M) = __jﬁLuu_j: (35)
. maXx 4[3(]_\)2)]4 ‘
giving the stress distribution
- 2R r. .
czz(r,O) = %nax TT'(] - R) . (36)
where |
6Q,/Rh (s7)

43 =
"X gh [3(1-v2)]%

For example, if the shell contains a circumferential crack, then to determine
the solution due to the gross residual stresses, the related integral equa-
tions in Appendix B or Appendix D must be solved by substituting the crack
surface traction -0, from (36). .




3.7 Stresses-in a Pipe under "Four-Point" Bending

In solving the crack problems in pipes it was indicated that for a given
loading condition the stresses in the pipe without the crack are known. The
crack problem was then solved under se]f-equiTibrating loads applied to the
crack surfaces only. A problem of particular interest in this research pro-
gram is a pipe under "four-point” bending (Figure 32}. Generally in such
problems it is assumed that the pipe is subjected to gross bending and the
stresses may be obtained by treating the pipe as a "beam". However, in
most cases, it is necessary to verify the results given by the beam theory
by carrying out a somewhat more realistic stress analysis of the pipe and
by considering the details of the loading fixtures.

At the four points shown in F1gure 32 the loads were applied to the pipeby
6 in. wide semicircular saddles. To prevent a possible collapse of the pipe
wooden blocks of 4 in. x 4 in. cross~section were inserted into the pipe at
the load locations (Figure 33). Other relevant dimensions are shown in -
Figure 32.

A shell theory was used to calculate the stresses in the pipe(*). This
is a numerical té%hnique in which all field quantities including the external
loads are expanded into Fourier series in & and a segmental integration is
used in the axial direction. The shell equations are expressed in terms of
a system of first order differential equations. The resulting "two-point
boundary value problem" is then solved by reducing it to an initial value
type problem. '

In order to avoid a highly complicated contact problem, the form of the
“contact" stresses at the locations of the loads was assumed beforehand
(see Figure 33). Following were the main assumptions: {a) the contact at
all locations is frictionless, (b) the pressure distribution under the saddles
is independent of the axial coordinate and has a cosine distribution in 9,
and (c) the pressure distribution between the wooden blocks and the shell is
uniform. Thus, the transverse load N{6) applied to the pipe would be of the

(*) KSHEL developed by Professor A. Kalnins at Lehigh University.
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Figure 32. The geometry and dimensions of the pipe specimens.
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Assumed Pressure Profile Under the Saddle
N={Ng cos 8)

Wooden Column Under
Load Point
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_ Pressure Transmitted by Column
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Figure 33. Assumed distribution of the app] i '
ied load
and the wooden blocks in the pipe specimegg. pac Fhrough the saddles
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form shown in Figure 33, where
~N(e) = Ncoss - (38)

N1 is unknown, and 6y = ¢/2k = 0,2 rad., ¢ =4 in, being the width of the
wooden block. From the equilibrium condition N, is found tc be’

w2 I .
N(e)cose Rde = P, N =.2P/nR . o | (39)
-1/2

The Toad N1 is determined_frcm‘the fo]]owing displacement compatibility condi-
tions: : '

N(0) + W(r) = W - © (40)
| B . - |

where W(e) is the radial displacement in the shell (positive if outward),
O is the stress in and £w and Ew are the length and the Young's modulus of
the wooden block.

In the analysis the 1oad1ng cond1t1on shown in Fxgure 33 is used only
in the interior load locations x = 15 in. (F1gure 32) For simplicity the |
pipe ends were assumed to be "simply—supported“, that is, at x = £ 102 in.

it was assumed that

(N¢¢, M , Wy=0 , ' - {41)

96’ N¢9

where ¢ and o are respectively the axial and the circumferential coordinates
and Nij and Mij (i, = ¢,8) are the membrane and bending resultants.

Some calculated results for the dimensions shown in Figure 32 are given
in Figures 34-36. Figure 34 shows the e—d1str1but1on of the c1rcumferent1a1
stress %40 and the axial stresses Oy and 9% in the pipe at the plane of
symmetry x=0 where the subscripts o and i stand for points on the "outer"

and the "inner" surface of the shell, respectively. o, #o,; implies Tocal
bending of the shell wall; that is,

(o0 * 0y )72 = Hyy/hs (o, = 0,4)/2 = BM /02 - (82)
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Figure 3. Circumferential variation of the hoop (o,.) and the axial
stresses (dxi’cxo) at x=0 plane in the pipe under "four-point-bending®.

-64-




g N
0.2} ‘
R
0.4}
0.6 o

—=— == Shell

i i
i !
o i
by
Vg

| Ob— Mo

STRESS -ZXO.

p psi/ib.
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Figure 36. The circumferential variation of the radial displacement
W at x=0 plane.
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Figure 35 shows the distribution of the axial stress c .o 3t 8= Tasa
function of x. The figure also shows the same stress component obtained from
the beam theory. From Fisures 34 {t may be observed that the locai bending
due to the variation of the-membrane stress oy in thickness direction at the
location of the crack (i.e., x=0, 8=r) is not verv significant (the maximum
bendTng stress o = 6M¢¢fh2 is'approximate1y 3.7% of the membrane stress

-'N /h) Similarly, the difference between the stresses at the crack
Iocat1on obtained from the sheil and the beam theories is approximately 3.1%
of the nominal value (Figure 35). Therefore, in this study using the beam
theory to calculate the stresses would involve no substantial error.

Figure 36 gives some idea abou: the avalization of the pipe at x=0 plane.

In this figure W(s) is the radial component of the displacement (positive
if outward). It should be emphasized that the problem was solived for P=1 by
using the actual dimensions of the pipe given in Figure 32 Thus. a1l quahti-
ties shown in Figures 34-36 are per unit applied Toad and are not dlmens1on—

1ess.

" 4. DUCTILE FRACTURE MODEL: ELASTIC-PLASTIC SOLUTIONS

As pointed out in Section 2, if the part-through crack in the plate or
the shell is relatively deep and long, the net Tigament rupture-would seldom
be preceded by a K or J-controlled progressive self-similar crack growth,

In such situations a more likely mode of fracture would be either an unstable
grdwth of a shear crack or plastic necking instability. In either case the
related fracture process is very complex and is highly dependent on the
global mechanics (i.e., on the structure-crack geometry and the nature of

the external loads) of the problem. Therefore, even if one assumes_that_thé
fracture is basically "ductile” and some such mechanism as hole formation,

~ growth, ‘and coalescense is responsible for further cracking, for plates and
shells the development of a realistic one-parameter quantitative faf1ure
criterion does not seem to be feasible. Tearing modulus, JIC’ con, Charpy
energy and other s1m1]ar parameters assoc1ated with the ductile fracture
strength of the material are extremely useful for fracture character1zat10n
and comparative classification of the structural materials. However, because
of the mechanics of the surface crack problem in plates and shells, they cannot
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be used directly in a fracture criterion governing the related ductile frac-
ture process, On the other hand, for the purpose of correlating and studying
the experimenta1 results, it is clearly advantageous to select a single para-
meter. |

‘Because of the compiexity of the related mechanics problem, in pipes it
would be preferable to select a parameter which may be considered as a measure
of the intensity of local strains and at the same time the theoretical evalu-
ation of which would be relatively insensitive to the accuracy of the con-
tinuum modeling of the elastic-plastic stress-strain relations in the crack
regioh. The rational here is that whatever the actual mechanism of the frac-
ture process, the intensity of the local pilastic strains may be looked upon as
an acceptable measure of the material resistance as well as the intensity of
the applied load. The parameter selected for this purpose in this study is
the crack opening displacement (COD). COD can be measured accurately and is
certainly a realistic measure of the intensity of plastic deformations, Also
the crack mouth opening displacement is a "global" quantity in the sense that
it reflects the integrated effects of the plastic deformations in the crack
region. Hence, it is reasonable to assume that its calculated value would
not be as sensitive as some other parameters to the details of the elastic-
plastic modeling of the part-through crack problem. It should again be
strongly emphasized that here we are not proposing a'spécific:fracture criter-
ion which is based on COD and particularly is dependent on a Mc¢critical COD."
We are rather proposing to use COD as a correlation parameter in analyzing
certain types of ductile fracture problems in the sense that the stress inten-
sity factor range AK is used to analyze and correlate the subcritical crack
" propagation results. |

In this section the theoretical model for the evaluation of the crack
opening disp1écement is developed;' The basic problem is the elastic~plastic
edge crack problem in a part with finite thickness. There are three prob-
lems wihich are of interest in studying the fracture of plates and shells.
In the order of increasing complexity they are the plane praolem of a single edge
notched specimen under tension and bending, the problem of a flat plate with
a surface crack, and the cylindrical shell with a circumferential or axial
part-through crack. The main objective of this section is to describe the
analytical techniques dealing with the elastic-plastic crack problems for these
three geometries. -
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4.1 The Plane Problem for an Edge-Notched Plate

If the part-through crack in a plate or shell i= Tong relative to the
thickness, then in the middle portion of the crack one may assume that the
plane strain conditions are valid (Figure 37)., In this case an idealized
model representing the states of deformation and stress in tiis region would
be the single edge~notched plate under plane strain conditions (Figure 37a).
However, it should be emphasized that such a model would be qualitative
and would be useful in investigating tne related ductile fracture mechanisms
only. As pointed cut in Section 3 (see Figures 26, 28, 30 and 31), quanti-
tatively the results would be highly approximate. Again in this case too the
load carrying capacity obtained from the elastic-plastic plane strain solu-
tion would provide an upper bound for the plate with a part-through surface
crack. ' ' ' '

The primary purpose of solving this problem is to obtain an accurate
estimate of the crack opening stretch at the leading edge of the crack.

This quantity plays an important role in the evaluation of crack growth
initiation and instability loads in plate and shell structures with a part-
through crack. The problem is described by Figure 37. Physically it is

clear that for certain combinations of applied loads and the crack length
because of the nonsymmetric nature of the plate geometry, the longitudinal
stress o,y Near and at the surface opposite to the crack (i.e,, in the
neighborhood of the point x = 0, y = h) may be compressive. Also, for high
magnitudes of the Toad this stress may exceed the compressive yield strength
df the material. The yielding on the compressive-side of the plate would

then have to be taken into consideration for a realistic modeling of the prob-
lem. The previous studies of this problem have been either purely elastic

~or have considered only the tensile yield zone around the crack tip. In this
study we consider the plane strain problem shown in Figure 37 first by
assuming that the magnitude of the maximum compreSsiVe stress is not much
higher than the flow stress in compression and hence by ignoring the yielding
on tﬁe compression side of the plate (Problem 1), The numerical results show
that this is a fairly good assumption for a plate under uniform tension

(UXX = 00). “Next, the problem is considered with compfessive as well as
tensile yield zones (Problem 2}. For an edge-notched plate under bending
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Figure 37. Notation for the plane strain problem for a plate with an

edge crack. :
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consideration of compressive yielding appears to be unavoidable. Finally,
the effect of strain hardening in the yield zone is investigated (Problem 3).

The analysis of the problem is described in Appendix F where the prob-
Tems 1, 2, and 2 are discussed separately. Referring to Figure 37(a), in
solving this problem, first it is assumcd that the yielding takes place only
in the tensile zone adjacent to the crack, a = ¢-a = ar being the size of the
unknown yield zone. Table F1 shows that in the plate under uniform tension
in the backside of the plate (x=0, y=h) the ~ompressive stress may easily
reach the yield point for moderately deep cracks and high Toad ratios oo/oY.
However, trial calculations also showed that in this case the introduction of
a compressive yield zone in (x=0, b<y<h) did not significantly change the
crack- opening deplacements 5§(0) and 5(a). The results given in Table F1 are,
therefore, based on the assumption that the yielding is restricted to the ten-
sile region only.. Figuré 38 shows a sample result giving the crack tip open-
ing disp]aceﬁent (CTOD) s(a) and the crack mouth opening displacement (COD)
§(0} for a plate under uniform tension. The figure shows that when the exter-
nal load % reaches a certain Tevel, any small increase in the load may cause
relatively a very Tlarge increase in COD or CTOD. Mechanically, this may be
interpreted as an indication of a crack instability or plastic collapse in
the net section. From the results given for the strain hardening materials in
Appendix F one may also observe that the strain hardening model gives calcula-
ted values for §(0) and s(a) which are slightly lower than those given by the
elastic-perfectly plastic model. In practice, however, this is compensated
for by using a flow stress ap in'pIace of ‘the yield strength Oy« Since
TE>0ys the COD values based on Op would be somewhat Tower than that obtained
from oy. - - _
If the plate is under pure bending, then as seen from Table F2 even for
relatively shallow cracks the yielding on the compression side of the plate.
must be taken into consideration. A sample result for this case showing the
variation_of COD on the p1éte surface, &{a) at the'crack tip and the tensile
(aT) and compressive (ac) plastic zone sizes with the load ratio UB/GY is given
in Figure 39 (cB=Mh/21). This figure shows much more distinctly the signs of
a possible crack instability or plastic collapse mechanism in the neighborhood
of a certain load ratio {in this case approximately og/oy = 0.375). |

As indicated in Appendix F, if needed the stress distribéation in the net
ligament may easily be calculated. Some sample results for a plate having an
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Figure 38. Crack opening stretch §{a) at the leading edge of the crack
and COD on the surface of a plate under uniform tension (yielding in
tension only, oy: the flow stress in tension). _
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edge crack and subjected to pure bending are shown in FigUres 40 and 41. For
the example given in Figure 40 the tensile and compressive flow stresses are
assumed to be equal. Figure 41 shows an example for which_(g?)c ='1.4 Oy-

4.2 A Lohg Part-Through Crack in a Plate with Fully-Yielded Net
Ligament
. The second elastic-plastic problem which is considered analytically is an

infinite plate containing a reTativé1y long and deep part-through surface
crack. The problem is described in Figure 42. If the plate is subjected to
uniform membréne'1oading as shown in the figure, because of the nonsymmetric
nature of the stress distribution in thickness direction in the plane of the
crack x2=0, around the crack region one would expect a certain amount of bulging
of the plate. The bulging, in turn, would affect the plastic deformations
around the crack. In particular, if one is interested in calculating the
crack opening displacement on the surface of the plate (for the purpose of,
for example, using it in compliance-type analysis) or thé crack opening stretch
along the leading edge of the crack (for the purpose of using it in ductile
fracture initiation and in a net ligament instability analysis), then it may
be necessary to estimate the effect of bulging on these quantities and to take
it into consideration if it proves to be significant. Because of its practical
importance in recent past the problem has attracted some attention (see, for
example, [49-52]). However, in none of the previous studies has the bulging
effect been evaluated or taken into consideration.

In the present study the problem described in Figure 42 is considered.
It is assumed that plastic deformations take place in a certain portion of the
plate around the crack tips as well as in the entire net 1igament. The prob-
lem is the'1imiting case of a cylindrical or a Spherica1 shell for R + «. "A
fully-plastic version of the line-spring model is used to account for the

" plastic deformations. The details of the solution and extensive resuls are

given in Appendix G. COD (or CTOD) in the plate has been calculated and tabu-
lated at eight different locations (Table G3). In order to avoid an iteration
in the numerical analysis the table 1ists ‘the calculated results for fixed:
values of'ap =a+pandd{a, pand d being the ha]f crack length, the p]ast1c
- zone s1ze,_and the crack depth).
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Figure 43. Crack opening disp]acéments_in:a flat plate containing a
part-through crack with a fully-yielded net ligament.

~78~




A sample resuit for a “long and deep" surface crack is also shown in
Figure 43 where COD] COD2 and CODA, respectively, correspond to the'crack
opening d1sp1acement on the piate surface, crack tip opening d1sp1acement at
the m1dsect1on of the plate, and the crack tip opening displacement at the
‘ends of the crack and in the neutral plane, X3 = 0 (see Figure 42), From
Figure 43, too, it may be cobserved that in the neighborhood of a certain value
of the extefna1_1oad o, @ small change in o, may cause relatively large changes
in COD or CTOD. This again indicates that at this particular load level net
1igament may undergo some kind of mechanical instability.

4.3 Circumferential Part-Through Crack in a Cylinder

The third elastic~pTastic problem considered in this study is that of a
pipe or cylindrical container with a part-through circumferential crack.
Again, if the related ductile fracture process involves progressive stable
crack growth, it is generally agreed that the size of the eneryg dissipation
zone around the crack front is an increasing function of the crack length,
Thus, in a structural component undergoing slow progressive ductile fracture
the fracture resistance of the material increases with increasing crack length,
hence, the concept of “crack extension resistance curve" or the R-curve. There
is some experimental evidence to the effect that during such a fracturing pro-
cess the "crack opening angle" or the "crack opening stretch" at the tip of
a growing crack remains constant. Even though this notion has not been fully
documented, it may still be used to support the conjecture that for the initia-
tion of ductile fracture growth some Tocal strength parameter must reach a |
critical value at the crack tip and, in the absence of a more suitable Toad
factok, the crack opening stretch may be used as the measure of this parameter.
This ‘is a necessary condition for fractufe:propagation.and is related to the
- formation, growth and coalescence of holes in the small fracture initiation
~or "fracture proceés zone" at the crack front (Figure 1b). On the other hand
cgntinuous (stab]e) growth and instability of fracture require that the condi-
tion of global energy balance be satisfied. The Tatter const1tutes essen-
t1a11y the sufficient condition for fracture propagation. '

‘The type of ductile fracture resulting from progressively growing cracks
would occur usually in structural components having a throﬂgh crack or having
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a part-through crack with a relatively small crack depth to wall thickness
ratio (Figure 4d ané f). However, for some crack~structure geometry and
material combinations the crack opening stretch may reach and far exceed the
local critical value and yet the condition of global energy balance may hot
be'satisfied. Some plate and shell structures of high toughness materials
having a relatively Yong and deep'surface cracks may fall into this category.
In this case the net 1igament would generaily undergo plastic "necking", and
the net ligament,tupture may result from a "necking instabi1ity" under increased
membrane 1oads‘(Fi§ure 4e}. As shown in [7] the solutions of crack problems

in shells'proberiy accounting for plastic deformations may be used as the basis
of both types of ductile fracture mentioned above. It should perhaps he
pbinted out that the concept of "tearing modutus" recently introduced by

Paris appears. to be.a very effective way of characterizing and classifying
structural materiais with respect to their ductile fracture resistance. How-
ever, the concept is confined to certain types of J-controlled progreésive
fracture and is not applicable to net ligament plastic necking instability.

For the evaluation of the crack opening stretch along the crack front the
elastic-plastic solution of the problem of a cylindrical shell containing a
relatively Tong and deep part-through circumferential crack is needed. The
problem by using a modified version perfectly plastic strip model to account
for the plastic deformations in the crack region is considered in this section.

The analytical solution of the elastic-plastic problem for a cylindrical
shell containing a part-through or a through crack does not seem to be feasible.
In this study the plastic deformations in the crack region will be accounted
for by assuming a perféct]y plastic strip model similar to a conventional ‘
Dugdale Model used in plane problems. The model has been used before in con-
Junction with the classical shell theory to study the plasticity problem in
cylindrical she115-containing an axial crack [5] (see, also [19] for applica-
tions). Briefly, in using this approximation it is assumed that the plastic
deformations in the shell is confined to a “thin layer" in the plane of the
crack wiich becomes fully plastic upon Toading the shell. . The size of the’
plastic zone is unknown and is determined from the magnitude of the external
loads. Thus, the problem is treated basically as an elasticity problem sub-
ject to the conditions that the stress state in the plastic layer satisfy an
appropriate yield condition and that the stresses everyihere in the shell be
bhounded.
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The problem in the circumferentially cracked shell is described in
Figure 44 where the shaded area shows the fully plastic layer. In the part-
through crack case (Figure 44 a,b) it is assumed that the fully-yielded net
tigament under the crack may carry only a censtant flow stress op and in the
plastic zones of 1ength p at the ends of the crack the membrane and bending
stress resultants are such that the stress state in the crack region is non-
singular. The flow stress op depends on the yield behavior of the material.
Even though there is no definite way of selecting Op> it may be expressed as
Op = oy + y(ou-oys) where Iys is the yield and o, is the ultimate strength
of the material and the factor y is a constant (O<y<1, usually v=1/2). Thus,
in addition to the usual field quantities appearing inthe elasticity solution
of the shell, the symmetric elastic-plastic crack prbb?em has three unknowns,
.namely the size of the plastic zone p and the membrane and bending stress
resultants N and M in the plastic zone. The problem is solved by assuming
that the shell has a through crack of length 2(a+p) (Figure 44) and by using
the stresses in the plastic layer as crack surface tractions. The three
additional conditions to account for the three unknowns p, N, and M may then
be expressed as

k,(a+p) =0 , (43}
kb(a+P) =0 , (44)
N 2IMl _

EEF'+ P o =1, (45) |

Conditions (43) and (44) state that the membrane and bending stress intensity
factors at the fictitious crack tip (a+p) are zero thereby insuring nonsingu?ar
- stress state in the shell and (45) expresses the yield condition. It should
~ be noted that the conventional yield condition in plates and shells is. stated
S SR s RS _ _

2

N Mo
(oo * othryz <]

(46)
or _

In prqctice, generally the condition (46) is linearized by a?proximating the -
parabola by straight lines going through the intercepts .on N and M axes.
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Figure 44. The crack geometry.
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However, in shell problems of practical interest, generally the membrane stress
kﬁsultant N is dominant and therefore a more realistic linearization of (46)
may be obtaTned by approximating the parabo1a by its tangent at the point N
th, M =0 as given by (45).

In Appendix A it was shown that in a cylindrical shell containing a cir-
cumferential through crack of tength 2b under symmetric loading conditions the
problem may be formulated as a pair of singular integral equations of the
following form

b
[ kij{y>t)G;(t)dt = Fiy), -bey<b, 1 = 1.2, | (47)
-b _ : :

[l gl ]

Gf(t)dt =0, i=1,2 - ' (48)

where y is the coordinate along the crack in the tangent plane to the neutra1
surface, x is para11e] to the axis of the cylinder, z is perpendicular to the
shell surface, the kernels kij are given in Appendix A and the unknown and
input functions G.i and Fi’ (i=1,2) are defined by

2 u(40,y) > Gy) = 28, (40y) 5 (49)

Gl(y) 2y 3y "X

Fly) = N (0,y) 5 Foly) = M, (0,y) » -b<y<b , | (50)
u(x,y) and sx(x,y) being the x components of displacement and rotation, respec-
tively. The elastic-plastic results in a cylinder subjected to a uniform
~axial membrane 1oad_Nxx = N0 in the crack region may be obtained by solving

the integral equations (47) under the following two sets of crack surface

tractions and by adding the results

F1](y) = =Ny s Fo (y) = 0, -b<y<b, b = atp, | ~(57)
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o N a< iyl <an
. 2 ‘ 4

PR =1y - 1
| hop(l-g) > -a<y<a ,

(52)
M, a< |yl <atp,

[(-fogb) (Fra) = (1-fgh) (F- )1,

H]

2
th

-a<y<a

where the crack,)located at x=0 plane, has7a‘1ength 2a in y direction and depth
d in z direction, and its position in z direction is determined by the dis-
tance ¢ of its center line from the outer surface of the shel], z = h/2. Thus,
the crack occupies the domain (x=0, -a<y<a, 2-c-2<z<2-c+2) Under the loading
conditions (51) and (52) the stress intensity factors k1 and kb, (i=1,2)
obtained from the solution would be linear in No’ N, and M and nonlinear in

p. Noting that No is known and

1

km=km

L2

- 2
+km,

k =k + K, (53)
equations (51-53) would then give N, M, and p. For example, Figures 45 and 46
show some sample results for the plastic zone'size p. Figure 45 provides

the information to obtain p in a shell with a thrbugh'crack of Tength 2a

for a/h = 1, v = 0.3 and for various values of the second dimensionless length
parameter iy, which is defined by |

= D2/ . (s8)

The curve for 1, = 0 corresponds to the flat plate solution which is known to

be

Fri ( o 9 o o -(55)

_F1gure 46 shows 1nd1rect1y the effect of a/h-on p for a fixed value of 12—2.
‘It may be seen that this effect is rather insign1f1cant
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Once the unknown constants p, N, and M and the functions G; and G, are
obtained, then any desired field quantity in the shell, in particular, the
crack opening stretch (C0S) at any point on the.crack border and the crack
opening displacement (COD) at any point on the crack surface, may easily be
eva]uated(* . On the crack surface and along the crack border the COD and
COS are given by the relative displacement &{y,z) calculated from

8{y,z) = u(+0,y,z} - u(-0.y,z). (56)
Three particular quantities used in fracture analysis are

s = 8{(0,0): COD on the neutral surface at the midsection
of the crack.

6{a,0): COS on the neutral surface at the crack tips,

(=]
il

§.: COS on the border of a part-through surface crack at the
midsection y=0,
The quantity 8 is related to the clip-gage type measurements and 85 and 8
are the crack opening stretches of critical interest in the through and part-
through cracks, reSpeptive]y. From (49) and {(56) it is seen that

 atp | | | :
w2 ewe, )
_ ) |
atp _ \
5, = -2 J 6(t) dt, | (58)
a ' :
8. = 8, +2,08,(+0,0) - 8 (-0,0)] S (59)

*
%) In this .report the term "crack opening stretch" €0S or “crack tap ‘opening
~ displacement” CTOD is used for the relative displacement along the actual .
crack border which is assumed to be a measure of the strains or the stretch.
The term '"crack opening displacement" COD is used for the phys1ca]1y .
measurable relative crack surface displacement.
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Figure 45. Curves giving the plastic zone size p for a circumferential
t?roug? crack in a cylinder under uniform axial membrane loading,
a/h =1, v =1/3. : .
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Figure_46. The effect of a/h on the plastic zone size.
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where z, = (h/2) - d for the external surface crack (i.e., c=d/2), Zy =
d-(h/2) for the internal surface crack (i.e., c=h-d/2), and sx(+0,0) and
Bx(40,0) are the crack surface rotations at y=0. In the special case of
~ flat plate the solution for the through crack problem is known in closed form

and the limiting values of & and sa'for Ay = 0 may be expressed as

(22}

%

§;E7f'= =Tog [(1 + sina)/cosa] ,
x N

2 - %«]og (cosa), a = ?ﬁE% . | (60)

L sa
UFa'E

Further results for the membrane solution of the part-through crack problem in
flat plates may be found in [49].

Typical results for COD and COS in a cylindrical shell conta1n1ng a cir-
cumferential through crack or a part-through crack with a fully-yielded net
ligament obtained by using Reissner's shell theory and the perfectly plastic
layer model are given in Figures 47-54. In addition to the magnitude of the
external loads No‘and the dimensionless length parameters a/h and Ao the
part-through crack problem has two more length parameters, namely d/h and c/h
representing depth and position of the crack. Thus, the complete solution of
the prob1em requires that five independent constants be varied in some syste-
matic fashion requiring quite extensive calculations. In this respect the
aim of this paper is somewhat Timited and is restricted to obtaining results
which are sufficient to give some demonstrative examples regarding the appli-
cations. The primary restriction in the results shown in Figures 47-54 con-
cerns the length parameter a/h which is fixed at 2. Figure 46 shows the COD
8y for a through crack. The corresponding COS 8, ‘calculated as a function of
the axial membrane load Ny for various values of Ao is shown in Figure 48.
~ In these figures the results shown for 1,=0 correspond to the flat. plate case

and are given by {60).

Figures 49-51 show the crack opening stretch 8, in a cylinder with a
part through external surface crack calculated for a/h =2 and d/h=0. 7 0.8,

9, N0 and Xo again being the variable and the constant parameter. Similar
results for d/h = 0.7 are shown in Figure 52 for the cylinder with an internal
‘surface crack. Figures 53 and 54 show the crack opening stretch 8a at the
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crack tips and on the.neutral surface for a cylinder contajning surface
cracks. Comparison of the results given in Figures 53, 54 and 49, 52 shows
that for the same crack geometry and load magnitude 6C>6a-indicating that in
the case of relatively long and deep part- through cracks, as expected, the
critical location for crack 1n1t1at1on is the leading edge of the crack in
the midsection. ‘ _

As po1nted out earlier in this report for progressively growing ductile
fracture a local strength parameter in the fracture process zone must reach a
critical value and the condition of the global energy balance must be satis-
fied. - If one- assumes that the local strength parameter remains constant dur-
" ing the stable fracture propagation and the crack opening stretch may be
used as a measure of this parameter, then by using the type of results given
in this section one can obtain the Toad carrying capacity of the structure
against the crack growth initiation. To demonstrate the concept consider a
cylindrical shell containing a circumferential through crack and subJected .
to uniform axial membrane Toading in the crack region. At the crack growth
initiation and during the stable crack growth, 6 must be equal to some
constant, the critical C0S for the material, (aa)cr Referring now to:
results such as those given by Figure 48, for the given parameters a/h and
Xo the critical value of the load N, may be obtained by taking 8y = (6a)cr.
For a/h=2 the results are shown in F1gure 55.  Note that for fmxed a/h, Ao
is proportional to vh/R and for fixed a and h the figure directly shows’
fhe effect of the curvature 1/R on the load carrying capacity. Also, from
Figure 48 one may cbserve that for (Ga)cr > 7 the curve giving (N )
and shown in Figure 55 would not be significantly different from that cor-
respond1ng to (Ga)cr =7. As the material becomes more brittle (6a)cr
would be expected to be smaller. In this case the fracture process is governed
by the concept of fracture toughness and the curvature effect on the fracture
Toad 1is ref]ected by the change in the stress 1ntens1ty factor with the
curvature. For example, for a/h = 2, l2 2 the ratio of the membrane stress .
1ntens1ty factor in the shell to that in the plate is k 1 179 (Tab]e Al,
Appendix A}, (1nd1cat1ng that the plate may carry 18% h1gher menmbrane stress)
whereas from Figure 55 it may be seen that the rat1o of (N ) for the plate _
to that for the shell is 1.15 for (6 ) = 0.5, 1,20 for (a ) = 1 and '

cer

greater than 1.20 for (Gc)cr > 1. C]early, similar curves may be obtained-
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Figure 47.. Crack opening displacement at the center of the crack and on
the neutral surface in a cylinder with a circumferential through crack

under uniform axial load, a/h = 2, v = 1/3,
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Figure 48. Crack opening stretch at the crack tip and on the neutral
surface in a cylinder with a through crack, a/h = 2, v =1/3.
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Figure 49. (C0S §. at the leading edge and midsection of the crack in a
cylinder with an éxternal part-through crack, a/h = 2, d/h = 0.7, v = 1/3.
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Figure 50f_-5ame as Figure 49, a/h =2, d/h = 0.8, v = 1/3.
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Figure 51. Same as Figure 49, a/h = 2, d/h = 0.9, v = 1/3.
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Figure 52. 8¢ in a cylinder with an internal part-through crack, a/h.= 2,

d/h = 0.7, v =1/3.
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Figure 53. &z in a cylinder with an external part-through crack, a/h = 2,
d/h = 0.7, v = 1/3.
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Figure 54. Sa in a cylinder with an internal part-through crack, a/h =2,
d/h = 0.7, v =1/3. ' .
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for the load carrying capacity of cylinders containing a part-through crack
by using the results such as those given in Figures 49-52. It should again
be emphasized that the membrane loads such as those given by Figure 55 are
the crack growth initiation loads and are expected to be far below the frac-
ture instability loads. _

If the cylinder contains a through crack with large scale plastic defor-
mations, for progressive crack growth and unstable fracture, in addition to
the local condition in the fracture initiation or process zone, at each level
of the externa]_]oad the condition of the global energy balance must be sat-
isfied. As in flat plates, in this case, too,'the fracture process will be
governed by the R-curve concept. Even though the problem is very complicated,
if the resistance curve of the material is known, an approximate estimate of
the fracture stabi]ity load may be obtained by using a plasticity-corrected
stress intensity as the input. Thus, with KR(a) known noting that K(a) =

f(a)(NO/h)JE'(Table-A1, Appendix A), (No)cr and ap may be obtained from

.K(aér) - KR(acr)’ da K(a cr) ® K (a ) (61)

Note that since the shell correction factor f{a} is a monotonically increasing
function of a and is always greater than one, the values of (No)cr and a oy
for the shell would always he sma11er than the corresponding flat plate
values.

In the case of part-through crack, if, in addition to the local crack
initiation condition, the global energy balance condition per local crack
advance is satisfied, then it is possible to have progressive crack propaga-
tion and resulting fracture instability. In this problem since the crack
front would not remain_se1f-simi1ar as it advances, it cannot be qimplffied
and treated as a one- dimensioné] crack growth problem, However, é very simpie
technique to find a rough estimate of the fracture 1nstab1]1ty load for the

cylinder with a re1at1ve1y Tong and deep part-through crack or a through

T crack may be developed from the COS curves such as those given by F1gures

48-52. From these figures it may be observed that for a given shell-crack
geometry (i.e., for given a/h, d/h, and 12), in the neighborhood of a certain
value of N a small increase in N would cause relatively a very large increase
in s, or éa Physically this may be 1nterpreted as a tendency to the onset
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Figure 55. Load carrying capacity of a cylinder with a circumferential
- through crack corresponding to crack growth initiation with (8a)er as

- the local crack initiation parameter, a/h = 2.

-99..




of an instability process. Thus, one may consider the value of the membrane
load Ny corresponding to the point on the COS vs. No curve with an arbitrarily
high slope as a rough estimate of the fracture instability load. An example
is shown in Figure 15 which is obtained from Figures 48, 49 and 52 by assuming
the value of the slope to be 40/1 (for the nondimehsionalizing units shown
in the figures). Qua]itatively the results shown in Figure 56 have the expec-
ted trends, namely that the shell with an inner surface crack has the high-
esf and that with a through crack the lowest leoad carrying capacity.

" As mentioned earlier in thisreport, for certain crack geometry-material
combinations the crack opening stretch along part of the crack front may
reach and far exceed the critical crack initiation value before overall energy
balance condition is satisfied. This means that inspite of very large values
of COS the crack may not propagate and instead the net Tigament would undergo
p]astic necking. For this mode of fracture the net Tigament plastic necking
instabi]itylload may be obtained by using the technique described in [7].

Finally, itshould be pointed out that the stability of the through crack

upon rupturing the net ligament (or the Teak vs. the break) would depend on
the net'1igament thickness, or more precise1y, on the part-through cfack-geo—
metry .at the instant of the onset of unstable fracture of the net Tigament.
Even if the dynamic effects are excluded, for a relatively shallow part-through
crack the net ligament fracture instability load would be too high to be sus-
tained by the resulting through crack. On the other hand if the crack becomes
~very deep as a consequence of substantial subcritical growth, then it is pos-
sible that the load magnitude necessary to rupture the net Tigament would be
smaller than that necessary to propagate the resulting through crack, hence
the net ligament rupture would be followed by "leak" rather than "break",
A qualitative demonstration of this argument may be observed from Figures 48;
49, and 51. Using the C0S as the basis of comparison, from Figures 48 and 49 ;
it is seen that corresponding to the same (critical) values of COS the load
levels N for the part-through crack with d/h = 0.7 are consistently_greatek
than the load levels for the through crack. On the other hand, cbmparing '
Figures 48 and 51 it may be observed that corresponding, for example, to
8 /(agF/E) = 2 the load level for the part-through crack with d/h = 0.9 is

smaller than the Toad level for the through crack. :

-100~




Jo) -%— = Q.7 (lnner Crack) |

-%- = 0.7 (Quter Crack) |

- Figure 56. Approximate values of the load carrying capacity of.a- _
cylinder with a circumferential part-through or through crack corre-
- sponding to fracture instability of progressively growing crack, a/h = 2.
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The technique developed and the results given in this section refer to a
genera1'cy1indrica1 shell containing a part-through circumferential crack. In
applications the practical measurable quantity is the COD on the outside sur-
face of the shell and in the mid-section of the crack. The useful information
is, therefore, plots of COD vs. o, for a specific shell and crack gecmetry,
where o is the axial stress in the cylinder. For standard pipe diameters

{0D) of 24, 30, 36, and 48 inches and for various values crack dimensions
a/h.and (*) d/h = LO/h the calculated COD vs. 0,/ %F graphs are given in
Appendix H. Qualitatively the results are quite similar to those given in
this section. The results for a 20 in. diameter pipe which was used in the
experiments are described in the following sections with the experimental pro-
gram, where the technique of applying such analytical results as those given

in the Appendix H is also discussed.

- Tx ' . . . ~ .
(_) In Appendix H the maximum crack depth is indicated by Lo in order to be .
consistent with the elasticity solution given in Appendices B and C.
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~ THEQRETICAL AND EXPERIMENTAL STUDY
~OF FRACTURE IN PIPELINES CONTAINING
CIRCUMFERENTIAL FLAWS

PART 11

EXPERIMENTAL INVESTIGATION OF PLATES AND PIPES
CONTAINING A PART-THROUGH CRACK

1. INTRODUCTION

The primary objectives of the current study were (a) to develop a metho-
dology which may be used in analyzing fatigue crack propagation and fracture
problems in pipelines containing circunferential surface flaws, and (b) to
carry out an appropriate experimental program in order to'verify the theoreti-
cal findings and to determine their limitations. From a viewpoint of fracture
failure due to circumferential defects two major problems in pipelines are
known to be the propagation of fatigue or corrosion fatigue cracks initiating
from existing surface flaws, and the problem of "leak" or "break" following
the fatigue phase. The first problem which relates to a subcritical crack
propagation. is empirically well-understood in the sense that knowinglthe
stress intensity factor and the load-time profile, and having access to the.
baseline laboratory fatigue data for the given material and the environment,
it is possible to perform a reliable ‘analysis to predict the crack propagation
rate in the pipe wall, In this regard the main problem is the calculation of
the stress intensity factors for a circumferential surface crack in pipes.
This research is described in Part I of the report. Related experimental
studies on plates and pipes containing a circumferential part-through crack
_will be discussed in this part. o ' _

The quéstion of dugctile fracture leading to a 1eak'or*break'1n the pipe
is, on the other hand, far from being understood. Microstructurally, the :
basic mechanism of ductile fracture appears to be first formation and growth
of "holes" or "voids" as a result of the fracture of inclusions or inclusion
boundaries, or fracture taking place at other localized sites of high stress
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concentrations and constraints, followed by the “"necking" of ligaments formed

by the holes, and finally rupture of the ligaments leading to the coalescence

of holes and to the formation or extehsion of cracks. Var10U§ kinds_of duc-

tile fracture were discussed in Part I. However, it should again be empha-

sized taht the ductile fracture propagation is very highly dependent on the

geometry of the structural component and of the crack. Therefore, in modeling

and analyzing it the mechanics of the probiem is expected to play a major role.
The experimental program was undertaken for three different crack geometries,

namely the plane single edge notched specimen of X70 pipeline steel, a flat

plate with a part-through surface crack again of X70 steel, and 20 in. OD

X60 line pipe having a circumferential part-through crack. In this study the

pipe problem is the one which is of primary practical interest and is related

- to fatigue and fracture of pipelines containing a circumferential flaw (such

as, for example, a weld defect) and subjected to secondary loads giving 1arge1y

time-dependent axial stresses, The first two problems in plates were considered

as idealized special cases, mostly to check the validity of the ductile fracture

“model.

2. FATIGUE AND FRACTURE OF SINGLE EDGE NOTCHED SPECIMENS

2.1 Fatigue Crack Growth Experiments

The specimen used in these experiments was a 12 in. long 2 in. wide and
5/8 1in. thick edge-notched plate shown in Figure 57. Twenty specimens were
cut from a 4x12 ft. X70 line pipe steel. (U.S.S.). The plate was rolled from a
slab which has the following chemical analys®s (in percent):

-ppm_

C M P S Si Cu N C Mo Cb Al n 9 C

06 .34 .008 004 722 .33 10 TT6 3T 04 027 .009 ﬁﬁ' 19

Figure 58 shows the stress stra1n curve and some relevant mechanical propert1es
of the material. All spacimens were cut parallel to the rolling direction
with the crack perpend1cu1ar to it Targely because of the fact that the main
interest in the study is in the growth of circumferential flaws in pipelines
{where the crack would alsoc be perpendicular to the rolling direction).
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A1l twenty specimens were precracked in an Amsier Vibrophore at room
temperature. The specimens were loaded in three-point bending and precracked
under Tow amplitude and high frequency loading. The specimens were divided
into five groups of four, 'In the first group, the precracking was stopped as
seon-as the natural crack was visible ahead of the machined chevron notch. This
group was used in the fatigue crack growth characterization of the material.
In the remaining four groups the crack was allowed to grow to four different
crack-to-specimen width ratios, namely a/h = 0.4, 0.5, 0.6, 0.7. These speci-
mens were used in the static fracture tests. Throughout the precracking phase
and in all five groups, the load amplitude was held sufficiently Tow in order
to avoid any permanent plastic deformations.

The fatigue crack growth characterization tests were conducted at room
temperature on a 20-Kips Instron machine using a full sine load wave, The

frequency and load ratio R (P } for all four specimens were 10 Hz. and

0.05, respectively. The specT;gnsngre pinloaded and the crack growth was
monitored by a travelling microscope which required that the surface of the
specimen be adequately cleaned and polished. The growth rates were calculated
from subsequent crack Tength measurements and the stress intensity factor
amplitude AK was cémputed as follows:

K =a0/F ge(g) 5 & =5 | - (62)

where Ac = AP/ht is the stress amplitude, AP the load amplitude, h the specimen
width, t the specimen thickness, a the crack length and 9 is given by (see
Appendix B)

0, (8) = /7E (1.1216 + 6,526 - 12.3877¢* + 89.0654¢°
- 188.608g8 + 207.387510 - 32.0824g12)  (83)

The fatigue crack propagation results are shown in Figure 59 The figure
also shows the results obtained from surface crack exper1ments in p]ates and
pipes. The salid line in Figure 59 represents the approx1mate fit to the a1r
qata obtawned by Vosikovsky [53]. The specimens used in [53] were also pin--
TOaded edge notched X70 steel strips with the same crack orientation with '
respect to the rolling direction as the edge- -notched specimens, plates and
pipes shown in Figure 59 and used in this study, that is in all cases the
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Figure 59. Fatique crack pkopagation in X70 single edge notched and =
surface cracked plates, and in circumferentially cracked X60 pipes.

-108-




crack was perpendicular to the rolling direction. Generally, there seems
to be a good agreement among the fatigue data obtained from various sources
and crack geometries.

2.2 Fractuné Tests

After precracking to various crack length~-to-plate width {a/h) ratios,
the single edge notched specimens were tested to fracture. The original
intention was to perform the fracture tests under tension (through pin loads)
and under three point bending. However, the toughness of the material proved
to be too high to obtain rupture separation in bend tests. Under bending the
shear cracks developed and propagated at an angle near and at the surfaces of
the specimen, and the specimen essentially tended to "fold" as the displacement
of the loading ram is increased, Therefore, all fracture experiments were
performed under tension.

The primary reliable output of the experiments was the clip-gage displace-
ment.measured at the specimen surface (or at the crack mouth), Measurement of
the entire crack opening profile by the replication technique  through injecting
a fast-setting plastic into the crack proved to be very tedious and unreliable.
Hence, no quantitative results were obtained by this technique. A continuous
recording of the pin-load P vs, the crack mouth opening displacement COD was
obtained by feeding the outputs from the load cell of the testing machine and
the clip gage into an x-y recorder. The information was also stored on a
disk as a back-up. The results obtained for the same a/h {crack tength-to-
specimen width) ratio were found to be quite reproducible. Figures 60-63
show some sample results for each a/h ratio tested. The results are also
plotted in normalized form in Figures 64-67. For the a/h ratios tested (i.e.,
for a/h = 0.415, 0.499, 0.610, 0.725) typical fracture surfaces are shown in
Figure 68. c | . |

As may be-partially obsekved from Figure 68 that in the fracture tests
there was no evidence of (brittle or quasi-brittle) "pop-in". As the load
was increased, there was severe yielding and a narrow stretch zone developed
away from the surfaces, followed by dimple fracture in a "thumb-nail" zone
in the mid-portion of the plate. The thumb-nail zone was approximately
symmetric with reSpect to the mid-plane of the plate. In the mid plane where
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Figure 64. Normalized COD vs. stress ratio for the SEN specimen,
a/h = 0.415.
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Figure 65. Normalized COD vs. stress ratio for the SEN specimen, .
a’h = 0.499. | : - |
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Figure 66. Normalized COD vs. s'tress_ ratio for the SEN specir_nen,

a/h = 0.61.
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Figure 67. Normalized COD vs.

stress ratio for the SEN specimen,
a/h = 0.725, ‘
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Figufe-68.
(b) a/h =

Fracture surface df.SEN spécimens,_(a) a/h =
0.499, {(c) a/h = 0.61, (d) a/h = 0.725.
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the ductile fracture resylts obtained from these experimenté cannot be
directly Tinked with the plate and the pipe results regarding the net Tigament
rupture which is the main focus of the ductile fracture studies in this report.
Even for the deepest crack (for which the net ligament width h-a = 0,55 1in.

was less than the specimen thickness 0.625 in.) the fracture was a 45° slant

fracture (Figure 68d). However, as exbected the fracture mode of the through
cracks in plate, pipe, and the SEN specimens were all alike,

3. PLATES CONTAINING A SURFACE CRACK
3.1 Fatigue Crack Growth Experiments

‘The geometry of the surface cracked plate specimens is shown in Figure
69. Again, the specimens were cut in rolling direction from a 5/8 in, thick
X70 steel plate. The thickness in the test section of the specimens was
reduced to 0.425 4n, largely because of the capacity of the testing machine
used in the fracture experiments. In three of the five specimens tested the

“initial surface notch was cut by a vertical milling machine, and in the
remaining two by an electric discharge process. From the viewpoint of reducing
the precracking time, obtaining the desired notch profile, and notch root
acuity, the latter was by far the better technique. Hdwever, after initiation,
the subsequent fatigue crack propagation process was not affected By the -
geometry of the initial notch.

The fatigue expériments were conducted in an Amsler machine at 250 cycles
per minute and a load ratio Pmin/Pmax of approximately 0.3, The fatigue crack
propagation was monitored by fatigue crack front markings which were obtained
by reducing rather than increasing the load amplitude. Increased load ampli-
tude has the advantage of being faster (i.e., requires relatively small numbey

~of cycles) and perhaps of giving somewhat sharper mérkfngsf"However;_it also
has the disadvantage of causing some uhcertainty in the crack growth_rate'
analysis because of the delay effect resulting from the overloads. In the )
present preblem in using the technique of overloads there was also the danger

~ of premature net ligament rupture for very deep cracks. '
Figure 76.3h0ﬁs 2 typical fatigue c¢rack surface on which the_markihgs
are visible, 'The figure shows that regardless of the initial notch geometry
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the fatigue crack assumes approximately a semi-elliptic shape and maintains
it as it grows.

In analyzing the fatigue crack growth results the stress intensity factor
at the deepest penetration point of the crack was calculated by using the
expression developed in [42] for a semi;elliptic surface crack in a plate
having'a_finite width:

K = o(na/Q)F - o (68)
Q.Q 1 + 4.64(a/c)1f65”, (a<;) . ' (67)
| | NV ¥ -
Fe o+ 10T - 1@ & @ T e, (63)
o= 13- 013 , (0.03<2<T) | (69)
My = (/)7 , a < c, (70)
foeleos BEAENTE . )

i

where 2c is the crack length on the surface, a is the maximum crack depth, t
is the plate thickness, W is the plate width and o is the uniform tensile
stress away from the crack region. |

The crack growth rates obtained from the plate experiments are shown in
Figure 59 with the remaining X70 results. These results simply confirm the
contention that the fatigue crack growth rates in p1ates'with a surface crack
may be predicted from the baseline data provided a reliable estimate of the
stress intensity factor is available. '

3.2 Fracture Tests

After fatigue cracking the plates to various crack depths, the plates -
" were fractured under static tension (see'Figure 71).  Again, COD measured on
the plate surface im the center of the crack was found to be the on1y reli- -
ahla Antrid sn the evmarimant  Tha andnife Fram fhe cyrack apenina aage and -
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Figure 73. Normalized COD vs. stress ratio for the plate with a surface
crack, t/k = 0.12. ' : ¥ -
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Figure 74. Normalized COD vs. stress ratio for the plate with a surface
crack, t/h = 0.338. ‘ : - - ‘
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4. . THE PIPE EXPERIMENTS

The main part of the experimental program was the fatigue and fracture
tests on a‘“full scale" line pipe in order tc test the validity of some of the
ideas and models developed in the theoretical part of this study, and to inves=
tigate the mechanical nature of the net ligament rupture, Despite our initial
preference for X70 pipes, availability of standard p1pes within the capability
of the testing equipment in the laboratory was the main factor in seIect1ng 20 1in.
dqameter X60 line pipes, The pipes had the standard d1mens1ons (20 in. 0D
and 0,344 in, thick) in accordance with the American Petro?eum Institute
Spec1f1cat1on 5LX. Aga1n, after an initial cut, the pipe was subjected to
fatigue upder a "four-point” bend1ng. The same load frame as that used in
the fatigue tests was also used for static fracture tests, The geometry of the
spec1mens and the Toading frame are shown in Figures 76 and 77.

4.1 Mechanical Properties of the Material

Before testing the pipes, specimens were cut from the pipe in the longitu-
dinal direction to oktain simple mechanical properties of the material. A
sample result of'the:tenéile tests is shown in Figure 78. Even though the
material was nominally designated as being X60 the yield and ultimate strengths
were found to be.uYS = 68 ksi, oy = 82.9 ksi, Various views of the ruptured
tensile specimen are shown in Figure 79. The most striking feature of the
fracture surfaces was the severe delamination of the material parallel to
the pipe surfaces. There was also severe necking in both th1ckness and ciyr-
cumferential directions before fracture.

Specimens were also cut from the pipe in the longitudinal direction for
Charpy V-notch experiments. In these speC1mens the notch was cut in the
circumferential (or &) direction (that is, the Toads were applied in ¢~z
plane, see Figure 79). The test results are shown in Figure 80 where the solid
line represents an approximate fit to the data. The: results are characteris-~
tic of pipeline steels, name]y they indicate relat1ve]y high toughness, and
no distinct shelf values.
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Figure 77.

v

Loading frame for the pipe under
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Figure 79. Various views of the X60 tensile specimen cut frem the pipe;
r, 8, and z refer to the radial, circumferential, and axial directions,
respectively. ' : ' S
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Figure 80. Results of the Charpy tests for the X60 pipe material, )
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4.2 The Fatigue Experiments

The length and Toad point Tocations of the pipe specimens shown 1in
Figure 76 were determined largely to accommodate the capacity of the Amsler
hydraulic Jacks used for loading the specimens. The machine capacity had
to be sufficient ta produce a bending moment in the unnotched pipe near the
full yield or "hinge* value of the moment. Another consideration was the
buckling of the pipe on the compression side., Since premature elastic insta-
bility could spoil the entire program, some elementary buckling calculations
had to be made. First, the following empirical formula developed for the
elastic buckling of thin sheTls under bending was used to calculate an equiva-
fent critical stress [557:

oo = E“EEH""__'[T - 0.731 (1)1, ¢ = = R, (72)
_ -y :

where 0., s the critical stress for elastic buckling initiation, R the mean
radius, h the thickness, and E, v are the elastic constants. For the 20 in,
diameter steel pipe under consideration (72) gi&es Ocp = 500 ksi indicating
no danger of buckling according to (72).

A second calculation was made by assuning that the pipe is under axial
compression. Following [56], the critical stress for this case is given by

E(O-Gh - 10-7 B_

“cp T E (73)
1+ 0.004 =
pL

where Opy. is the proportioné]ity 1im1t.of the-materia1. ‘Equation (73) takes
into account initial imperfections (i.e., deviations of the shell surface
from an ideal circular cylinder) and assumes that the deflectipns may not be
small. Taking op = 58 ksi, (73) gives ooy & 205 kéif' | -
It then appears that the elastic buck]ing should not. pose a problem in
the pipe tests, ' “ S o IR
The first pipe contained a'circumferential'starter_nqtch introduced by a
straight saw and was subjected to cyc1ic']oad1ng unti]'the'crack became a
through crack and grew over four inches long (Figure 81a),. This was a pilet.
test to obtain some information_on the number of cycles required for crack _
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- (d) - ’
Figure 81. Fracture surfaces of the pipes. The dimensions after
fatique cracking: (a) Lo = h, oa = 4.28 in. {through crack),
(b) Lo = 0.545h, 2a = 1.688 in., {c) Lg = h, 23 = 1.77 in,' (through
crack), (d) Ly = 0.773h, 2a = 2.063 in.
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Figur‘e 82. Various views of the fracture surface of the p1pe #6,
L = (.68 in., 2a =1.97 in,
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initiation and on the crack propagation rate. The straight cut proved to be
highly unsatisfactory mosfly because of the very large number of cycles
required for crack initiation., For the remaining pipes the starter notch
was introduced by a 1 in. diameter 0.025 in. thick abrasive disk.' Twa or three
overlapping initial cuts were made to have the desired initial flaw size and
particularly to create a "chevfon” effect to sharten the crack initiation time
{Figure 81, b-d).- The pipe was then placed in the test frame with the crack
on the compression side and the notch was subjected to a precompression stress
of approximately 75% of the yield Strength of the material, The reason for
this was to further speed up the crack initiation process, With this tech-
nique the problem of excessively delayed crack initiation was entirely elim-
inated. |

The objective of the fatique tests was twofold, The first was to intro-
duce a natural crack to the pipe wall prior to the fracture tests. The second
was to try to collect some fatigue crack propagation data in shells in order
" to verify the general fatigue model., To collect fatigue crack growth data
we had to again rely on program loading and crack front marking technique
(Figures 81 and 82). The markings were obtained by reducing the amplitude
of the cyclic Tload to approximately one-fifth of its maximum. This was a
precaution against a premature net ligament rupture. The Timited data points
which were obtained by this technique are shown in Figure 59 superimposed
on the results obtained from plates and single edge notched specimens, The
fatigue tests were perfonned at a frequency of 250 cycles/min, and at the
load ratio_Pmin/Pmax of approximately 0.6. The stress intensity factors used
in analyzing the data was calculated by using the technique described in Appen-
dix B and the actual pipe and crack dimensions, Assuming that the materials
X70 and X60 have similar fatigue ckack growth characteristics, Figure 59 .
shows that the fatigue crack propagation rate in a pipe with a part-through
- crack can be predicted from the data obtained by using simpler specimens pro-
vided the stress intensity factor for the pipes is available, '

4,3 Fracture Tests

Following each fatigue experiment the transverse loads P were slowly
increased in order to observe the development of ductile fracture in the pipe
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(Figures 76 and 77), The fracture tests were carried out by using the same
hydraulic jacks and the same load frame as used in the fatigue experiments,
Strain gages were mounted at various locations on the specimen to monitor the
deformations in the pipe and the relative magnitudes of the loads applied

by the two jacks. A precalibrated clip gage was used to measure the crack
mouth opening displacement, The outputs of gage 1 and the clip gage were
connected to an x-y recorder for continuous recording of the transverse load
P vs. the crack opening displacement COD. An eight channel oscilloscope was
used as a back-up to the x-y recorder and to store the information on a disk.
A digital data acquisition system was used to record the outputs from the
strain gages at certain values of the load. In order to detect the load
level corresponding to the initiation of net ligament rupture, a photo cell
was installed inside the pipe opposite the crack, the pipe was darkened by
blocking the ends and the Tight was directed at the crack from outside.

Except for the initial fatigue-sharpening the cracks, the experimental
procedure followed and essentially the results found in this study are quite
similar to those reported in [23] by Wilkowski and Eiber. As in [23], the
loading téchnique used in the present experiments was basically "displacement-
controlled". This means that the experimental P vs. COD curves go through a
maximum and then P starts decreasing as the Toad point displacement and COD
increases. In a "load-controlled" experiment the maximum P thus attained
would have been the fracture instability load.

Altogether six pipes were tested. In two of the pipes the fatigue crack
was permitted to propagate through the:entire pipe wall (Figure 81 a and c).

In the remaining four some effort was made to have a part-through fatique

crack of various specific dimensions. The experimentally obtained P vs, COD
curves are shown in Figures 83-95. Unlike some of the results given in [23]
and except for pipe #2, the curves are all "smooth." That is;.there‘were no
"kinks™ in the curves which would have been an indication of "fracture initia-
tion" or "net ligament rupture.” The reason for this is believed to be fat1gue :
sharpening of the crack prior to static loading, Pipe #2 had a relatively
short and shallow fatigue crack (2a = 1,688 in., Lo/h = 0.545) (Figure 81b),
In this case the pipe "failed" as a consequence of structural instability
(i.e., buckling) rather than fracture instability. After the test the crack
region was cut out and fractured by "bending" it. The resulting fracture
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- Figure 83. Transverse load P vs. COD for pipe #1.
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Figure 84. Transverse load P vs. COD for pipe #2
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Figure 86. Transverse load P vs, COD for:pipe #4
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Figure 87. Transverse load P vs. C0D for pipe #5
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Figure 90. Normalized COD vs. moment ratio for pipe #
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Figure 93. Nor'mah’zed COD._vs. moment ratio for pipe #4
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surface in the net ligament is shown in Figure 81b (which, as expectéd;‘has
no resemblance to that of the remaining pipes), There was no evidence of
crack growth in the pipe wall during the Toading process on the test bench,
Severe nonlinearity obsepyed in Figure 84 in the P vs. COD curve prior to
reaching the peak load is an indication of plastic defdrmations in the crack
kegion,-particu?ar]y,'in.the net Tigament, The Joad fell off sharply upon
reaching the_&trqcpura1 instability value (Figure 84). The actual develop-
ment of the buckling of the pipe wall may be seen in Figure 96,

o s'poihtediout;eér1ier, the elastic insfébilfty"fh the‘pfpésfwas not
a likely mode of failure, that is, the calculated instability loads were
much too high for the material strength to sustain them. However, as seen
from Figure 96, the instability observed in the pipe #2 is inelastic buckling.
Even though the peak load in the pipe #6 was the same as that in #2, there
was no visib]e‘sign;of,bﬁckling‘in'#ﬁg This may be due to tﬁé compliance
change in thé_pipe‘#ﬁ_resu1ting from the prbpagat?on of the through crack on
the tension side and perhaps more likely to the'hfghly imperfection sensitivity
of the buckling process. An-important factor in the 1neTaStic buckling of |
Pipes in the present study is the nearly rﬁgid saddles used to transmit the
load from the hydraulic jacks to the specimens. Thepe was indeed an indjica-
tion of slight buckling initiation in all pipes tested. They were all on one
side and very near the saddle. The local "bending"'in=the-pipe wall near and
at the Teading edge of the saddle seems to be one of the main factors for the
reductien in'the 6bserved instability load. The degree of buékTing 1nstabiTity
was also responsible for the difference in behavior of the measuréd Toad vs.
COD curves obtained from pipes #4 and #5 which had nearly identical initial .
part through_fatigue'cracks. The buckling in the pipe #5 started at a smaller
COD value than in #4 which Consequent]y resulted in the reduction of the load .
at a comparatively smaller COD value (Figure 89), To give an idea about the
comparative behavior of the measured P vs, COD curves obtained from various
pipes they are reproduced in Figure 89 ih'superimposed-form. 'Except for'the
pipe #1 which had a relatively Tong initial through crack (and to some extent
#3 which had an initial through_crack), the elastic behayiors (that is the
initial parts_of'the curve) in all pipes seem_to be quite simi]ar,IWhereas
buckling played a major role in the inelastic range. Of the six pipes tested
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Figure 96.

.

Buckling of the pipe #2 on the compression side.




only in ene (pipe #6) there was no evidence of any sturctural buckling on the
compression side. In this pipe after the net 1igament rupture the through crack
continued to grow in a slow stable fashion. At some point the clip gage ran out
of space and fell and the test was terminated. When the test was stopped the
crack {(which had an original length of 1.97 in.) was approximately 7 in. long.
In the remaining pipes there was very small stable growth of the through crack.
In these tests generally the load started to fall because of structural {i.e.,
buckling) rather than fracture instabi1ity; '

For the pipes tested, Figures 83-88 also show the load vs., COD relation-
ship. obtained from thé eTastic—p]dstic analysis described in the Section 4.3
of Part I of this report (see, also, Appendix H for other results). ' For part-
' through cracks shown'ianigures 86-88 four calculated curves are given: one
for ‘the part-through crack with the profile as given by the fatique experiment,
the secsnd fer the corresponding through crack and the third and fourth for
intermediate net ligament thicknesses. For 3 given COD the curve based on the
fatigue crack;has the highest and that based on the through crack the lowest
values of the.loéng. The curves corresponding to the intermediate crack
depth.fa11,begwégn;these two Timiting values. The "net Tigament rupture" point
(er the Tload correéponding to the "through crack" fnitiation) Pr s marked on
the éxperimehta]lcurve (which was obtained from the photocell). Cléarly, for
Toads greater than PR’ the crack should be treated as a through crack. The
initial linear portion of the curves correspond to elastic loading. Between
the load PN corresponding to the plastic necking or tearing initiation of the
net ligament and PR corresponding to total net ligament rutpure, intermediate
~ values of .net Tigament thickness must be used to obtain the theoretical P vs.
COD curve. : . _

Again, it should be emphasized that the ductile fracture process invelving
relatively thin-walled structures and large fiaws.is_very highly geemetry-
dependent and cannot be characterized by a singie parameter. The empirical
or seméuampﬁrica] models designed for thfs purpnse would génera?]y be_satisfac-
tory enly for the geometry they were developed. The simple idea underlying
the curvenmt study is that if one can define or designate a certain parameter
which is an adequate measure of the intensity of the applied loads and of the
severity of the flaw under conditions ef large scale plastic deformations,
and the value of which'may not be highly semsitive to the details of the
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elastic-plastic model assumed for the purpose of calculating it, then the.
asymptotic behavior of this parameter may be used te estimate a gross sta-
bitity load for the flawed component. As argued in the previous section COD
comes péfhaps closest to fulfilling the conditions of such a parameter.

The asymptotic behaviors of the experimental and the theoretical P vs,
COD curves are expected to be different. The experimental curve is obtained
from a displacement controlled test and hence exhibits a maximum for the load
(Pmax)'
tote (P = Pmax)‘ These asymptotic values of P are the theoreticq] estimates of
the instability load in each pipe. For the six pipes tested Table 4.1 shows
the comparison of measured and estimated instability Toads.

The theoretical COD curves on the other hand possess a true asymp-

Table 4.1 Experimentally measured and theoretically estimated
fracture instability values of Transverse load P in pipes.

Pipe_# : - ‘a - Lo/h (Pmax)exp : (Pmax)Theor.
| (kips)
- 1 1 4.280 1.0, 99 91
(*) 2 1.688 0.545 109 112
3 1.770 1.0 106 103
4 2.063 0.727 | - 105 102
5 2.063 0.773 106.5 | 162
6 . ] 1.970 - 0.680 109 105

(*) Inelastic buckfing, no fracture.
‘ | ‘ ] _

An alternative way of presenting the results may be seen in Figures 90-95
' whefe_the-normalized oD (with respect to acF/E, a, op and E being the ha1f
crack length, the flow stress, and the Young's modulus) is plotted against the
moment ratio M/Mp. Here M is the moment applied to the pipe and Mp is the
fully p1ast1c {or hinge) value of M which is g1ven by

x R+h/2 | 4°F n? h 3 '
= ) 23 = m - L - :
25, I r s1nedrde - — [(R +.2) (R 2) ]_- (24)
o R-h/2 -

MP
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fn all pipes“tésted for ductile fracture, at peak value of the 1oad the
region of the shell containing the crack was fully yielded, and after the
tests were terminated permanent deformations in the form of ‘gross bending could
be observed in all pipe specimens. However, the elastic plastic analysis of
the crack problem in the pipe was still valid. Considered as a beam, the p1pe
still had a very 1arge "elastic core" after the extremities were p]ast1ca11y
"deformed Thus, unlike the plate problem under similar situations, there was
no "net section collapse". Also, in the elastic- -plastic shell analysis the end
points of the plastic zone in the plane of the crack extended into the elast1c
region in the pipe. '

Originally, it was thought that the net 1igament would suddenly become
unstable and one may have some dynamic effects on the tear1ng of the resu1t1ng
through crack However, it now appears that in the type of problems under
consideration the tearing or necking- tear1ng process in the net 11gament is
gradual and, for the circumferential cracks, stable. Therefore, it does not
seem to be pkactical to.talk about a "net ligament instability" Toad. Since
the development of the through crack and its initial growth are stab1e, the
only meaningful instability load is that of the through crack.

The main conclusion of this study is that in shel] structures conta1n1ng
a re1at1ve1y large initial crack generally the fracture instability load is
highly dependent on :he overall mechanics of the problem (i.e., the geometry
and loading conditions) as well as on the fracture resistance character1st1cs
of the material, and a properly selected and fairly accurately ca]cu1ated para-
meter such as COD may be used to estimate the 1nstab1]1ty load. By exam1n1ng |
the results given in Figures 90-95 and in Table 4.1 it may be observed that
the estimate which may be obtained from the current analysis appears to be
sufficiently ¢ 1ose to the 1nstab111ty load and furthermore seems to be consis- -
‘tently conseryat1ve One should also remark that if the tests were performeq
under "load- contro]Ted“ conditions, qualitatively the exper1menta] P vs. COD
curves wou]d have been very similar in behavior to the theoretical curves, in
that they woqu not have had a maximum and would have been asymptot1c to

p = ma Tines.
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4.3 Examination of Fracture Surfaces

As in plates containing a surface crack, in fatigue-cracked pipes sub-
jected to fracture the evidence of considerable necking was observable in the
net Tigament, particularly from the inside surface of the pipe opposite to the
crack. The examination of the two halves of the fractured specimen indicated
that after the deveiopment of the stretch zone the crack started along the front
‘and ‘sTowly propagated in thickness direction. The stability of this phase of
the ¢rack propégation was stable was evident from the fact that prior to and
during the net 1igament rupture (initiation of which was detected by the photo
cell} the Toad was still on the rise. The direction of the crack propagation
- was perpendicular to the pipe surface. This may easily be seen from the fact
that in the net ligament region the two halves of the fractured pipe wall were
perfectly symmetric with respect to the original plane of the crack. There
is every indication that upon the initiation of ductile tear the crack profile
near and at the leading edge maintained its (synmetr1c) V shape as it propagated
through the net 1igament. ‘

One of the basic microscopic fracture mechanisms that almost always pre—
sents itself in cases of ductile fracture is microvoid coalescence. The stress
~ induced fracture and, in some cases, complex dislocation interactions lead to
the formation of microcracks or pores within the stressed component. As the
stress level increases these voids grow larger and start cealescing to form a
broad crack front. There are, roughly speaking, three main processes for void
formation and coalescence which depend on the stress state existing in the .
component. Under simple uniaxial loading conditions, the microvoids will tend
to form in association with fractured particles and/or interfaces and grow |
out in a plane generally normal to the direction of the applied stress. The
resulting "equiaxial dimples" are believed to be related in some fashion to
the fracture energy. However, when the failure is predominant1y'ihfluenced by
shear stresses, the voids that nucleate in the marner cited above grow and .
subsequently coalesce along planes of maximum shear stress. Consequently,
these voids tend to be e]ongated'énd result in the formation of parabolic
depressions on the'ffacture surface. Finaily, if the state. of stress is that
of combined membrane and bend1ng stresses, again the voids would be elongated,
pointing back ‘at the origin of the crack. o
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Net Ligament Tear -

Circumferehf{oi Growth (delaminations)

-

: Figurg-97. A skgtch of the fracture surface of pipe #G‘Showing'the”
]ocat1ons-of various specimens used in the scanning electren microscope.
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From Figure 82 one may easily distinguish three different zones on the
fracture surface, namely the fatigue crack, net Tigament rupture, and the
through-thickness shear fracture of the pipe wall. Even though both the net
Tigament and the pipe wall were undergone duct11e fracture, their appearance
were qu1te_d1fferent. The net 1igament appeared to have the structure of a
fine-textured dimple fracture and had no signs of delamination. On the other
hand, the through-thickness fracture beyond the crack tips had much coarser
surfaces and had the appearance of shear fracture of a laminated material with
clearly observable delamination cracks (Figure 82, see, also, Figure 79b).

For a closer examination of various fracture surfaces photomicrographs were
taken at various locations in pipe #6 by scanning electron microscope (SEM).
Figure 97 shows a sketch of the fracture surface of the pipe #6 which indicates
the locations of the samples (601, 602, 603, 604) used in SEM. The symbols
r, c, and c.g. shown in Figures 97-108 refer to the (outward) radial, circum-
ferential, and macroscopic crack growth directions, respectively. The views
of the fracture surface opposite to ‘that used in SEM study are shown in
Figure 98. The braze shown in Figure 97 which may also be seen in Figure 98a
was part of an effort to use an acoustic emission device for detecting the crack
initiation. This attempt did not prove to be very're1iab1e and successful.

F1gures 99 108 show SEM photomicrographs of the four different samples
{designated by 602 602, 603, and 604 in Figure 97) taken at various magnifi-
cations, but mostly at 1000X. The photom1crographs of the sample 601 are
shown in Figures 99 and 100. Figure 992 shows the view from a "va]]ey"'between
. delaminations where the voids tend to be more equiaxial. As one climbs along
the side of a qelaminatidn the shearing effect becomes more visible and the
dimples tend to be more elongated (Figure 99b, see also Figure 100 a and b).

FTgukes 101-103 show various views of the sampel 602. Figure 101 shows
Tow magn1f1cat10n photom1crographs of the whole pipe wall and a portion of the
peculiar band which was deve]oped dur1ng the fracture process In the section
'_ of the pipe wall shown in F1gure 101a the regions of machined surface, fatigue
crack, and the ductile fracture surface including the delam1nat1ons and the
"band" are clear1y visible, The band is also seen in F1gure 101b. Figure 102a
shows a photomicrograph of the fat1gue surface. The stretch zone adjacent to
the fatigue surface- and the tran51t1on reg1on (to duct11e fracture) are shown
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(b)

Figure.98;._Views of the fracture surface of pipé'éﬁ opposite to that
used in the fractographic study. - _ .
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in Figure 102b. Figure 103a shows a typical photomicrograph of equiaxial
dimples corresponding to the initial phase of the through-thickness fracture.
A higher magnification view of the "band" which may be observed in Figure 107
is shown in Figure 103b g Note'that'the same band (this time in light color)
- s aTso visible near ‘the crack tips in Figure 82a and c. The band is believed
to be due to the interruption of the test momentar11y for manual readjustment
of- the 1oad1ng Jacks('). This may have caused a crack closure, resulting in
smear1ng" or "f]atten1ng” of the dimples. It is, nevertheless, clear that
the bands seen in F1gure 82 along the entire thickness of the pipe correspond
to the crack front at a particular time during the propagat1on of the through
thickness fracture.

The series of photomicrographs‘shown in Figures 104-106 are taken from
the sample 603. Figure 104a shows fatigue.sqrface'and part of the stretch
zone {marked by A). The stretch zone and the beinning of the tear region .
are shown in Figure 104b. 'Views further into the tear region and closer to the
back surface are shown in Figures 105 and 106. ~The orientation of the dimples
in these figures indicate that the direction 6f the crack pfopagation was
radial. On the fracture surface there was no evidence of shear fracture in
the net 19 gament pbOpagating in circumferential direction.

Figures 107 and 108 taken from the braze area (604) at various magnifi-
cations. From the top toward the bottom of the figure the three regions
seen in Flgure 107b to correspond to the flat fracture in the braze material,
the fatigue crack propagation in the pipe material, and the ductile fracture
zone.  The nigher magnification photographs of the first two, namely the
flat fracture surface in the braze and thelfatigue surface in the steel are
shown in Figures 108b and 108a, respective1y The initiation of Tocal brittle
fracture at the braze and the subsequent fatigue crack propagation in the pipe
:wa1] shown in Flgure 108 1nd1cates the 1mportance and the possible role of for
example, are burns in 1n1t1at1ng surface cracks in pipes and other we]ded
'-structures

(= ) The drop of the load P to zero and relozding is not shown in Flgure 88.
F1gure 88 was reproduced from the oscilloscope record in which unloading and
loading was ignored, However, the correspornding trace in the x-y recorder
shows that the un]oad1ng and loading were perfectly elastic, followed the
same strajght line {(in P vs. COD plane), and there was no s1gn of any d1scon—
tinuity or kink in P vs. COD record
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It may be pointed out that the differenge between the through-thickness
tear in the net 1}gament and the circumferential tear in the pipe wall is purely
a matter of stress state and geometric constraints. These are very highly pro-
nounced de]amihations in the circumferential tear region initiating from the
impurities in the stell, whereas the net ligament is completely free of such
delaminations.
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CONCLUSIONS

The primary objectives of the present research program were (a) to develop
the methodoTogy and‘the.necessahy analytical tools for application to the prob-
lems of fatique crack propagation and ductile fracture in pipelines containing
circumferential flaws, and (b) to'carry out a properly conceived expebimentaT
program in order to verify the validity of the theoretical models and to
establish the limitations of such models. From the outset it was useful to -
separate the two phases (namely, the fatigue crack growth and the ductile
fracture) of the failure process. They are both equally important. To study
the fatigue crack propagation phenomenon in any structural component for any
crack geometny and to perform a predictive ana1ysis the information needed is
the f011owing the cyclic nature of the applied loads as a function of. t1me,
the baseline. fatigue crack propagation data'for the particular material and
the environment, and an accurate know?edge of the stress intensity factors
at the crack front. _ '

In the present study a great deal of analytical éffort was devoted to-
develop the methods for an accurate calculation of the stress intensity factors
in pipes and flat plates containing a through or a part-through crack. This
research was necesary for providing the tools in fatigue studies. It also
formed the basis of the theoretical work for the elastic-plastic problem in
pipes. | S

The experimental fatigue work on pipes as well as on the flat plates showed
~ that the fatigue crack propagation rate in such structures can indeed be pre-
dicted from the baseline laboratory data obtained for simple standard speci-
mens provided a correct estimate of the stress intensity factors is avajlable,

In studying the ductile fracture of the three basic geometries considered,
namely the single edge notched specimen, the plate with a surface crack, and
the pipe with a circumférentia] crack, it was assumed that the part undergoes’
~Targe scale plastic deformations.- The crack ‘opening and the crack tip opening
disp]acements (COD and CTOD) were used as the correlation parameters. in the
analysis of the exper1menta] results. The theoretical model developed for
this purpose was based on the shell theory and elastic-plastic anaiysis. The'
ane]'may be used in estimating the fracture instability load in pipes and flat
p]étes It may also bé used, with the critical crack tip opening concept, to .
obtain a- conservative estimate for the load level initiating the ductile
fracture. '
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The particular X60 line pipes which were subjected four point bending and
- which contained a part-through circumferential fatigue crack on the tension
side proved to be very highly resistant to ductile fracture. Even though it
was possible to rupture the net 1igament (i.e., the pipe wall under the crack)
in all but one of the pipe specimens, the gross failure under gradually
increased static bending occured mostly as a result of inelastic buckling of
the pipe wa11 on the compression side rather than fracture instability (i.e,
unstable crack growth) on the tension side. The one pipe specimen in which the
- net ligament did not rupture and in which there was severe buckling on the
compression side contained a felative?y shallow fatigue crack. In one specimen
there was no sign of buckling and the structural failure resulted from fracture
instability. 1In all cases the theoretical model gave conservative estimates
for the fracture instability load.

-The report contains the analytical details of all the models developed
and gives extensive calculated results for standard line pipes with a circum-
ferential part~through crack which may be used in fatigue crack growth and
ductile fracture studies. Most of the analysis and the results are given in
the Appendices,
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APPENDIX A
CYLINDRICAL SHELL WITH A CIRCUMFERENTIAL THROUGH CRACK

1. INTRODUCTION

‘The aim éf this Appendix is to give complete details of the solution of
a c1rcumferent1a11y cracked cylindrical shell problem by taking into account
the effect of transverse shear deformat1ons A higher order shell theory com-
‘patible with the number of 1ndependent boundary cond1t1ons is used in the
analysis.

2. FORMULATION OF THE PROBLEM

In this problem the general shallow shell equations deve1oped in [1]
for an isotropic medium will be used. However, as shown in [2] and [3]
for the classical shell theory, in this case too it can be shown that the
related differential equations of the orthotropic she]]s can be factorized
and reduced to thq equat1ons of 1sotrop1c she]?s if one assumes the material
to be "spec1a11y orthotrop1c"

Referrtng to Figure 12 and following [1] the equ111br1um equations for
a shallow shell may be expressed as

N.. .=0 (2.1)

1353
Vit (2 ]N1J).J q(x].xz) =0 ,. (2.2)
Moo= V=0, (91,2, §=1,2) (2.3)

13.J

where N MTJ’ and V , (1,3=1,2) are, respecfively, membrane, moment and
transverse shear resultants, and the 1nd1c1a1 notat1on and the summation
- convention are used. The cempenents of stra1us are. g1ven By -

Tty o 2z g1 G2 ()

i ,J J AT, »J

where U], U2 and W are,’respective]y, X1, Xz, and X3—components of the
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displacement vector, and the function Z(X],XZ) giving the equation of the
middle surface is known. Let 81 and Ba be ‘the angles of rotation of the
normal to the shell surface. The {transverse) shear strains may then be
expressed as | | -

i=1,2 . , | (2.5)
With the Hooke's liw

€

i3 = sk’ | | (2.6)
and_the relations giving_Mijvand Vi in terms of B; and 0,5 respectively,
the formulation of the problem would be complete, technically the ten equa-

tions (2.1) - (2. 5) accounting for the ten variables €50 Bi» 85 U;» and W.

First, e11m1nat1ng Uy and U, from (2.4) one obta1ns the following
compat1b111ty equat1on

+ Z

icie(Cig e F 2 i) 7O - - - (27

where Cr is the permutation symbol(*). Next, defihing the stress function
F(X1;X2) by ‘ '

M3 T ikl ke - (2.8)

it is seén that (2.1) is satisfied and (2.2) and (2.7) reduce to

+7

Mij,ij ,ijeikesz,kz + q =0 | (2_9)

eimejhekpezgaijkiF,mnpq + hZ'1J 1kele e =0 | (2.10)

Even for simp1e'she11 geometries for anisotropic-materials the

G2+ B T 1% gy




differentia1 equations are not tractable. However, as in [2] if one assumes
a special orthotropy, the related differential operators in these equations
can be factorized and the problem can be made analytically tractab]e Let
the mater1a1 be orthotropic and the stress strain relat1ons be

€ ='—~1—-(N -uﬂ ) =z——-N12
1T 7 hEy Y M1~ %127 0 512 T 7RG ’ . _
1 12
o o v (2.11)
ey, =g (Nop = uoliy) e = 22 |
"2z RE, V2TV e T E

In this case too the following is the cond1t1on for the factorization
of the operators:

'EE,
12 = e {(2.12)
: 1+ Yy Vo :

2
The material satisfying the condition (2.12) is said to be “specially ortho-
" trepic. It has been shown that for certain orthotropic materials the value
of the shear modulus calculated from (2.12) and that measured experimentally
are very nearly the same and consequently with the assumption of special
orthotropy, the analysis can be simplified guite considerably [3]. If we
new define - -

BB . v= Ay s (5/E)" (2.13).

‘the stress-strain relations (2.11) become

_1 Mo by
R A Al P UL Pl Tl PR

1

' = o {2 - : .
€22 % hE (c N_22 \JN”) . - | (2.14)
From the 1inear thickness variation of the stress cempanents‘cij one obtains
| | ) | D!]—vz : '
= 2 P
My = DleTsy 1t B p) s My T ey p t e
iy - D(vey 1 * By p/c?) , D = En?_ R (2.15)
22 YF1,1 7 P22 ’ 12(1-V7) - S

: "3 :




Also, assuming a.]inéar transverse shear stress-strain relationship, one
finds ' '

L)

=1y =Sy

HeEms'1 c %27 (2.16)

where B is the effective shear modulus. Referﬁing to [5], it will be
assumed that '

6.5 E (2.17)
R T B R2OW)
Defining now the operator
2 - 32 32 : p
VC C -é-i.‘?‘- + Eﬁ%’ , (2.]8)
equations (2.9), (2.10), and (2,3) may be reduced to
202 327 3% _ ., %1 32, 3% @2 |
VZVIF + hE(Sx7 3%Z " ° 3% 5, X,3K, | oK% axﬂ) » (2.29)
1 772 1 1 2 2
27 32 32z e
.Dv2v?—w - (1 - v )(a -2
Bh xl ax% 3_).(.1 aX, ax.] X,y
+ gyg‘gfg)F = (1 - gy vela » (2.20)
I RS YRR O M e 1 | (2.21)
T X hg ~'¢c1 2¢ 3X, ‘a3X ax ’ )
| 1 2 %% %
3B aB o
W _ D re2 1+v 3 12 -
B * 3%, T B (728, *o 7 57 Y, w0l (2.22)

Equations (2. 19) - (2 22) provide the formulation for an arb1trary shal1ow' :
she11 in terms of the unknown functions F, W, Bys and By -

Now Tet us assume that in the domain of interest the curvatures of the
shell are constant. Then in (2.19) and (2.20) the terms involving Z may be
replaced by ' '

3% 1. 322 1 327 1
N T S (2.23)
aX] R1 ax2 _ R2 3x13x2 R12 _




Also, following [4], if one introduces the dimensionless quantities given
in Appendix Al,equations (2.19) - (2.22) may further be simplified as

'4 } 1 > 52 ) 32 2 32 _ ) .
T3z Y gy - A axay”ztﬁ?)“'o N (R

2 52 2.
T W10 O0F 5 - 0, o+ 18 e

= A%(1-x72) %q , (2.25)
» 3B, 98, |
g2 LW I 3 TPy T
(1‘ eV )Sx 4 X - K2 3y (ax By) . (2.26)
a8 ag
ey w T+v 3 X _ Yy
(T '3 )8y + 5y e e (ay Bx) . _ (2.27)

The constant a used in Appendix Alto normalize various quantities is a charac-
teristic length parameter in the shell. Usually in crack problems the shell
is assumed to be "infinitely Iarge“ and a is taken to be the half crack
1ength

Def1ning'nbw a new function @ by

BB aB

Q(X,y) = a_y- - *'ﬁy' . _ (2.28)

equations (2.26) and (2.27) may be expressed as

: +
B =xv2g - M Ltv 20 L

3x 2 3y
(2.29)
R =«ylg . M 1+ 20
%’_ K‘VBy 3_y+K28x J
and, it may easily be shown that
a%g, 9%
2 = BQ Y
VB ay 3)(2 3xXay -’] _ _
32 > _ ; . - (2'30)
R o o _

2
aq 3 B)(

8
Ty ax X3y ayé ’J

'vls
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Alsg, if we define the function v by

o a8, 0B | |
b(x,y) = {2+ 75? - W, . (2.31)

from (2.29) and (2.30) we obtain

_ 3y, l-ovae
Bx " T 7T 3y

T T (2.32)
TR
In1(2l32) e1iﬁinating Q.énd then using (2.31) we ffnd
Kv2¢;_ b -w=0 . | . (2.33)
Siﬁilak1y, eliminating w, (2.29) yiélds
c l%X-VZQ -Q= 0: . | ' . ..(2,34)

The solution of the shell problem must then satisfy the differential equa-
tions (2.24), (2.25), (2.33) and (2.34) and all the necessary boundary con-
ditions. ' '

3. CYLINDRICAL SHELL WITH A CIRCUMFERENTIAL CRACK

Consider now a cyTindrical shell containing a circumferential through
crack of length 2a shown in Figure 11. In this case M=0 RPN and if
~we further assume that q =0, (2.24) and (2.25) become

2 .
v - 0,/A)2 =7 =0, o (3.1)
) | . R
Thw + (A12)2(1-KV2) g;%- =0 . _ (3.2)

Eliminating ¢, from (3.1) and (3.2) it follows that
‘ .u tw A '
Tholw + 12(]-KV2) —a-i':;'_x 0 . : (3-3)
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The problem will be solved by using Fourier transforms. It will be assumed
that through a prOper superpos1t1on the or1g1na1 shell problem has been re-
duced to a perturbation problem in which self—equ111brat1ng force and moment
resultants actxng on the crack surfaces are the only nonzero @xternal loads
(hence, the assumption g = 0). Thus, in some neighborhood of the crack in
which the stresses are expected to be nonzero, the transform of w and its
1nvers10n may be expressed as

f(x,a) = fww(x.y)eiaydy s (3.4)
w{x,y) =-§; fnf(x,a)e-iayda . o (3.5)

- OO

Substituting from (3.5) into (3.3) one obtains an 8th order ordinary linear
differential equation in f. Looking for a solution in the form f = R{a)exp
(mx), the characteristic equation of the problem is found to be

8 ;'ln A;+ 4a2)mé + (6a* + xg xxgaz)m“
- 4abm2+a8 =0 | | (3.6)

If we define

- p=me o~ g2 B | _ {3.7)
equation (3.6) can be writfen in terms qf p as follows:

| p‘* - x;‘épi" + A5(1Q2_,<a2)'p2'+ 23(202 - ca)p + Aguf* =0 . .(3-.8:')
- It should be emphasized that the roots of . (3 8) are in general.coﬁp]ex and,
| of course, are not known as a function of « in closed form.  Appendix A2
describes a convenient procedure for solving (3. 8). After so]ving_(B;B)_.

~let the roots of (3 6) be ordered such that

Re(mj) <0 , n5+4 = -Mys =1,..,4 | ' - (3.9)
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~ The solution fx,a) df.the:resu1ting,_ordinary differential equation sat-
isfying the regularity conditiohs at x = ¥« may then be expressed as

P : . .
1T Ri(e)exp(mix) , x>0,
T 3= J J
flxsa) = < 4 R (3.10)
F ¥ Ri(a)exp(m.x) , x<D '
if we lét
#{x,y) =-§; J g(x,a)e” ¥%da (3.11)

X

from (3.1), (3.2) and (3.10) we find

' Y _
J(AZIA)Z § (mj/pj)sz(a)exp(mjx) , x>0 ,

g{x,a) = . (3.12)
2 2 :
t(lz/K) ; (mj/pj) Rj(a)EXp(ij) . %<0
Similarly, assuming
Co(x,y} = —2};]‘ h(x,a)e-i‘yada ' . | (3.13)
from (2.34) we obtain
A1(a)exp(r1x) , x>0 o
h{x,a) = < o ' (3.14)
LAz(a)exp(PZX) 3 x<0 ,
where
L 2 s . 2. 2 s ) ‘
Y'] = -.[(12 + _\;(—1-—\))_] , Y‘2 [Cl + m] . | . (3.]5)

Also, let us assume that
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p(x,y) = 5%; o(x,a)e” Yo : o (3.18)

i3

1t can be shown that the remaining differential equation (2.33) is satisfiad
if 6 is. assumed to be '

. -~

4
8{x,a) = 8 R.(a) ‘ | - (3.17)
J o=l exp(m,x) , x<0 ' _
SKPj-] J

The expressions given by (3.10), (3.12), (3.]4), and (3.17) satisfy
the differential equations of the problem(*). If. one now determines the
arbitrary functions Ri(a), (§=1,..,8) and Aila), (1=1,2) in such a way
that the boundary conditions of the problem are also satisfied, one then
has the solution. | | | |

4. BOUNDARY CONDITIONS

"As mentioned earlier, the only external loads in'the'prob1em are the
self-equilibrating force and moment resultants on the cragk surfaces. These
forces can be decomposed in such a way that in solving the problem one needs
to consider (with respect to x =0 plane) éither:symmetric or antisymmetric
Joading'onTy;1 In these two cases the following coenditions of symmetry will
'be'satisfied: | '

Nex(Xs¥) = N (-x,y) Ny (Xa¥) = N (-xy)

MXX(X"Y) = Mxx(-x,Y) 3 Mxy(x§Y) 'Mxy.('x:'y.) ] | . (4-])

Viloy) = Vo xy)

)1t should perhaps be pointed out that (3.17) is a solution satisfying
the differential equation (2.33), and is not the most general solution.
However, with (3.17), since the solution thus found satisfies all the dif-
ferential equations and, as will be shown, all the boundary conditions,

it must be the so]ution.of_the physical problem.




for the symmetric prbblem, and

Hj

Nexoy) = =N (xay) 0 Ny OGy) = N (xy)

MecXoy) = M (axay) o M (0y) = M () (4.2)
Vx(‘-xa.y) : vx("x’y) »

for;the antisymmetric problem. One may note that (4.1) and (4.2) are valid
for all values of x and y, and in the odd functions the discontinuity at
x=C may be allowed only on the crack sUrface, outside the crack all these
fundtions (1ndeed all field quantities) must be cont1nuous It is there-
fore clear that in so1v1ng the problem one needs to consider only one half
of the cylinder, say x>0. Symmetry conditions similar to (4.1) and (4.2)
are, of course valid for all the rema1n1ng field quant1t1es Thus, there
are only five unknown functlons R]’ ,R4, and AT which may be determined -
from five cond1t10ns specified at x=+0.

Consider now the symmetric problem for a c1rcumferent1a]1y cracked
she]l Noting that befbre the superposition which Ted to the perturbation
problem the crack surfaces were free from all external loads, and since
outside the crack all quant1t1es are cont1nuous, from (4.1) it may be con-
cluded that

Ny (0s¥) =04 M (0y) =0, V(0,y) =0 , -=cy<e , (4.3)
and N (+0,y) and M__ (+0,y) are known functions in -l<y<l. The problem is
then a mixed boundary value problem. -Using (4.3) three of the five unknowns
(R 10+ R4,A]) can be eliminated. The remaining two may be determined either
from a system of dual integral equations or a system of singular 1ntegral
equations ar1s1ng from the mixed boundary conditions.

In terms of the normalized quantities the re]evant farce and moment

resuTtants are given by

2 ' 2
N, =8, 0N =2
XX . ay? Xy 3X3Y
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M d X

!,
L

xx - T Vax o Y ay !
M - a ‘!-\J (an BB‘!)
xy hAa® 2 ‘Yay @ 3x * s

V. a2 38

X W X
5y - 3%y | 3y o (4.4)

Using (4.4) and the results obtained in Sections 2 and 3, for x>0 these
quantities may be expressed in terms of Rys.-sRy and ‘A'1 as follows:

o ) Y m.
Vo) = - 2= [ [P a2 T Gh Rytade Y 17 (4.5)
Lo LN
Y m.x s :
. 7242 3 " Tya
Nyliay) = 25 | 1D a] o Rylale Y 17 e
b m2-ved
.1 _a J° =1ya
| Mxx(Xa.Y) " o e [m § E%;_—-l- Rj(a)e e do
Ry - X _;
- Eiliﬁl— fﬁiar1A1(a)e 1 e 1yad€] . {41
_ _ 1 a{l-y ~ameR.(a) me -iya
. Mxy(xs.y) " T Px T nAR N 13% -J“"'J“"—" Kqu-l e d
1 oac (=92 (12, 2 "X iyq |
o s T B (u. +r])A](a)-e e da s (4._8) .
] 'x -1
2 Vx(x,y) -- -ﬁf fa y —J—+ Ryade I e o
: ‘ ry X
-?-—xl—-‘%f 2A() Verlveg, .~ (4.9)

We will attempt to solve the problem by reducing it to a system of «

~ singular integral equations) The problem is “symmetric" and the "normal" .

membrane and rnornent resultants are specified on the crack surface. There-
fore, the natural “dual®’ quanutles which shou1d be cons1dered as the new

unknown functions ar‘e



27 U0 = G ) E e (0y) = Gyly) (2.10)

corresponding to the "normai" displacement and rotation on‘thescrack surface,
respective]y In {4.10) the derivatives of'the dual quantities are used to
make them dimensionally consistent with N and M, x and in order to insure
that the resulting integrat equations w111 have Cauchy type singularities
[6]. The mixed boundary condition along x =0, -w<y<= may now be expressed
as follows: | .

lim N (xy) = Fly) -l (4.11)
X0 ' '

Vi M (Gy) = Fly) » <leyd (4.12)
x40 ‘

u(0,y) =0, <yl : (4.13)
Bx(O,y) =0 , 1<|y]<_m . - N (4.14)

Referring to the definitions (4.10) and the physical conditions (4. 13) and
(84.14), it is clear that the functlons G] and Gy must sat1sfy the follow1ng
single- va1uedness conditions: '
. 4 . _ o _
[ama =0, [emae=-0 . (4.15)
-1 Y o .
From (2.4), (2.14), (2.8), and (2.1) it may be shown that

52 : - ' '
57 u0y) = - B3 e(v0.y) + 0/ Lweo,y) . (4.16)

Then, after some man1pulat1ons, the quant1t1es defined by. (4 10) may be ob-
tained as fol]ows ‘ '

Ay 2 =4 ms L
G (y) ='(—f—) g—;f I;g ' -p-}R (a)e” ”f“ = (4.17)
o e % mR.(a) -
: - 11 _-1_‘/(1
Gz(.Y) - ‘E’[ a Zj —#1—8 da
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..-g;x‘—;!faza]( Je o4y | (a8

Now, using (4.3) and inverting (4.6), (4.8), (4.9), (4.17), and (4.18),
we obtain five linear algebraic equat1ons in R1, R4, and A} which, after
some modifications and by using (4.13) and (4.14), may be expressed as

Jtle Tdt ) (4.19)
-1 ’ '

_E m3 : . : . .

Ri(a) =0 , | ; (4.20)
4 m3 . ] t ) .
g;} Rj(a) = ..):‘[2;& ia f (t)e‘“ . - | (4.21)
Lt -] '
u @3 e 1 1 ot '
Dk Rye) = 1 R (e ) [agveietar (4.22)
1P e _
*m _ - L _
T Ry(a) = -i.(mz)2 -;]3- f@l rt)e'®tqr . 0 (4.23)
7] z ' :

The solution of the system of ‘equations (4.20) - (4.23) is given 1n Appendix
A3. By substituting from (4.19), Appendix A3, (4 5) and (4.7) 1nto (4. 11) and
(4 12) we obtain two integral equat1ons to determ1ne the unknown funct1ons
G1 an@ 62 of the following form:

1 2 co .
teyle, _ ¢ .

=1 -

\w

i=1,2, -l<y<l (4.24)

. By exam1n1ng ‘the fun”t1ons H ; it can be seen that they are bounded every-
where in «w<a<=. Therefore any possible s1ngu1ar1ty of the karnels in (4.24)
at y=t must be due ‘to the behavior of Hij(a,X) as avbe. Note}a]so'tha; Hij
contains exponential damping terms of the form exp(m ) and exp(r]x) where
Re(m ¥<0, Re(r1)<0 However, since in 1imit x will go to zero, for y=1t _
-thts damping does not insure the convergence of the inner 1ntegra15 in (4 24).,
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The major difficulty in this problem, of course, is that the functions |
_ m (a) are not known explicitly in terms of a. For the purpose of examining
the singular behavior of the kernels in (4.24) and for extracting the
singular parts, all one needs, however, is the asymptotic behavior of m;
and ry as |a]+=.  Thus, from {3.6) - (3.8) and (3.15) it can be shown
that for large values of |a| we have

mj.(‘-"-)

p: - E2
lal (T4 5 - gleveer) | (4.25)

lal (1 + = “eee ) L '. . (4.26)

r1(a) f k{l-v)a
~ Using now the relations (4.25) and (4.26)_ahd separating the asymptotic
va]ues of H . for large |a|, the kerneis in (4.24) may be expressed as

meijei(t'Y)“da ) [”H?_( e i(t-y)a

-

JQ[H1J(a,x) s lele (Y% a2)

where H; ij is the asymptotic value of Hy for |af-=. On the right hand

side of (4.27) the first term gives Cauchy ‘type kernels 1/(t-y} on the main
diagonal terms, and the second integrals are uniformty convergent for all

t and y (in which, the 1imit x=0 can therefore be put under the integral
sign). After the asymptotic analysis and some lengthy but straightforward
manipulations the integra] equations and the kernels may then be expressed
as follows: '

1
—d __..n
I‘-““""-h-\

k jat)6y{e)de = 2y (y) , <leyel , (4.28)

e N

RN T
1-v2 p .

H

3 Fly) Sl - (4.29)




- 4 o2
k1p{yst) = fof(%?)zaz § ;;?-Qj(a)-T]sina(t-y)da o {4.30)
| | Ap 2y 4 md | -

Gp(0,8) = 2() [oaz Fotyte asina(t-y)da ,  _ (4.31)

212 N .

g t) = -ﬁ%Eg E)1,5- (2 - va2)ms, (a)sina(t-y)da ,  (4.32)

_ L. A% :

plyat) = 2 L jo [} 7% (0 - va )i (2)

- k(1-v)2ar, + 222 Jsina(toy)da (4.33)

where the functvons N, (a) and Q () are given in the Appendix A3. Using the
resu]ts of Append1xA31t can be shown that k]2(y, ) = k2](y,t).

5. 'THE'ASYMPTDTIC STRESS FIELD AROUNﬁ THE CRACK TIPS

‘The so]utiohs of the singular integral equations {(4.28) and (4.29) have
integrable singularities at the end points'y==¥1 and are of the following
form: ' '

6;(y) = g (1v2)7F , =12, (5.1)

where g].and 9, are bounded in -1zy<l. Similar to the plane problems, it

can be shown that the behavior of the stress distribution in the immediate
neighborhood of the crack tips is dependent on gi(il) only. To show this,
one needs to substitute (5.1) through the expressions of Ryses >Ry given

in AppendixABand A] given by {4.19) into the original expressions for N

and.Mij, (i,3=x,y), such as those given by (4.5) - {4.8). \Using now the
relation [ 7] : '

]

® w1 -ba.sin | T (' s1n -lc
da = Futan- y
. fo o e {COS}(CQ) o (b2+c )1-1/2 COS ( b .

{b>0 ,u30) - (5.2)
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and [4, 2, 3] for large values of la| -
o | -
J_ﬂLL_tt e *dt =(57op)* Lo()explia - 7 sion(e))]
+ g(-Dexpl-ia - F sign(a))] + 0 (mr)y (5.3)

around the end point y=1, x=0 the 1eadihg terms of the asymptotic stress
and moment resultants may be expressed as

g,(T) | | - -
Nx(xs¥) = ;‘/_ r ; 1+a|><| [x[.“sm[ﬂ-y)a - 7lda . (5.4)
gy (1) -
Hyy(xay) = —— | } (1 -alxe Mesint e - oo, (5.5)
91(1) ® ~{Xla T :
ny(x,y) = v J VE'xe_IXI cos{(1-y)a - glda | {(5.6)
. g2(” h (71 ‘ a
M (x,y) = 2;E§E‘T§E JO-ZE(]+ﬂa|x!)e lXI sin[(1-y)a - & ]da( ,7)
5.
M,y (x.y) 2 -g—ar-}-_(1-a|x[)e'l"|“sin[(1-y)a - Mda
Tf a .
0 j (5.9)
v A -Ix|a
o) = 2= 15 fo faxe Mo 1y)a - Fla , (5.9)

'From (5.4) - {5.9) it is seen that, aside from the magnitudes as rep-
resented by g](T) and 92(1), the asymptotic behavior of the membrane and
~ bending stress distributiens around the crack tip will be identical. This
is, of course,‘1n_agreement with the uncoup]ed_1n -plane and bending results
~ for flat plates B-]@,q'ﬂefining the po]ar'coordjnates r,a8 by | |

X ='rsine s ¥y~ 1=rcose , - | “'__ : _ (5;}0)

evaluating the integrals, and obsefving that in dimensionless guantities
" {see Appendix Al) '



ez y =g, (=) | (5.11)

from (5.4) - (5.9) the asymptotic stress distribution may be obtained as

- (1 +29,(0) 5 5 g
o, (re,z} s - = [E Cos 5 - 7 COS T?J s : (5;12)

9, (1) +2g,(1)

oy (20:2) % - s [3 cos &+ L cos -5-29] : (5.13)
g (1) +2g,(1)
ny(r,S,z) = - 1 2 - %psin g 1 sin TTJ . (5.14)

2V2r

In this "symmetric" problem the stress intensity factor is defired by

k](XB):‘ ;21_1:3 V2(X2‘aj O"H(ngz,x:a), : : (5]5)
wh1ch referring to Append1xA] and (5.12) may be obta1ned in terms of 91(1)
and 92(1) as follows: :

Q)= - B2 19 () + 2,07 O (5.8)

It should'be noted that even though the analysis given in the pre#ious
sections is valid for specially orthotropic as well as'isotrOpic'shelis,'
(a) because of the dependence of x and y on the orthotropy constant
c = (E /EZ) , v and. 8 defined by (5.10) are not the physical coordinates,
and consequently the angular distribution of the stress state in orthotreopic
shells would be different from that of isotropit shells as given by (5.12) -
(5.14); and (b) since the roots m and r; are very heavily dependent on c,
the numerical results obtained for the isotropic shells by assuming ¢ = 1

cannot be readily.adqpted 10 the orthotrobic shells.

6. CRACK SURFACE DISPLACEMENTS

_ After obta1n1ng the functions GT and G2 upon solving the 1ntegra1
equations (4. 28) and (4 29), through the expressions for Rys- .,R4, and_
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_A]; any_desired'fie]d quantity'in the shell can be expressed in terms of
G] and G, and be easily evaluated. One such group of quantities of some
practical interest is the components of crack surface displacement vector.
In the symmetric probiem under consideration, referring to the definition
(4.10), the in-plane component of the crack surface displacement (i.e.,
the crack opening displacement) may easily be obtained as

u{+0,y) = - f G](t)dt » =ley<l . | (6.1)

Y

The component of the displacement vector which is perpendicular to'the
shell surface, i.e., w(x,y), is given by (3.5) and (3.10@. Expressing
ag'ain'R],..,R4 in terms of Gy and G, (AppendixA3), w may be obtained as
follows:

) _
Y Qj(a)sina(t-y)da

m
] o !

w(+0,y) = - ] f1GT(£)dt fm

-

1 P
J]Gz(t)dt-fo § Nj(a)sina(t—y)da .

2|~

“ley<1 (6.2)
where Qj_and Nj.are given in Appendix A3.

7. NUMERICAL SOLUTION AND RESULTS

The singular integral equations (4.28) and (4.29) subject to single-
valuedness conditions (4.15) are solved by using Gauss-Chebyshev integra-

'tion_formu]as. Thus, equations (4.28), (4.29) and (4.15) are, respectively,

replaced by ' S :

n 91(t) 2 _ . '
LW v Lhaalete(e)) < 2 )



j=1 J j i m=1 1 ]
. h . - |
= 2n E’Fz(yi) sy 1=1,..,n-1 s ) (7-2)
n n
W, )=0 , W.g,(t.) =0 ., .
jzl j9(ty) =0 jgl 39(t5) =0 (7.3)
where
tj = cos(%}% ., J=1l,...n , (7.4)
¥ G CUS(%%E% ), i=1,..,n<1 , ° o (7.5)
. _ ’ _ T . _ ' . .
N] = wn = ETHjTT f wj = H:T s J-—2,.f,n~1 . (7.6)

As a numérica1 example a cracked cylindrical shell under uniform mem-
brane and bending loads is considered. To make the practical applications
of the results more convenient, these two loads are considered separately.
The calculated results for the stress intensity factors are normalized with
respect to the corresponding flat plate values. For example, if the applied
loads are

) = “N]] = “hdm 3 M]l(O,xZ) = 0 » 'a<X2<a 2 (7;7)

the input functions in the integral equations (4.28) and (4.29) become
F](y) - ;N1]/hE ) Fz(y) =0 ) ." .'(7;8)

and the corresponding flat plate stress intensity fattor is om/—. Then'the

‘membrane and bending stress intensity ratios Ko and kbm are obtained from
(5.16) as follows: |

ko = - g (1), '  o (7.9)




ky(h/2) - ke (0) e - -
! 1 .- -%—25‘5 6,(1) . (7.10)
. m ) .

K -
bm , Um\/a—

The-"bending stress intensity factor" is thus based on the bending stresses
at the outer layer of the she1],x3 = +h/2.

Similarly, if the external loads are’

. _ _ _ h2
N'I'!(O,XZ)" 0 * MTT(O’XZ) - "M-l-! - "'"6"""0b L] “a<x2<a (7.1]) :
Then the input functions become
N | oMy o
Fl(y) =0 , FZ(Y) = - g7 o 515y<1 . o (7.]2)

In this case too the corresponding flat plate stress intensity factor is
defined by ob/g and the stress intensity factor ratios are obta1ned as

follows: |
Kk, (0)
R R E
kmb h oy va o 20y 91(1) > (7.13)
ko= k1 (h/2) -k, (0) S S g-m - (7.14)

In the numerical calculations the effective transverse shear modulus for
‘the shell is-assumed to be B=5G/6, G béing_the shear modu1us of the material.
Also, the Poisson's ratio is taken as v=1/3 in all calculations except for
'ohe set of résu]ts where the effect of v is investigated. One may note that
'-AZ is used in this analysis is the standard shell parameter x defined in the
formulation of the problem by using the classical (i.e., the 8th order} shell
~ theory. Also note that in the present analys1s there is an additional para-
meter a/h, which, within the conf1nes of the sha]]ew shell theory, gives the'
thickness effect.

 The numericaI resuits are shown in Tables 1-4. To'he}p visualizing
Sthe trends some of the results are also shown in Figures 14-17. Tables 1-4
show the stress 1ntens1ty factor rat1os k o kbm"kmb’ and kbb defined by
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(7.9), (7.10), (7.13) and (7.14), respectively. In this table the values
given for Ay = []Z(T*vz)]% a/vRh = 0 correspond to the flat plate. Both
A, and a/h have been varied from 0 to 10. For A5>10 and a/h>10 the Tlinear-
ized shallow shell theory used in this study is probably not valid. For
very thin shells (i.e., a/h = 10) under uniform membrane loading (Table
la,b and Figures 14, 15) it is found that the membrane component of the
stress intensity factor kmm is indistinguishable from the results found
by using the classical theory [11]. However, the bending stress inten-
sity factor kbm_is quite different. The results given in Table 1 show
that, particularly for large values of Ao the thickness parameter e/h
may have considerable effect on the stress intensity factors. Table 1
and Figure 16 show that when 12+0 the results are in good agreement with
the flat p]ate bend1ng results given in [9] and [10] and the ax1a11y
cracked shell results given in [4].

For a specific geometry X,=3 and a/h=5, Table 2 shows the effect
of the Poisson's ratio v on the stress intensity factors. For the two
most important components kmm and kbb (i.e., for the primaryistress in-
tensity factors under membrane and bending loads) the effect of v does
nct seem to be significant Hence the results g1ven in Table 1 and
calculated for v=1/3 can be used for materials with a Poisson’s rat1o
0.2<u<0.4, which may cover nearly all structural mater1als

Even‘though the numerical results given in this report regarding'
the stress intensity factors are for uniform membrane Toading and for
pUre bending, the formu]atien is quite general and the results may easily

~ be obtained for any symmetric loading condition. For examp1e, Table 3
gives the stress intensity factors for two simple loading conditions
which may have some practical applications, namely a concentrated.
wedge force and a concentrated bending moment acting at the center
section of the crack.

In pipelines and tank cars an important loading condition which
gives axial stresses in the cylinder is gross bending. Referring to _
Figure ]3' let the cylinder be subjected to a bending moment My acting
in X X3 p]ane and having a neutral plane going through the cylinder axis

1
parallel to the Xy A, plane. Let the crack be Tocated on the tensile =
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side.. Thus, the stress 1n the cylinder wall (which must be used with
the opposite sign as the crack surface traction in soIv1ng the crack
problem) is g1ven by

=22, I = Rh(4R%+h2) , (7.15)

where T is the area moment of inertia of the cylinder cross-section and
z, is the distance from the neutral plane. From the shell geometry zZ,
may be expressed as ' '

2= (R+ X3)cos0 , 0< 0 <m, [X] < h/2 - {7.76)

where R is the mean radius, X3 is the'thitkness coordinate measured from
the midsurface of the cylinder, h is the thickness and the circumferential
angle o is measured from the Tocation of the maximum tensile stress (i.e.,
from X2=0 plane). For relatively small values of ¢ we have

5sp =1 - 822y _ 2 |
cose £1- 7.8 (7

From (7. 15) (7. 17) it follows that

X2 MOX3 X2 o
'“"{1 - 5p7) * (1 - ‘—79 - (7.18)

In (7.18) the first term is a membrane stresé“d]]m and the sgtond term is
a (local) bending stress o]Tb. From (7.18) these stresses may be expressed
' !

as
M R 2 M R 2 .
m 0 a a
o =1 U - 52 + g (1-y2) , | (7.19)
M X, ' M X ' ‘ X : o
b 3, 2 3 42
o e (-5 + OI = - (1-y2) , y =—f ~ (7.20)

Thus, it is seen that to obtain the gross bending results the integral
equations must be solved by using y- independent crack surface loads as
‘shown by the first terms in (7.19) and (7.20) and parabolic Toad distriby-
tions given by the second terms in (7.19) and (7.20). - The results:for

the uniform membrane and bending Toads are given in Table 1. Table 4
shows the stress intensity factor ratios for (see Eqs. (7.7)-(7.14))
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X2

- - - 2 = T r— . :
Ny(0:X,) = -h o (1-y?) 5 M1(0,X,) =0, ¥y = 3 S (7.21)
and _
h2 , %
N]](Oaxz) =0 :'M.-I-[(O,Xz) =T Ub““y ) sy = 2 (7.22)
where : : '
MR Mh _,
=22 0o 2, o (7.23)

m " T 2R > % = 2T 2R

The final stress intensity factor may'be obtained by a proper superposi—-'
‘tion of the results given in Tables 1 and 4.
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AP_PENDIX Al. The Dimensionless Quantities
.

' X
= _].........l v o= Jo _2. =x-3

XEgZT o ¥YEAL g 25T

U u

e .12 ]
u= v T o VEES s WeEg
' >
By = /C B, = =8y » ¢ sr
"X B y /&2 ? ® = 37
S § - 2912
XX c > Tyy E *oTxy E
N = -rill— : N = CN22 N = E’_'.l..g.
XX ¢hE * yy hE * Uxy E
W= M M
xx c¢h?t .* "yy = h?E * "xy ~ h%E
Y Y,

V - = 3
X" J/Eng >y B
4 = _,2) Ca* - 2 a
4 2y _ ak 4 = 2y 2
)\12= ]2(].-\)_) W s AT S 12('[-_.\? ) Fl-z- s K
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APPENDIX AZ. Procedure.fok'Soiving a Quartic Equation

Consider the following quartic equation:

ph + aqpd + ap2 + a,p+a =0 ~ (B.1)
Although in the shell problem the coefficients a,s..,85 are real, for the

- sake of generality, here it will be assumed that they are complex. There-_
fore the roots of (B.1) are in general complex: Assume that (B.1) can.be
written as the difference of two squares:

(p2rAp+BY - (cprD)i=0 | (.2)
Then, from (B.2) it follows that

(B.3)

n
o
-

p2 + (A + Cp + (B + D)

P2+ (A-Clp+(B-D)=0 . | (8.4)

If the constants A, B, C, D can be determined in terms of ag, ap, ay, ao,'
then the four roots can be found in a'straight—forward manner by solving
equations {B.3) and (B.4).

Comparing (B;l) and (B.2), one can write:

A =ay o : o - (B.5)

B+AZ-C2=a, , | - (B.6)
- 2AD=ay , R By
B2 _ D2 =a . o o | (8.8)

0o

Eliminating C and D in (B.6) - (B.8) and defining 2B = u, one finds:
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ud + b2u2 + byu +‘b0 = () ) .‘ (B.Q)
where

) T - = - = -2 - 2

b2 a, b] a]a3 4ao » bg 4a0a2 -af -aaf . (B.10)

Let u; be a root of the cub1c equat1on (B.9), (see, for example [15] for
determining the roots of a cubic). Then

uy . ._ _ B
B = > | | : (B.11)

and from (B.5)

2233
A 5 - | (B.12)
‘Once A and B are kﬁown, one can determine C and D from (B.6) and (B.8) as
faTIows:
| 3
2 . -2 .
c ) + 3 a2 {B.13)
u% : :
2 - 1 _ _ ' _
D2 = o - a, o o (8.14)

It is seen that C and D are mu1t1p]e~va1ued functions and one should choose
- the cerrect branch in order to obtain the correct solution,

CZ and D? can be written in the complex form as follows:
' ' 192 :
'C2_='p1e Ty Dz-=_pze | H(B.15)

where o1, p,, 8 and 8, can be determined by using (B.13) and (B.14). Thus

i6y/2 i{0)/2 + 7)
G, = /ey e ., Cy= ye
o ey “i(8y/2 + x) _ |
0, = V7 e L0, = ope N AT
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A1l pairs of {C,D)} satisfy equations (B.6) and (B.8) but not (B.7).
Therefore C and D must be se!ected such that equation (B.7) is satis-
faed, i.e.,

e
1 o
-13.a | (8.17)

APPENDIX A3. Expressions. for Rj(a), ji=1,..,8

| SR - 1. -
Rj(a) = 1(0(a)] G (£)e'*fat + Ny(a) [ Gp(t)e’Fat) L (c.1)
1 ~1'
. 4
1 Moyl "y
N =
1(2) = BT Trypgpyye 2 53 [0 2( i
m:  md h? m2
2 4 2. 3
- m3 (=7 - =) mz(“"r--'?)]
3'p5 P 4°%p; P
4 4
€ 1-v ¢ 5 o3 M4
SRR D G
m: omb md  md
2 4 2 3
m2 - =) +m (=~ , (C.2)
3 pz p4 : 4 pz p3 ' .
2 (m, m,)> m2mZ m2m2
(=) = gy G -3-1—-—-—9 (2o - 55 52)
D(a T p3 p4 p4 p3
“ m2 m2 m2m2  m2md m2md :

D2 T B pe ne ~
P2 Pa Py Py PPy p3 P2
m
"2

mimy
4"(p 297 T

= T MaMaMy
D(u) W{(m] 2)([!]2 m

bt b
)( m m3 2 m2m4 )
A TN ,(pzp4_-

o+ (mz- mz)(m

m“ma m3my
3)((p p4)2 {popg)?

+ (m%-—mi)(m% =) } S ' (C.4)
. The expressions of N, and Q, are obtained'ffbm (C.2) and (C.3) by replacing
the indiceS'in-mj and.pj sequentially from 2, 3, 4 to' 3,4, 1. Similarly
for Ny and Q4 the indices are replaced by 4, 1, 2, and for N, and Q, by

1, 2, 3.
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Table A-1. Stress i'nténsity factor rations in a cyh"ndri'ca] shell contain-
' ing a circumferential through crack (v = 1/3)

T a/h=0.5 | a/h=1 a/h=2 a/h=5 a/h=10
0.0 1.000 1.000 1.000 1.000 1.000
0.5 1.015 1.013 1.012 | 1.012 | 1.012
1.0 - 1.055 1.059 1.048 1.048
| 1.5 | 1.108 1.103 1.102
© 1 2.0 1.179 1.169 1.168
ke | 3.0 1.317 1.314
4.0 1.467 1.462
5.0 1.670 | 1.604
6.0 1.735
8.0 1.970
10.0 2.181
0.0 0.000 0.000 0.000 0.000 0.000
0.5 | ' 0.048 0.044 | 0.043 0.041 0.04]
1.0 - 0.093 | 0.092 0.092 | 0.092
1.5 - 0.114 0.119 | 0.123
| 2.0 0.107 0.119 | 0.125
Kpm | 3.0 0.057 0.071
4.0 -0.042 -0.024
5.0 -0.143 | -0.126
6.0 -0.220
8.0 -0.374
10.0 -0.493
0.0 0.822 0.752 0.704 | 0.667 0.652
0.5 0.782 | 0.718 10.676 0.644 | 0.63]
1.0 0.646 0.613 0.590 0.581
1.5 0.542 | 0.526 0.520
2.0 0.481 0.466 0.463
kpp | 3.0 i 0.376 | 0.373
4,0 0.322 0.317
5.0 0.288 0.281
6.0 - 0.256
8.0 0.225
10.0 0.204
0.0 0.000 0.000 (7.000 0.000 0.000
0.5 0.016 0.014 | 0.012 0.010 0.010
1.0 | ~0.030 0.027 0.024 | 0.022
1.5 0.037 0.034 | 0.032
] 2.0 0.042 0.039 0.037
Ky | 3-0 ~ 1 0.041 | 0.040
4.0 0.039 | 0.037
5.0 0.035 0.034
6.0 S ©0.031
8.0 0.027
10.0 0.025
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Tab]e'AZ, The effect of Poisson's ratio on
the stress 1ntens1ty factors,
a/h = 5, Az = 3.

v K Kom Ky Kinby

0.0 1.301 | 0.058 0.395 0.029
0.1 1.305 0.061 0.395 0.033
0.2 1.310 0.061 0.390 0.036
0.3 1.315 0.058 0.381 0.040
1/3 | 1.317 | 0.057 0.376 0.041
0.4 1.321 0.051 0.366 0.043
0.5 1.329 0.037 0.346 0.046

Table A3. Stress intensity factors for concen-
: trated membrane and moment resultants on
the crack surface, a/h=5, 1,=3, v=1/3.

Npjp = -s(X) Ny = 0
. | o
m 0.536
ke - 0.007
Kpp | o.018
ko ' C 0.025
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Table A~4.Stress intensity factor ratios in a cylin-
h drical shell with a circumferential through
crack under parabolic membrane stresses

{(v=1/3)
Ay a/h=1 a/h=2 a/h=5 a/h=10
knm
0.5 0.510 0.510 0.509 0.509
n 0.5471 0.538 (.536 0.536
1.5 ' 0.582 0.578 0.577
2 ' 0.635 0.628 0.627
3 0.741 0.738
4 0.855 0.852
6 1.057
8 1.229
Kbm
0.5 0.034 0.032 0.031 0.031
i 0.069 0.068 0.068 0.069
1.5 _ 0.083 0.088 0.090
2 0.075 0.085 0.091
3 0.031 0.043
4 -0.053 -0.038
6 -0.203
8 -0.327
Kph
0.5 0.301 - 0.287 0.288 0.292
1 - 0.248 0.240 0.248 0.255
1.5 0.189 0.200 0.210
2 0.143 0.156 0.167
3 0.091 0.102
4 0.052 0.061
6 0.024
8 g.012
Kmb
0.5 0.010 0.009 0.007 0.007
o 0.022 0.020 0.017 0.016
1.5 0.027 0.025 0.023
2 - 0.031 0.028 0.027
3 0.029 0.028
4 0.026 0.026
6 6.019
8 0.014 -
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_ S APPENDIX B
- THE PART-THROUGH CRACK PROBLEM IN PIPES

1. . Introduction

In recent years there has been some renewed 1nteres; in, the line
spr1ng model which was developed in [1] for obtaining an approximate
solution of a plate containing a.partuthrough'surface crack. There are
a number of reasons for this. First, the accuracy of the results
obtained from the model turned out to be better than that shown by the
early comparisons with the solutions found from the finite element and
the alternating methods [2-6] (see, for example, [7]). Secondly, the
technique appears to have the potential for important applications to
‘a great variety of shell structures of rather compiex geometries with
a relatively small computationaT effort. Finally, it can be quite
useful to study certain aspects of the part-through crack problem in
the presence of large scale plastic deformations (see, for examp1e,
the interesting recent work by Parks [7,9], and [8} and [10]}).

In this Appendix the elastic problem for a relatively thin—wa11ed
cylinder containing a semi-elliptic part -through crack is cons1dered
It is assumed that the crack lies in a plane perpendicular to or con-
ta1n1ng the axis of the cylinder and may be an exterpal or an internal
surface crack. In formulating the probiem, thé cylinder is approxima-
ted by a shallow shell and the effect of transverse shear deformations
are taken inte account [11,12]. The edge-cracked strip results used
in the line-spring model are obtained from an integral equatjon solu-
t1on given in [13]. | ' | '

The stress 1nten51ty factor for a part- through ax1a1 crack located
ingide the cylinder is given in [14-16] where in [14] and [15] the
finite element and in [16] the boundary 1ntegra1 equat1on method is -
used to selve the problem. The results found in this paper are com-
pared with those_giVen in [14] as well as the ke]ated plane strain and
axisymmetric elasticity solutions. '
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2. General Formulation

The part-through crack geometry for the cylindrical shell under
consideration is shown in Figure 1. It is assumed that the external loads
are symmetric with respect.to the plane of the crack. Thus, the only
nonzero net ligament stress and moment resultants which have a con-
‘straining'effect on the crack surface displacements would be the membrane
resultant N11 and the moment resuyltant M11 The basic idea underlying
the line-spring model consists of (a). representing the net 11gament
stresses by a membrane Toad N and a bending moment M, and ‘the crack sur-
face: displacements by a crack opening & and a relative rotation 6, all
referred to the midplane of the shell and'contihuousTy‘distributed along
the length of the crack, (b) approx1mat1ng the relationship between
(N_M) and (s, 9) by the corresponding plane strain results obtained from
the solution of an edge-cracked strip or a ring, and (c) reducing the
prob]em to a pair of integral equatTOns for the unknown functions N
~and M or 5 and 8 by us1ng the boundary and the cont1nu1ty conditions
for the shell in the plane of the crack. '

In the formilation of the crack problem for the shell, the deriva-
tives of the crack surfaze displacement and rotation are used as the
unknown functions which are defined by

%.U(+O:|Y) = Gﬂy) a_y X( O,y) = Gz(y) . | (1a,b)

The notation and the dimensioniess quantities used in the formulation
are given in Figure 1 and in Appendix A. - It is shown in [17] that the
general problem for a symmetrically loaded shell containing a threugh
crack may be reduced to the following system of integral equations:

1

6 (t) , -
f | I kyn0e(ed = 20F (), 1<y <1, (2a)
-1 -] _

J gt + [ E ko3 (y,t)65(6)dt = 20 B Fyly), ~toyel,
A t-y 23 .
-1 -1 | | (2b)
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o

k-l-l(y,t) = J [2 % a?'QJ-(a) - 1] sinq(t-y.);da‘ J

o3

kyplyst) = ] 202 % Nj(a)sing(t;y)da_,
2 [y i) )

kylyat) = - ) CrRev Tt sina(t-y)da

— 2
- L 2 " p-(m--va )N-(a)
kzz(.Yst). F 5w f 1 ]

A2 = - 2
RCIRNETDTTD!

0
- :(l-v)zarl + (1-v2)/2]sina{t-y)do (3a-d)
subject to
f Gy(y)dy =0 , f  Gy(y)dy =0 . | (4a,b)

-1 ' -1

The pbob]em is formulated as a stress disturbance prob]em “n which a
hnmogeneous stress solution for the uncracked shell is separated through
a. superpes1t1@n and it is assumed that the stress and moment resultants
applied te the crack surfaces are the only external loads. Thus, FI

and F, appearing in (2) are

Fily) = Ny, (#0,y) 5 Foly) = M, (+0,y), -ley<l . ~ (5a,b)

- The parameters ris mss and Py (§=1, ..»4) are functions. of the trans-
form variable « and are g1ven by

| o, e S | - o
- [§2-+'EIT:QJJ , | (8

2 = . “al m. | j= ;.-, s B ' | : |
mj pJ + o<, Re(mJ) < 0! (J .]: 4) ) | . ) (7)
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aﬁd Pys-.-sDy are the roots of

. 23242 - 4.2 4 34)p2 + 232,2 o gl 2
.p Klzp (ZKl]lz ZKAZQ Az)p (ZKA]AZa KAza

2
- kAta? + 234 ~ 23292Y),2 2,32 LY
Kl]a Zkz 2l112)a p + (12 A]) o 0 (8)

From (6~8) it may be shown that for large values of {a] we have

rife) = -la| 1 + ooy + 06T (9)
| p: ps?
mia) = ~lo} [+ 2 - gle v o7, (10)

where the roots P of the characteristic equation (8) are bounded for
all values of a.

" The functions Q and N > (J=1,...,4) which appear in the kernels
(3) are found from

*Rj(u) = iIQj(“)fo“) + Nj(a)fz(a)] » (3 =1,...,8) .. i (11)
where - |

. _ I ) oo | | : o

fila) = J Gk(t)e’“t dt, (k=1,2) ' - (12)

o o . | -

and RT,,..,R4 are obtained from
L

f ijj(u).= 0.

R (a )(Aszm

32542 20 213
g-AL 27JJ Azm b el ) = ~iaf,(a) ,
E mEATa? (e s
4 R:{a)pim, . |
NIRRT = 3(3-v)k ¢ 0, 5
1 B TTBnTAZa7) = 27 (rfte?)fpla)
N | R (a)p m . i(T-v f‘
i (<p; -U(Ju—’rfrZ SY ) B o - (13a-d)

B-4



The formulation given above refer to a shallow shell containing
a crack along the principal plane of curvature coinciding with XoXs
plane (Figure 1}.. The principal radii of curvature_RT and R2 are
defined by ‘

1 827 1 27 - s o
BT R T - ()

whefe Z(XT’XZ) is the distance of the point on the middle surface to
the tangent plane XIXZ Thus, for the c1rcumferent1a1 crack shown in
Figure 1la, Ry=R and R;=e (giving 11-0), and for the axial crack shown
in Figure 1b Ry=R and Ry=e (g}v1ng_A2~0) _

Let now

be the uniform membrane lcad and the bending moment applied to the
shell away from the crack region and N(XZ) and M(Xz) the stress and
moment resultants which are equivalent to the net ligament stresses in
—a<X2<a or ~l<y<l. The "input" functions which . 1ppear in the integral
equations (2) may then be expressed as

F) = ¢ (o, 0) , rz'(y‘) = op (-mm) . (16a,b)
for the crack Tocated on the outside and
R = g (aata) 5 Fply) = g (naem) (172,b)
for the crack Tocated inside the cyTinder(*)-where

EREFLSE - I . - (18a,b)

TE _ : _ . ‘ _
( ).In both cases the applied moment M is such that the crack tends
“to open under bending of the shell, and the net ligament moment
is-assumed to constrain the crack surface rotation, hence the

_ change in signof F, in (16) and (17).
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and

NX,) ) o |
oly) = hz = N(h? L, n(y) =—~i?2—=.m51%ﬂ. (19a,b)

The stresses o and m are linearly related to the crack surface dis-
placement a u(+0,7) = §/2 and rotation Bx(+0,y) = §/2. This relation-
ship may be obtained from the related plane strain problem by expressing
the rate of change of the potential energy in terms of the crack closure
energy and the change in gross compliance as follows:

o2 | : | |
moy | ‘ (20)

t i .
i P

'whére‘Kiithhe total mode I stress intensity factor at the crack tip -
~and L is the length of the edge crack. If we now let

K=k (¢ g£ tmag), o ._ (21)

from (20) we obtain

It

oly) = Elyyy (¥)u(+0,y) * v (v)8, (30,97

)

m(..Y) GE[th(y)u(-i-O,y) hat Ybb('y)BX(+0’y)] ) (zzasb)

where + and - signs are to be used for the outer and the inner cracks,
respectively and S

U IV B -
Ytt ~ A{T-v%) "2 Ybb ~ 3(1-92) &
oo M a %t
Ttb 6(1-vZ) "8 ° bt 6h{T-vZ) & °
_ . 2
A= 9tt dhp - mtb - _._(233-e)
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The crack depth L is assumed to be a known function of y (Figure 1).
Referring to the definitions (1), u-and g may be expressed as
'u(+0,y)_= fyG1(t)dt R Bx(+0,y) = f Gz(t)dt . ' (25a,b)

' -1 -1 - _ .

Substituting from (25) and (22) into (2) the f1na1 form of the integral
: equat1ons is found to be .
S o 1(t)
| S S
1 ' oo
+ 2 [ Tk v 0)6y () + st )6,(t)1dt = - Tl s

dt

t-y dt.

y - Yy G, (t)
Proe ()] 8(6)dt = 1y )] 6y(at + g‘},;::z’ [ 2

-1 - B

1
+ 2—;,-] ligy 06y (t) + kpplya )6y (0134t = 3 3 Ty
| (26a,b)

where the upper (i.e., -) and the Tower (i.e., +) signs are to be used
for the outer and the inner crack, respectively.

3. Compliance Coefficients

_ The functions 9y and 9 which appear in (21) and which give the
membrane and hend1ng components of the stress 1ntens1ty factor ire
obtained from the correspond1ng plane strain crack geometry _

For the c1rcumferent1a] crack, the apprepriate geometry is that
of an infinite strip with an edge crack. Or the other hand for the
axial crack the proper plane strain problem would be that of a r1ng
‘having a radial edge crack.. ‘In a recent study the ring problem was
formulated in terms of a singular integral equation [18]. The-reSuTts
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giVen in [18] show that for cy1inders with values of h/R which may be
considered a "shallow shell®, the ring results are reasonably close to
the strip results. Also for small values of h/R the convergence of
the numerical solution of the ring problem is not very good. Hence,
the complete parametrization of the prbb1em for the purpose of obtain-
ing_gt and 9% (which would be functions of h/R as well as L/h) becomes
rather complicated. In this paper, therefore, the edge-cracked strip
results will be used for both the axial and the circumferential crack
problem. ' ' ' ' -

For the strip the functions 9t and gy, are obtained from the results
given in []3] wh1ch are valid for 0<L/h<0.8 and may be expressed as

gt(g) = /FE (1.1216 + 6.5200c2 - 12.38775“ + 89.0554c8
- 188.6080£8 + 207.3870£10 - 32.0524£12]
Qb(E) = /£ (1.1202 - 1.8872¢ + 18.0743£2 - 87.3851¢3
+ 241.91245% - 319.9402¢5 + 168.0105¢8) ' (27a,b)
where £ = L(X5)/h = L{ay}/h. From (27) and (24) the funct1ons o33
(i,j=t,b) may be determ1ned as follows: :
. (n) g2n - (n)
Gpy = E2 z c g = g2 z c ",
tt o tt “bb T &7 Z) “bb
“tB = oy = E2 nEO Cib) g" ._'_ | _ _ (28a-c)

The coefficients ng) are given in Table 1.
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4. Solution for the Cylindrical She]l

The solution of the problem is obtained for a uniform membrane
]oadlng Neo and for a bending moment M, applied to the shell away from
the crack region and for the Poisson's ratio v = 0.3. ‘Even though
L(X,) = L(ay) describing the crack shape can be any single-valued func-
tlon, ‘the prob]en 15 solved only for a sem1—ell1pt1c surface crack

given by
L= LTI = L/TyE . (29)
The solution of the integral equations (26) is of thé form
6. (t) ¢i(t) '( =1, 2) (~T<t<1) (30)
. = .- (= =l<t<

where ¢ and ¢2 are bounded functions. The functions ¥ may be deter-
mined from (26) to any desired degree of accuracy by using the Gauss-
Chebyshev integration procedure [19]. After obtaining ¢ and ¢, the
unknowns o and m represent1ng the net T1gament stresses may be deter-
mined from (22) by us1ngﬁ(23 -25), (27) and (28). The stress intensity
factor K(y) may tﬁen'be obtained from (21} and (27). For-a Poisson's
ratio v = 0.3 and for'Qarious crack geometries and loading conditions
the calculated results are shown in Figures 2-7 and Tab?es 2-11.
Tables 2-9 give the normalized stress intensity factor at the deepest
penetration point y=0, L=L_ of a semi-elliptic surface crack in a
cylindrical shell under uniform membrzne loading or bending. The
normalizing stress intensity factor k is the corfesponding va1ue

for the plane strain problem under tens1on or bend1ng and is g1ven

by

| KO N, LO' _ . : : ' '
k.= /h"gt(s),a i~ - (31)

° & A

for.membréne']oading,.and‘
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K oeM, "L . |
/ng(’c:) Sy = 7 L (32)

he

(=]
Ao

for bending.

Figures 2 and .3 show the comparison of the shell results with the
stress intensity factors obtained from the corresponding axisymmetric
and plane strain problems. As (Rj/R,) + 1 the shell results approach
the flat plate solution kp_[21] having a part-through semi-elliptic
crack of the same geometry and relative dimensions. It may be noted
that, as expected, the shell stress intensity factors are generally
smaller than -the corresponding two-dimensional values. Even though
the shell results are given for-0.74<(Ri/Rb)<1, because of the nature
of the theory used in the shell analysis, namely the shallow shell .
theory, for (Rj/Ry) < 0.9 the results may not be very accurate. From
Figure 3 one may also observe that the difference between shell and
the plane strain results decrease with decreasing. crack depth (L /h)*.

Some sample results for the distribution of the stress intensity
factor along the_crack-front are given in Tables 10 and 11 and in
Figures 4-6. The normalization factors k, used in these tables and
figures are also those given by (31) and (32). The variable ¢ used
in the presentation of these results is the usual parametric angle of
the ellipse shown in the insert of Figure 4. For small values of ¢
the stress intensity factors given by the Tine-spring mode] are neither
reliable nor meaningful'and therefore are not presented.

The only shell results which exist in literature and which are
obtained by using a method other than that of the line-spring are the
stress intensity factors in a pressurized cylinder centaining an
internal semi-elliptic axial crack [14-16]. Figure 7 shows the cem-
parison of the stress intensity factors obtained from the line-spring
model and those given in [14] which are found by using the finite
element method.. The parameter ¢ is again defined by the insert in

) The plane strain cy11nder results given in Figure 3 are obtained
- from [18] and the axisymmetric crack results shewn in Figure 2.
‘are from [20]. _



i

Figure 4. The stress intensity factor ratio F shown in Figure 7 is
defined by S

K
PRy ’
7k /T

F = (33)

where K = k/m is the stress intensity factor along the crack front, p
is the internal pressure and § = [E(k)]z, E being the complete elliptic
integral of the second kind. The results given in Figure 7 include

the effect of the pressure-p'acting on the crack surface, Considering
the gross approximations involved in the formulation of the problem by
using the Iiﬁe—spring model, and the fact that the finite element
results themselves may contain a few percent error,the agreement between
- the two results seems to be quite good. The plane strain results

given in Figure 3 suggest that the accuracy of the results given by

~ the Tine-spring'model could perhaps be improved further if the rﬁng
rather than the flat plate solution is used to derive the functions

9¢ and g, to express the stress intensity factor (see equations (21)
~and (27)).
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APPENDIX A

The notation1and dimensionless quantities (Fig. 1)

e gg- , v = 25- s w=d (A.2)
B, = By By = By » (A.3)
Nxx=-’;ll,nyy=%?;2-,nxy=gjﬁ% (A.4)
Mex = ;%% ’ Myy ; :%%" Mxy = :1E (A.5)
v, = E%—, Vy f ;%-, (Afﬁ)

_ ' at _ at
A= 12(1~v2) Hz-ﬁ-g- . 1; = 12(1-v2) Fg‘ﬁ‘g 5

_ _.5 E - 2 G = E
B = -gm , At = ]2(]-\) )Hz' s K B (A.?)

U1,.U2, W: components of the displacement vector,
Bys Bpt rotatioﬁsof the normal,

Nij’ Fi,j=],2): Membrane stress resu1tants

| ‘Mij;_ (1,j=1,2): Moment resultants

V., (i=1;2): 'Transverse shear resultants

j

R}, Ry Principa1'radii of curvature




Table B-1, Coefficients Cig) which appear in eqs. (28)

B-15

| o oy o
0 1.9761 1.9735 1.9710
1 11.4870 ~2.2166 -4.,4277
2 7.7086 21.6051 34.4952
3 ' 15.0143 -59.3133 -165.7321
4 230.1207 196.3000 626.3926
5 -1099.7200 -406.2608 -2144.4651
6 3418.9755 6449350 7043.4169
7 -7686.9237 -408.9569 -19003.2199
8 12794.1279 -159.6927 37853.3028
9 -13185.0403 -888.9879 -52595.4681
10 7868.2682 4266.5487 48079.2948
11 -1740.2463 -2997.1408 -25980.1559
12 124.1360 -6050.7849 6334.2425
13 | 8855. 3615
14 3515.4345
15 -11744.1116
16 4727 .9784
17 1695.6087
18 -845.8958




Table B-2. Normalized stress intensity factor k/k, at the deepest
penetration point L=Ly, y=0 of an cuter semielliptic cir-
cumferential crack in a cy]1

er under uniform membrane

loading Nes 2o = [12(1 v a/v/Rh, v=0.3.
L, = 0.2h L, = 0.4h
Ao a=h a=2Zh a=4h a=8h a=n a=2h a=4h a=8h
0 [0.8177 | 0.883 | 0.930 | 0.961 || 0.507 | 0.627 | 0.741 | 0.837
0.5 0.817 | 0.883 | 0.939 | 0.961 | 0.509 | 0.628 | 0.742 | 0.837
0.75 | 0.816 | 0.882 | 0.930 | 0.9617 | 0.509 | 0.628 | C.742 | 0.837
1.0 0.880 | 0.929 | 0.960 0.626 | 0.741 | 0.836
1.5 0.876 | 0.926 | 0.959 0.620 | 0.736 | 0.833
2.0 0.922 | 0.956 C.727 | 0.827
4.0 0.893 | 0.939 0.670 | 0.784
6.0 0.916 0.728
8.0 0.893 0.676
L, = 0.6h Ly = 0.8h

0 0.245 | 0.336 | 0.4517 | 0.582 [ 0.073 | 0.104 | 0.149 | 0.216
0.5 0.248 | 0.339 | 0.454 | 0.583 || 0.074 | 0.106 | 0.151 | 0.219
0.75 | 0.250 | 0.341 | 0.455 | 0.585 || 0.07¢ | 0.107 | 0.152 | 0.220
1.0 | 0.341 | 0.455 | 0.585 0.109 ['0.154 | 0.221
1.5 0.3417 | 0.453 | 0.583 0.112 | 0.157 | 0.223
2.0 0.448 | 0.577 0.158 | 0.224
4.0 0.408 | 0.532 0.158 | 0.214
6.0 1 0.476 0.197
8.0 0.428 0.182




Table B-3. Normalized stress intensity factor k/kg at the deepest
- Penetration point L=L,, y=0 of an outer semi-elliptic-
circumferintial crack in a cylindrical shell under uniform
bending mument M. : '

L = 0.2h - L = 0.4h

A2 ' =h - a=2h0- a=4h a=8h a=h - a=2hO a=4h a=8h

0 0.804 .} 0.875 | 0.926 | 0.959 || 0.441 | 0.579 | 0.710 | 0.819
0.5 0.804 | 0.875 | 0.926 | 0.959 || 0.443 0.581 | 0.712 | 0.819
0.75 | 0.803 | 0.874 | 0.925 | 0.958 || 0.443 | 0.580 | 0.711 | 0.819
1.0 0.872 | 0.924 | 0.958 1 0.578 | 0.709 | 0.818
1.5 0.867 | 0.921 0.956 0.570 | 6.703 | 0.814
2.0 | 0.916 | 0.953 0.692 | 0.806
4.0 0.884 | 0.934 0.621 | 0.753
6.0 0.909 0.686
8.0 0.883 0.624

L, = 0.6h Lo x’o.ah

0 0.132 | 0.238 | 0.373 | 0.526 |[-0.012 | 0.017 | 0.065 | 0.740
0.5 0.135 | 0.241 | 0.376 | 0.529 |{-0.070 | 0.079 | 0.068 | 0.143
.75 | 0.137 | 0.243 | 0.377 | 0.529 |{-0.008 | 0.021 | 0.069 0.145
1.0 | 0.243 | 0.377 | 0.529 0.023 | 0.071 | 0.146
1.5 | 0.242 | 0.374 | 0.526 0.027 | 0.074 | 0.148
2.0 1 0.367 | 0.519 0.075 | 0.148
4.0 0.313 | 0.459 0.072 | 0.132
6.0 0.386 1 0.108
8.0 | 0.326 - 1l o.088




TableB-4. Normalized stress intensity factor k/k, at the deepest
penetration point y=0, i=L, of an inner semi-elliptic
circumferential surface crack in a cylindrical shell under
uniform membrane loading N.

L, = 0.2h Ly = 0.4h
Xy a=h a=2h a=4h a=8h a=h a=2h a=4h a=8h
0 0.817 | 0.883 | 0.930 | 0.961 || 0.507 | 0.627 | 0.741 | 0.837
0.5 0.810 | 0.879 | 0.928 | 0.960 || 0.497 | 0.618 | 0.735 | 0.833
0.75 | 0.804 | 0.875 | 0.926 | 0.959 {| 0.487 | 0.610 | 0.729 | 0.829
1.0 0.870 | 0.923 | 0.957 0.600 | 0.722 | 0.824
1.5 0.858 | 0.916 | 0.953 0.579 | 0.704 | 0.812
2.0 0.907 | 0.948 0.685 | 0.798
4.0 0.870 | 0.926 0.613 | 0.739
6.0 | 0.902 0.687
8.0 . 0.881 0.646
L, = 0.6h L, = 0.8h
0 0.245 | 0.336 | 0.451 | 0.582 || 0.073 | 0.104 | 0.149 | 0.216
.5 0.240 | 0.330 | 0.444 | 0.576 || 0.073 | 0.103 | 0.147 | 0.213
75 | 0.236 | 0.324 | 0.438 | 0.570 {| 0.073 | 0.102 | 0.145 | 0.210
0 0.318 | 0.431 | 0.563 0.101 | 0.143 | 0.207
5 0.305 | 0.41&4 | 0.546 0.101 | 0.140 | 0.200
0 0.398 | 0.529 0.137 | 0.194
.0 0.350 | 0.467 0.133 | 0.177
9 0.422 0.168
0 0.392 0.163

0 M HN— - o O
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TableB-5. Normalized stress intensity factor k/ky at the deepest
penetration point y=0, L=l of an inner semi-elliptic
circumferential surface crack in a cylindrical shell

under uniform bending moment M.

L, = 0.2 L, = 0.4n

AZ a=h a=2h a=dh a=8h a=h a=zh a=4h a=8h

0 . | 0.804 | 0.875 | 0.926 | 0.959 || 6.441 | 0.579 | 0.710 | 0.819
0.5 0.797 | 0.870 | 0.923 | 0.957 ! 0.429 | 0.569 | 0.703 | 0.814
0.75 | 0.789 | 0.866 | 0.921 | 0.956 || 0.418 | 0.559 | 0.696 | 0.809
1.0 1 0.860 | 0.917 | 0.954 0.547 | 0.687 | 0.803
1.5 0.847 | 0.909 | 0.950 0.522 | 0.666 | 0.789
2.0 0.900 | 0.945 0.643 | 0.772
4.0 0.859 | 0.920 0.557 | 0.702
6.0 0.894 0.640)
8.0 0.871 0.59>

L, = 0.6h L, = 0.8h

0 0.132 | 0.238 | 0.373 | 0.526 {|-0.012 | 0.017 | 0.065 | 0.140
0.5 0.125 | 0.230 | 0.364 | 0.518 [{-0.013 | 0.015 | 0.062 | 0.136
0.75 | 0.119 | 0.222 | 0.356 | 0.5%1 {|-0.013 | 0.014 | 0.060 | 0.133
1.0 0.2%4 1 0.347 | 0.502 0.013 | 0.057 | 0.729
1.5 0.197 | 0.326 | 0.481 0.012 | 0.053 | 0.120
2.0 0.306 | 0.460 0.049 | 0.112
4.0 0.244 | 0.382 0.042 | 0.089
6.0 0.327 0.078
8.0 0.289 0.070




Table B-6. Normalized stress intensity factor k/k, at the deepest
penetration point y=0, L=L4 of an outer semi-elliptic
axial surface crack in a cylindrical shell under uniform
membrane loading Ne

0N BN OO
L] * - L ] ] - [ ] [
o 0 o0 o » O

“ L, = 0.2h L, = 0.4n
A1 . a=h a=2n a=4h a=2h a=h a=2h a=4h a=8h
0 0.817 | 0.883 | 0.930 | 0.9561 || 0.507 | 0.627 | 0.74 0.837
0.5 0.822 0.886 | 0.932 | 0.962 || 0.518 | 0.635 | 0.748 | 0.841
0.75 | 0.826 | 0.888 | 0.933 | 0.963 || 0.527 | 0.642 | 0.752 | 0.844
1.0 0.890 | 0.934 | 0.963 0.649 | 0.757 | 0.847
1.5 0.894 | 0.936 | 0.964 0.663 | 0.766 | 0.853
2.0 ' 0.938 | 0.965 0.773 | 0.857
4.0 0.935 | 0.964 0.775 0.860
6.0 0.959 0.848
8.0 0.954 0.834
L, = 0.6h L, = 0.8h

0 0.245 | 0.336 | 0.451 | 0.582 || 0.073 | 0.104 | 0.149 | 0.216
5 0.255 | 0.346 | 0.461 | 0.590 || 0.076 | 0.108 | 0.154 | 0.223
75 | 0.264 | 0.355 | 0.468 | 0.597 || c.080 | 0.112 | 0.159 | 0.229
0.364 | 0.477 | 0.604 0.118 | 0.165 | 0.235

0.384 | 0.494 | 0.619 0.130 | 0.178 | 0.250

0.509 | 0.631 0.192 | 0.264

0.532 | 0.451 0.225 | 0.299

0.641 0.303

0.622 0.294
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Table B-7.Normalized stress intensity factor k/k, at the deepest
penetration point y=0, L=Ly, of an outer semi-eiliptic
axial surface crack in a cylindrical shell under uniform
bending moment M,

L, = 0.2h L, = 0.4h
k] - a=h a=zh a=4h a=8h a=h a=Zh a=4h a=8h
0 0.804 | 0.875 | 0.926 | 0.959 || 0.441 | 0.579 | 0.710 | 0.819
0.5 0.810 | 0.878 | 0.927 | 0.960 || 0.445 ! 0.590 | 0.718 | 0.823
0.75 | 0.814 | 0.880 | 0.929 | 0.960 || 0.465 | 0.598 | 0.723 | 0.827
1.0 0.883 | 0.930 | 0.951 6.606 | 0.729 | 0.831
1.5 0.887 | 0.932 | 0.962 0.621 | 0.740 | 0.837
2.0 0.932 | 0.963 0.747 | 0.842
4.0 0.936 | 0.961 0.747 | 0.843
6.0 0.956 0.828
8.0 0.951 0.812
L, = 0.6h L, = 0.8h
0 0.132 | 0.238 | 0.373 | 0.526 [|-0.012 | 0.017 | 0.065 | 0.140
0.5 0.143 | 0.250 | 0.385 | 0.536 |-0.008 | 0.022 | 0.072 | 0.148
0.75 | 0.154 | 0.260 | 0.394 | 0.544 [1-0.003 | 0.027 | 0.078 | 0.155
1.0 0.272 | 0.405 | 0.553 0.034 | 0.085 | 0.163
1.5 0.295 | 0.425 | 0.570 0.047 | 0.100 | 0.180
2.0 0.442 | 0.585 0.115 | 0.197
4.0 0.464 | 0.605 0.148 | 0.232
6.0 0.588 0.231
8.0 0.563 0.217




TabTe B-8, Normalized stress intensity factor k/kq at the deepest
penetration point L=L,, y=0 of an inner semi-elliptic
axial surface crack in a cylindrical shell under uniform
membrane loading Ne

L, = 0.2h L, = 0.4h
A] a=h a=2h a=&h a=8h a=h a=2h a=4h a=8h
0 0.817 | 0.883 | 0.930 | 0.951 0.507 | 0.627 | 0.741 | 0.837
0.5 0.813 | 0.880 | 0.92% | 0.950 | 0.501 0.621 | 0.737 | 0.834
0.75 0.810 | 0.878 | 0.927 | 0.950 || 0.498 | 0.618 | 0.734 | 0.832
1.0 0.876 | 0.926 | 0.959 0.615 | 0.732 | 0.830
1.5 0.873 | 0.924 | 0.958 0.611 | 0.728 | 0.827
2.0 6.922 | 0.957 0.725 | 0.825
4.0 0.916 | 0.953 0.718 | 0.819
6.0 0.950 0.811
8.0 0.946 0.802
L, = 0.6h L, = 0.8h

0 0.245 | 0.336 | 0.451 | 0.582 || 0.073 | 0.104 | 0.149 ! 0.216
0.5 0.243 | 0.333 | 0.447 | 0.578 || 0.074 | 0.104 | 0.148 | 0.215
0.75 0.243 { 0.331 | 0.445 | 0.576 || 6.075 | 0.105 1| 0.149 | 0.215
1.0 0.331 | 0.443 | 0.574 0.107 | 0.150 | 0.215
1.5 0.333 | 0.444 | 0.572 0.112 | 0.153 | 0.217
2.0 0.444 | 0.571 0.158 | 0.22]
4.0 0.451 | 0.570 0.177 | 0.237
6.0 0.569 0.242
8.0 0.561 0.241
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Table B-9.Normalized stress intensity factor k/kg at the deepest penetration
point L = Lg, ¥ = 0 of an inner semi-eliiptic axial surface crack
in a cylindrical shell under uniform bending moment M..

Ly = 0.2h L, = 0.6h
» 2=h a=2h a=ah a=an =h a=2h a=ah a=8h
0 0.804 | 0.875 | 0.926 | 0.959 i 0.441 | 0.579 | 0.710 | 0.819
0.5 0.799 | 0.872 | 0.924 | 0.958 || 0.43¢ | 0.573 | 0.706 | 0.815
0.75 - | 0.796 | 0.869 | 0.923 | 0.957 || 0.430 | 0.568 | 0.702 | 0.813
1.0 0.867 | 0.921 | 0.956 0.565 | 0.699 | 0.811
1.5 0.864 | 0.919 | .955 0.560 | 0.694 | 0.807
2.0 0.917 | 0.954 0.691 | 0.805
4.0 0.911 | 0.950 0.682 | 0.797
6.0 0.946 0.788
8.0 0.942 0.777
L, = 0.6h Ly = 0.8h

0 0.132 | 0.238 | 0.373 | 0.526 {|-0.012 | 0.017 | 0.065 | 0.140
0.5 0.128 | 0.233 | 0.368 | 0.521 |}-0.012 | 0.017 | 0.064 | 0.139
0.75 0.128 | 0.231 | 0.365 | 0.518 |l-0.010 | 0.018 | 0.064 | 0.138
1.0 - 0.230 | 0.363 | 0.516 0.019 | 0.065 | 0.138
1.5 0.233 | 0.363 | 0.513 0.024 | 0.069 | 0.141
2.0 0.363 | 0.513 0.074 | 0.145
4.0 0.369 | 0.515 0.091 | 0.161
6.0 0.507 | 0.164
8.0 0.495 - 0.161
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Table B-10. Distribution of the normalized stress intensity
factor k/k, along the crack front in a cylindrical
shell containing an inner or outer semi-elliptic
circumferential suvface crack (see insert in
Fig. &), », = 2, a=4h, Lg=0.4n, v=0.3.

Outer Crack Inner Crack
2% Membrana Bending Membrane Bending
% Loading Loading
1.0 0.727 0.692 0.685 0.643
0.894 0.719 0.689 0.678 0.641
0.789 0.694 {.680 0.858 0.637
- 0.684 0.655 0.6865 0.625 0.628
0.578 0.604 7.643 0.580 0.5615
- 0.473 0.544 0.618 | 0.527 0.597
0.387 0.477 0.583 0.455 0.569
- 0.263 g 0.406 0.538 0.399 0.529

Table 1!. Distribution of the normalized stress intensity factor
k/ko along the crack front in a cylindrical shell con-
taining an inner or outer axial semi-elliptic surface
crack (see insert in Fig. 4}, v=0.3.

Inner Crack Inner Crack Outer Crack

a=h,Ri=]Oh,L0=0.2h aw&th5=?0h,L0=G.8h a=4h,Lo=0.4h,A]=2
%f- Tension Bending Tension Bending Tension Bending
1.0 0.812 0.799 0. 161 0.078 0.773 0.747
0.894 0.807 0.797 0.1860 0.082 | 0.754 0.743
0.789 0.792 0.792 0.157 0.084 0.736 0.731
0.684 0.766 0.782 0.153 0.109 0.693 0.710
0.578 0.730 0.765 0.147 0,124 0.637 0.683
0.473 0.685 0.729 0.138 0.139 0.572 0.652
0.367 0.628 0.700 G.126 J.149 0.500 0.612
0.263 0.559 0.647 g.114 0.154 0.426 0.562
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Figure B1. - The geometry of a circumferential or an axial'part-

through surface crack in a cylindrical shell.

B-25




0 05 10
REXRO

Figure B2. Comparison of the stress intensity factors obtained from
the line-spring shell model and the axisymmetric elas-
ticity solution [20]. (a) Stress intensity factor at
the deepest penetration point of an external semi-elliptic
circumferential crack in the shell, (b) same as (a) for
an internal surface crack, (c) elasticity solution for the
external axisymmetric crack, {d) the internal axisymmetric
crack. (For Lqg=0.6h, kg=4.035 og’lge kp=ﬂ.582 kgs
o uniform axial stress, a=8h) '
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Figure B5. Same as Figure 4, for internal surface crack (12=2,
a=4h, Ly=0.24h).
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Figure 86. Variation of the stress intensity factor for a semi-

elliptic internal axial surface crack 1in a cylindrical
shell. _ _
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‘Figure B7. Comparison of the Tine spring shell results (dashed Tines)
- with the finite element solution (full Tines) [14] for a

pressurized cylinder containing a semi-elliptic internal
axial surface crack.
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APPENDIX C

STRESS INTENSITY FACTORS FOR STANDARD
LINE PIPES CONTAINING A PART-THROUGH SURFACE CRACK

The solution and some general results for a cylinder containing an inner
or an outer surface crack are given in Appéndix B . In this appepdix we tabu-
late the stress intensity factors for standard line pipes containing an axial
or a circumferential inner or outer crack. Referring to Fig. 1 of Appendix B
for notation, let R, h, Lys and Za be the mean radius, the thickness, the crack
depth (at the deepest penetration point) and the crack Tength in the pipe.
Also, let X1 X55 X3 be the local coordinates, and N1I(X2) and M11(X2) be the
Tocal membrane and bending resultants acting on the pipe along X1 =0,

[X2]<a in the absence of the crack, where X, is taken along the crack in the
tangent plane.

In most cases the stress state in the neighborhood of the part-through
crack is approximately uniform and one may solve the problem by assuming that

N1](X2) = N_ = constant, Ml](xz) = Q, or (1)
0.. | (2)

M11(X2) = M_ = constant, Niﬁ(xz)

For loading conditions (1) and (2} the Mode I stress intensity factors calcu-
lated at the deepest penetration point of a semi-elliptic surface crack in
standard steel pipes (i.e., for the Poisson's ratio of 0.3) are given in
Tables 1-16. The normalizing stress intensity factors K0 in this analysis

is the corresponding plane strain value for an edge cracked plate of thickness
h and crack depth Lo’ and are given by

N
KO = KOt = "E" '/h—gt(g) s EF LO/h ] . o (3) .
for membrane loading, and
oM _
'K0=K0b="1,"]—2m‘/ﬁ. Qb(‘é) s EzLo/h > | (4)

for (local) bending. The functions gt[g) and gb(g) are obtained from the
plane strain soluticn and are given in Appendix B .
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In addition to the uniform axial loading for which N_ = constant and
M,=0, in pipes the loading which is of considerable practical interest is
the gross bending with bending moment Mo' In this case, ignoring the crack,
the axial stress in the pipe is given by

Mz

oy =22, 1= RA(4RZ + 02) (5)

where I is the area moment of inertia and Z is the distance from the neutral
plane and is given by

20=(R+Xﬁume,0:iein,‘wﬂ < h/2, (6)

X3 being the local thickness coordinate. The circumferential angle & is
measured from the location of maximum tensilz stress. For relatively small
values of ¢ we observe that

¥ 2
= 62 _ 2
cose =1 - 5= 1- 5RZ . . (7)

Combining (5), (6) and (7) we find

2 2
) MOR X MOX X

2 3 2
oy =1 (0 - 552) + == (1 - 52)

(8)

The first term in (8) is independent of the thickness coordinate X3 and hence
represents a membrane loading whereas the second term is linear in X3 and
represents a Tocal bending. By observing that the local membrane and bending
stresses are related to the stress and moment resultants by

N 12M, - X
m_ 11 b . 1173
GT]' " "h o ?T] = h3 s (9)

and by letting oqq = Ollm + cI1b, from (8) and {9) we obtain
> 2
MORh X X

Npp(Xy) = 0= (1 = 582) = N_(1 - 527) , | (10)
- M h3 X,2 X2
M]](Xz) f ﬂﬁ?r'(q - spz) = M (1 - fﬁz) . (11)

4
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From (10} and (11) it is seen that the stress intensity factor may be
found by adding the results obtained from the following four loading conditions:

{a) N]] =N , MT] =0, (b) N11 =0, M}] =M ,

o [+

[

= . 27912 - = = . 2/0p2 ¢
(€] Npy = -NJG2/2RZ My = 0, (d) Nyy'= 0, My = =M X,2/2R2 . (12)
The stress intensity factors due to the uniform loads (12) (a) and (b)
N, = MORh/I s M= M0h3/121 {13)

are given in Tebles 1-16. Since |X2]<a, the contribution of the nonuniform terms
would be of the order a2/R? or less compared to the results given by the cor-
responding uniform loads. Particularly, at the deepest penetration point of
the crack since X5 = 0, this contribution is expected to be much smaller than
the order a?/RZ. To give some idea about such curvature effects on the stress
intensity factors Table 17 shows the calculated results for a 20 in. diameter
pipe. In this table, too, the respective normalizing stress intensity factors
are given by (3) and (4). Note that the results. are three to four orders of
magnitude smaller than the corresponding stress intensity factors'under uniform
Toading conditions and may, therefore be neglected. _

| The tab}es give the stress 1ntens1ty factor at the deepest penetration
point of a part- -through sem1 eiITptlc surface crack. Since the fatigue crack
propagation is generally self-similar, correlating the results at one point on
the crack front is usually sufficient. However, if necessary the stress inten-
sity factor at other Tocations on the crack front in a cylindrical shell under
membrane loading may be obtained from the foliowing approximate formula:

L - |
K(¢) = K(Z)[1-(1+c0s29)(0.2323-0.0615 -2)] , o (1)

where the angle ¢ which determines the points along the semi-elliptic crack
front is defined in Figure 4 of Appendix B, h is the wall thickness and L0 is

the maximum crack depth.
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Table 1. K/KO in a line pipe with 0D = 48 in., h = 0.625 in.

SO ~I O NI Mo =
. - -

/nl o1 0.2 |03 toa {05 les 0.7 08 10.9
a/hy Quter circumferential crack, NoF0, Me=0
1.0 10.945 10.817 [0.564 [0.5C08 [0.366 (0.24/ 0.747 | 0.074 | 0.033
2.0 10.967 [0.882 10.766 |0.628 }0.481 [0.34C |0.209 0.106 | 0.048
3.0 10.976 (0.911 |0.817 |0.695 !0.554 {0.405 |0.257 0.132 | 0.060
4.0 10.980 10.928 {0.848 [0.739 [0.505 |0.455 [0.2%@6 0.155 | 0.070
5.0 10.983 10.939 [0.868 [0.770 [0.643 [0.494 |G.329 0.175 | 0.079
6.0 10.985 [0.946 {0.882 i0.792 [0.572 [G.525 |0.357 0.193 { 0.088
7.0 10.987 10.951 [0.893 [0.80% !0.694 10.551 10.381 0.209 0.096
8.0 10.988 |0.954 10.900 |0.821 {0.712 1§.572 ]0.401 0.223 | 0.104
Quter circumferential crack, Ne=0, M.# ' '
0 10.944 [0.805 10.627 |0.443770.273 |0.133 {0.040 -0.011 [-C.034
0 |0.966 10.874 [0.741 !0.581 |0.407 |0.242 10.108 0.020 [-0.028
0 |0.975 10.905 |0.798 {0.658 |0.492 [0.318 [0.163 0.047 t-0.021
.0 lo.980 10.923 |0.832 {0.708 :0.551 :0.377 (0.209 0.072 1-0.017
0 10.983 10.934 10.855 |0.742 10.595 [0.422 [0.246 | 0.094 -0.004
.0 !0.985 |0.942 10.870 |0.767 [0.628 [0.485 10.278 0.114 | 0.004
0 10.986 10.947 10.882 |0.785 |0.653 [0.488 [0.304 0.131 0.012
.0 10.987 |0.951 |0.890 10.800 |0.673 [0.511 [0.327 0.147 | 0.020
S Inner circumferential crack, N _#0, M.~0
1.0 10,944 T0.874 T0.660 (0.503 [0.367 [0.243 [0.T45 | 0.075 | 0.033
2.0 10.965 6.877 10.757 10.616 !0.468 [0.328 (0.202 | 0.102 | 0.048}
3.0 10.974 10.905 10.804 {0.677 10.532 [0.384 [0.242 0.124 | 0.058
4.0 |0.978 |0.920 [0.832 [0.776 [0.575 [0.425 {0.273 0.142 | 0.066
5.0 10.981 10.930 |0.850 |0.742 |0.607 |0.456 0.297 | 0.156 | 0.073
6.0 10.983 10.937 10.864 |0.762 |0.631 {0.480 10.318 0.169 | 0.080
7.0 (0.984 |0.941 [0.873 {0.776 0.650 10.500 10.335 + 0.180 | 0.086
8.0 10.985 |0.945 [G.880 |0.787 10.664 10.517 10.350 0.190 | 0.091
Inner circumferentigl crack, Ne=0, M.#0
T.0 10.943 10.807 [0.6721 [0.436 [0.267 |0.129 10.037 -0.012 [-0.034
2.0 |0.964 [0.869 [0.730 [0.566 [0.391 |0.227 :0.099 0.015 |-0.030
3.0 10.973 |0.898 |0.783 {0.635 [0.465 [0.292 10.144 0.037 [-0.024
4.0 10.978 10.915 |0.814 [0.679 |0.516 {0.33% 10.179 0.056 {-0.018
5.0 10.981 |0.925 [0.835 |0.709 [0.552 10.375 |0.207 0.671 1-0.013
6.0 10.982 (0.932 10.849 |0.731 {0.579 |0.403 0.230 0.085 |~0.007
7.0 10.984 10,937 {0.859 |[0.747 10.600 |0.426 0.249 0.096 |-0.002
8.0 |0.985 {0.941 |0.867 |0.759 10.616 |0.444 [0.265 0.107 | 0.003
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Table 2. K/KO in a tine pipa with 0D = 48 in., h = 0.625 in.

W10 0.2 (0.3 [0 |05 |os o7 los 0.9
a/hy Cuter axial crack, N,#0, M =0 _
1.0 [0.946 [0.820 [0.667 [0.512 |0.369 [0.940 10.148 0.074 | 0.033}
2.0 |0.968 [0.886 [0.773 [0.628 !0.497 [0.349 10.216 0.709 | 0.049
3.0 40.977 10.917 [0.828 |0.711 1G.572 10.422 10.272 | 0.141 0.063
4.0 [0.982 10.935 10.862 [0.767 [0.632 10.483 |0.321 0.170 | 0.076
5.0 10.986 [0.947 [0.885 [0.795 {0.678 10.533 10.365 | 0.198 0.089
6.0 10.988 10.955 [0.902 !0.823 [4.714 10.574 {0.404 | 0.7225 0.102
7.0 10.989 10.961 [0.914 10.844 {0.743 !0.609 |0.438 0.250 | 0.115
8.0 10.997 |0.965 !0.924 [6.860 (0.765 10,638 10,469 | 0.274 | 0.128
Outer axial crack, N,=0, M_#0
1.0 10.944 10.807 10.637 [0.447 10.277 10137 [0.042 T-0.011 -0.034
2.0 10.967 [0.879 [0.750 [0.592 |0.42¢ 10.253 10.117 | 0.0724 -0.027
3.0 [0.977 10.912 [0.811 10.677 [0.5%5 [0.341 10.182 | 0.057 -0.017
4.0 10.982 10.937 |0.849 10.733 10.584 0.432 [0.239 | 0.090 {-0.0058
5.0 10.985 10.944 [0.874 [0.774 iG.637 10.470 [0.289 0.122 |+0.007
6.0 {0.988 [0.952 [0.893 [0.804 [0.679 10.519 10.335 0.152 | 0.0203
7.0 10.989 10.958 [0.906 10.827 10.712 [0.559 !0.374 1-0.180 0.034
8.0 10.991 10.963 |0.917 [0.845 10.73% 16.592 10.410 0.207 | 0.048
inner axial crack, N.#0, M.=0 : '
1.0 [0.945 [0.815 [0.660 10.504 10357 [0.224 70.745 1T 0.073 1 0.034
2.0 |0.966 10.879 |0.760 [0.62D0 15.477 0.332 {G.205 0.104 | 0.049}
3.0 10.975 10.908 10.811 [0.686 10.542 [0.394 [0.250 | 0.129 0.060
4.0 10.980 {0.925 {0.842 |0.730 10.593 [0.443 lg.287 0.151 | 0.0703
5.0 10.983 [0.937 |0.864 [0.762 10.633 |0.483 10.321 | 0.171 0.080
6.0 ,10.985 10.945 [0.880 10.787 {0.664 {0.517 10.350 | 0.190 0.089
7.0 10.987 10.951 [0.893 [0.807 10.691 [0.546 |0.377 0.208 | 0.098
8.0 10.988 [0.956 10.903 {0.824 [0.713 |0.572 !5.40%1 ! 0.22% 0.107
Inner axial crack, N.=0, M_#0
1.0 10.943 10.802 [0.622 [0.438 [0 268 [0.730 [0.038 7-0.012 -0.034
2.0 |0.965 |0.871 [0.734 10.571 [0.397 {0.232 10.103 | 0.017 -0.029
3.0 10.974 10,902 [0.797 10.646 {0.478 10.305 10.154 [-0.43 -0.022
4.0 10.979 10.920 [0.826 {0.697 10.538 !0.367 0.197 | 0.066 |-0.014
5.0 10.983 0.933 [0.850 |C.734 |0.583 {G.409 10.236 | 0.089 -0.006¢
6.0 10.985 |0.941 !0.868 10.762 (0.620 10.449 10.270 | 0.109 -0.003
7.0 10.987 10.948 |0.882 10.785 [0.651 10.483 10.301 0.130 { 0.012
8.0 |0.988 10.953 |0.893 10.802 [0.676 10.513 [5.329 | 0.149 0.021
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Table 3. K/K0 in a line pipe with 0D = 48 in., h = 0.75 in.
Lo/h+ 0.1 0.2 0.3 0.4 | 0.5 0.6 0.7 0.8 0.9
a/h Quter circumferential crack, N #0, M_=0
1.0 [0.94% [0.817 [0.664 [0.508 [0.366 [0.247 0.147 0.074 | 0.033
2.0 [0.967 [0.882 |0.766 10.628 |0.4817 :0.340 (6.270 | 0.106 | 0.048
3.0 10.976 |0.911 [0.816 [0.695 [0.553 0.405 10.258 | 0.133 | 0.060
4.0 [0.980 |0.927 [0.847 |0.738 |10.604 |0.454 [0.297 | 0.156 | 0.070
5.0 {0.983 |0.938 |0.867 |0.768 0.641 10.433 [0.329 { 0.176 | 0.080
6.0 [0.985 {0.%44 |0.881 |0.790 [0.669 10.523 [0.356 { 0.193 | 0.089
7.C |0.986 |0.949 0.890 |0.895 [0.690 {0.548 [0.3796 | 0.209 | 0.097
8.0 [0.987 (0.952 10,897 |0.817 |0.707 |0.567 10,398 ¢ 0.222 | 0.105
Quter circumferential crack, MNe=0, Mo#0
1.0 10.944 10.805 [0.627 (0.443 10.273 [0.133 [0.040 {-0.011 [-0.034
2.0 §0.966 [0.874 10.741 |0.580 (0.407 [4.242 0.110 | 0.020 {-0.028
3.0 |0.975 [0.905 (0.797 {0.657 [0.492 :0.318 [0.164 | 0.048 |-0.020
4.0 10.980 [0.922 {0.831 !0.706 {0.550 i0.376 |06.209 | 0.073 [-0.012
5.0 [0.983 |0.933 |0.853 [0.740 |0.593 i0.421 |0.246 | 0.065 |-0.003
6.0 |0.985 [0.941 10.888 [G.764 [0.624 (0.456 (0.276 | 0.114 | 0.006
7.0 (0.986 [0.946 |0.879 {0.787 10.648 {0.483 10.302 | 0.131 0.014
8.0 [0.987 10.949 |0.885 [0.794 |0.666 (0.505 10.323 | 0,146 | 0.021
Inner circumferential crack, Nef0, Mo=0
1.0 10.944 [0.814 [0.659 i0.502 [0.367 [0.243 [0.145 | 0.073 1 0.033
2.0.10.965 [0.876 |0.755 i0.614 |0.466 [0.327 10.201 | 0,102 §{ (0.048
3.0 {0.973 |0.903 |0.802 10.674 |0.529 [(.382 (0,240 | 0.124 { 0.058
4.0 |0.978 [0.919 |0.829 {0,712 |0.577 [0.421 [0.270 | 0.141 | 0.066
5.0 |0.981 {0.928 {0.847 |0.737 |0.602 [0.45% [0.294 | 0.155 | 0.074
6.0 [0.982 [0.934 {0.860 [0.756 |0.625 (0.475 10.314 1 0,168 | 0.080
7.0 10.984 |0.939 |0.869 10.770 |0.642 [0.493 [0.330 | 0.178 | 0.086
8.0 [0.985 10.942 [0.875 |0.781 10.656 10,509 (0.344 | 0.187 1 0,091
Inner circumferential crack, Ne=0, M#0
1.0 [0.943 [0C.8071 [G.621 [0.436 10.266 [0.128 [0.037 [-0.GI3 [-0.034
2.0 10.964 |0.868 |0.729 |0.563 {(0.389 0.225 |0.098 | 0.015 [-0.030
3.0 |0.973 10.897 [0.780 [0.632 i0.461 0.289 [0.142 | 0.036 [~-0.024
4.0 {0.977 {0.913 [0.811 [0.675 (0.510 [0.335 [0.176 { 0.054 |-0.018
5.0 [0.980 {0.923 {C.831 }0.704 10,545 (0.369 [0.203 | 0.070 [-0.012
6.0 [0.982 i(.930 10.844 |0.724 |0.57%7 |0.396 |0.224 | 0.082 |-0.007
7.0 10.983 {0.934 i0.854 |0.740 [0.591 10.417 :10.243 { 0.094 |-0.002
8.0 10.984 {0.938 [0.861 |0.751 10.606 10.434 146.258 | 0.104 | 0.003
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Table 4. K/KO in a Tine pipe with 0D = 48 in,, h = 0.75 in.

Y% 0.1 102 0.3 0.2 (05 loe o7 los los
a/hy Outer axial crack, Nef0, Me=0
1.0 10.946 10.820 10.668 10.573 0.3/0 0.250 10.149 | 0.074 ] 0.034
2.0 {0.968 [0.887 [0.774 !6.639 [0.493 '0.351 |0.218 0.1711 0.050
3.0 10.977 10.918 [0.829 [0.713 |0.575 10.427 10.275 0.142 0.064
4.0 [0.983 |0.936 |0.863 |0.763 10.5835 0,487 0.325 + 0.173 | 0.077
5.0 [0.985 [0.947 |0.886 [0.798 {G.681 {0,537 (0.370 0.202 0.091
6.0 {0.988 [0.955 [0.992 10.825 10.717 10.579 {G.409 0.230 | 0.105
7.0 |0.990 10.961 [0.915 10.845 {0.745 10.613 iG.444 | 0.255 ! 0.119
8.0 10.991 [0.965 [0.924 0.85Y 10.768 10642 EO°474 f 0.279 | 0.132
Quter axiai crack, No=0, Mu#0
1.0 {0.945 [0.807 [C.637 0. 44810278 T0.737 |0 493 -0.0710 1-0.034
2.0 [0.967 {0.879 {0.751 10.594 10.423 i0.9258 6.179 0.025 {-0.027
3.0 10.977 |0.912 {06.812 {0.5679 [0.518 [0.345 10,185 0.060 |-0.016
4.0 10.982 [0.932 10.850 [0.736 10.588 [0.417 [0.243 4.094 |-0,004
5.0 [0.985 [0.944 10.875 !0.776 [0.641 105.476 0.295 | 0.126 | 0.010
6.0 |0.988 [0.952 |0.893 {0.805 [0.5882 10.524 10.341 0.157 | 0.024
7.0 10.989 (0.959 [0.907 |0.828 |0.715 10.584 (0.380 0.186 | 0.038
8.0 10.990 10.563 |0.917 |0.846 (G.747 10.597 (0.415 0.212 | 0.082
. Inner axial crack, Ne#0, M.=0 7
1.0 10.944 [0.815 [0.660 [0.5072 0.362 0.244 10,145 0.073171 0.034
2.0 [0.966 {0.879 [0.759 |0.619 10.472 10.2332 10.205 0.104 | 0.049
3.0 10.975 10.908 :0.810 !0.685 [0.541 10.394 [06.250 | 0.129 ! 0.061
4.0 10.980 [0.925 [0.841 10.729 10.592 {0.443 $.288 | 0,152 0.071
5.0 10.983 |0.836 [0.883 {0.762 |0.632 10.483 14,321 0,172 0.081
6.0 [0.985 [0.944 [0.880 |0.787 10.664 (0.517 10.35] $.192 | 0,091
7.0 [G.987 10.951 {0.832 [0.807 !0.690 10.547 [0.378 0.270 [ 0.100
8.0 [0.988 |0.956 {0.802 |0.823 [0.713 {0,572 [0.403 0.227 | 0.109
Inner axial crack, Ne=0, M0
0 (0.943 [0.802 [0.622 [0.437 1C.268 [0.779 10.038 T-0.012 -0.034
0 |0.965 {0.870 10.733 10.570 10.395 lg.232 0.103 0.017 {-0.029
.0 10.974 10.907 {0.790 |0.645 [0.477 {0.305 0.154 | 0.043 |-0.021
.0 [0.979 10.920 ]0.825 [0.8%6 |0.537 |0.367 G,198 0.067 1-0.013
0 10.982 [0.932 |0.84% [0.733 |0.583 |0.49¢ 0.236 ¢.080 [~-0.004
0 10.985 {0.947 0,867 |0.761 [0.619 10.449 {0.271 g.111 0.005
0 |0.987 [0.947 |0.881 {0.784 10.650 0.484 10,302 | 0.132 { 0.014
.0 {0.988 [0.953 [0.892 !0.807 '6.6?6 0.5174 10.330 0.151 0.023
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Table 5. K/KO in a line pipe with 0D = 36 in., h = 0.5 in.

L/mtor o2 o3 o4 los o6 0.7 | 0.8 | 0.9
a/h+
Quter circumferential crack, N A0, M.=0
1.0 10.945 [0.817 [0.664 |0.508 10.366 [0.247 [0.147 { 0.073 | 0.033
2.0 10.967 |0.882 (0.766 [D.628 i0.481 (0.340 0.2'0 | 0,106 | 0.048
3.0 [0.976 [0.9171 i0.817 10.685 [0.554 15.405 {0.257 | 0.132 | 0,060
4.0 10.980 10.928 i0.848 [0,73% iG.605 [0.455 [G.297 | 0.155 | 0.070
5.0 [0.983 10.938 10.868 10.769 [0.042 [C.494 10.330 | 0.175 | 0.079
6.0 [0.985 |0.945 [0.882 [0.791 (0.671 10.525 {0.357 | 0.193 | 0.088
7.0 16.987 [0.950 :0.892 0.808 10.693 14.550 {0.380 | 0.209 | 0.096
8.0 |0.988 |0.954 i0.800 {0.820 :0.7710 {0,570 10.400 | 0.223 | 0.104
Quter circumferential crack, Ne=0, Mo#0 '
1.0 [0.%44 ]0.805 (0.627 [0.443 [0.273 |0.133 [0.040 {~0.011 [-0.034
2.0 10.966 |0.874 {0.74%7 |0.581 :0.407 |0.242 10.109 | 0,020 [-0.028
3.0 {0.975 |0.805 [0.798 |0.657 16.492 [0.318 (0,164 | 0.048 |-0.021
4.0 [G.980 |0.923 {0.832 0.707 [0.55%1 |0.376 (0.209 | 0.072 |-0.012
5.0 |0.983 [0.934 {0.854 !0.747 10.594 [6.422 |0.246 | 0,094 |-0.004
6.0 '0.985 10.941 10.870 10.766 [0.827 i0.458 (|0.277 | 0.114 | 0.005
7.0 10.986 [0.947 [0.88% 0.784 [G.652 10.486 (0,304 | 0,131 | 0.013
8.0 10.987 |0.950 10.889 !'0.798 (0.671 10,509 10.326 | 0.146 | 0.020
Inney circumferential crack, Ne#0, M,=0
1.0 {0.944 |G.814 [0.659 [0.503 [0.36% 10.243 [0.145 | 0.073 | 0.033
2.0 [0.965 |0.877 |0.756 [0.615 [0.467 10.328 10.201 0.102 | 0.048
3.0 |0.974 [0.904 {0.803 (0.676 |0.537 |0.333 {0.241 0.124 | 0.058
4.0 10.978 10.920 [0.831 [G.774 {0.574 [0.424 14,272 | 0.142 | 0.066
5.0 |0.981 10.929 10.850 10.741 [0.605 [0.454 {0.296 | 0.156 | 0.074
6.0 [0.983 {0.936 |0.862 [0.760 10.6259 10.478 10.316 | 0.169 | 0,080
7.0 [0.984 [0.940 |{0.872 [0.774 [0.647 [0.488 |(.333 | 0.779 | 0.086
8.0 |0.985 ;0.944 [0.879 {0.785 |[0.662 [0.514 10.348 | 0.189 | 0.09]
Inner circumferential crack, N,=0, M0
1.0 [0.943 ]0.801 [0.621 [0.436 i0.267 10.129 [0.037 {-0.012 [-0.034
2.0 10.964 |0.868 |0.730 i0.565 [0.380 1G.226 |0.099 0.015 -0.030
3.0 10.973 [0.8%8 [0.782 (0.634 (0.464 10.291 (0.143 | 0.037 [-0.024
4.0 [0.978 (0.914 (0.813 [0.678 [0.574 |0.338 [0.178 | 0.055 [-0.018
5.0 |0.980 (0.924 [0.833 [0.707 10.549 10,373 10.205 | 0.071 |-0.013
6.0 |0.982 {0.5831 {0.847 (0.728 [0.576 (0.407 [0.228 | 0.084 |-0.007
7.0 1G.984 |0.336 |0.857 |0.745 [0.597 10.423 10.247 | 0.095 |-0.002
8.0 10.985 10.940 |G.865 |0.757 [0.6713 10.44Y 10.262 0.1086 0.003




Table_ﬁ..sK/KO in a line pipe with 0D = 36 in., h = 0.5 in.
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™| 0.1 (0.2 103 104 [05 [o06 lo7 los losg
a/h+ Quter axial crack, N.70, M.=0 .
1.0 10.946 [0.820 10.668 [0.572 [0.370 [0.250 10.149 0.074 1 0.033
2.0 10,968 [0.887 [0.774 [0.638 10.492 10.350 [0.217 0.110 { 0.050
3.0 |0.977 {0.917 :0.828 [0.712 |0.573 10.425 |0.273 0.141 | 0.063
4.0 10.983 [0.935 [0.862 [0.761 |0.633 [0.485 |0.322 0.171 | 0.076
5.0 [0.986 [0.947 [0.885 [0.797 10.679 |0.534 !0.366 0.199 | 0.090
6.0 10.988 10.955 10.902 {0.824 |0.715 |0.576 |0.405 0.226 | 0.103
7.0 10.990 10.961 [0.914 [0.844 |0.744 [0.610 [0.440 0.252 { 0.116
8.0 0.991 {0.965 |0.924 |0.860 !0.767 [0.640 [0.47] 0.276 | 0.129
Quter axial crack, Ne=0, M.#0
.0 [0.944 10.807 [0.637 [0.448 [0.277 10.137 10.047 -0.010 [-0.034
0 10.967 10.879 [0.750 0.593'10.427 10.254 |0.118 0.024 |-0.027
0 10.977 {0.912 [0.811 {0.677 !10.516 [0.343 10.183 0.058 [-0.017
-0 10.982 10.931 [0.849 |0.734 |06.586 10,414 [0.240 ! 0.097 -0.005
.0 10.985 10.944 [0.875 0,774 |0.639 {0.472 {0.297 | 0.123 0.008
.0 10.988 10.952 [0.893 10.804 [0.680 {0.520 [0.337 | 0.154 0.022
.0 10.989 10.959 10.906 {0.827 {0.713 10.561 !0.377 | 0.18? 0.035
.0 10.991 10.963 [0.917 |0.845 0.739 [0.594 (0.412 | 0.209 ! 0.049
Inner axial crack, Ne#0, M.=0
1.0 10.945 [0.815 [0.660 [G.504 [0.362 10.244 J0.145 0.073 { 0.034
2.0 10.966 |0.879 [0.760 |0.620 |0.472 10.332 10.205 6.104 | 0.049
3.0 10.975 [0.908 [0.810 10.685 [0.542 |0.294 10.250 | 0.129 0.060
4.0 10.980 {0.925 10.842 {0.730 {0.593 |0.443 |0.288 ~0.151 1 0.071
5.0 |0.983 |0.937 {0.864 [0.762 |0.632 !0.483 |0.32] 0.171 | 0.080
6.0 10.985 [0.945 [0.880 10.787 10.664 |0.517 10.35] 0.180 | 0.090
7.0 10.987 10.951 |0.893 {0.807 10.593 0.346 [0.377 0.208 { 0.099
8.0 [0.988 |0.956 {0.903 [0.823 {0.713 [0.572 lo.402 0.225 | 0.108
1 Inner axial crack, Ne=0, M.#0 3
1.0 10.943 10.802 [0.627 [0.437 [0.268 [0.129 |0.038 ~0.012 [-0.034
2.0 10.965 |0.871 [0.734 [0.571 {0.396 10.232 10.103 0.017 {-0.030
3.0 10.974 10.902 10.790 {0.646 |0.478 {0.305 [0.154 0.043 {-0.022
4.0 10.980 10.920 [0.826 10.697 10.537 |0.362 |0.197 0.067 1-0.014
5.0 10.983 [0.932 [0.850 [0.734 {0.583 10.409 |0.236 0.089 |-0.005
6.0 10.985 [0.941 10.868 [0.762 |0.620 10.449 10.270 0.110 | 0.004
7.0 [0.987 [0.948 [0.882 10.784 [0.650 [0.483 [0.301 | 0.130 0.013
8.0 [0.988 i0.953 {0.893 [G.803 |0.676 0.514 10.329 0,149 0.022




Table 7. K/K0 in a line pipe with 0D = 36 in., h =.0.625 in,

(/" T 01 [o2 103 | 04i05 |06 |07 [08 |09
a/h¢ .
OQuter circumferential crack, NeA0, Mw=0
T.0 10.945 10.817 |0.664 |0.508 10.366 |0.247 [0.747 | 0,074 | 0.033
2.0 10.967 [0.882 10.766 [0.628 |0.481 |0.340 {0.210 | 0.107 | 0.049
3.0 10.975 10.9171 10.816 {0.695 [0.553 [0.405 i0.258 | 0.133 | 0.060
4.0 t0.980 !0.927 10.846 [0.737 [0.603 10.454 10.297 | 0.156 { 0.071
5.0 !0.983 |0.987 [0.866 |0.767 [0.640 {0.492 |0.329 | 0.176 | 0.081
6.0 10.985 10.944 {0.879 [0.788 |0.667 |0.522 {0.356 | 0.193 | 0.090
7.0 0.986 |0.948 |0.889 10.803 |0.688 |0.545 [0.378 | 0.209 | 0.098
8.0 10.987 10.951 |0.895 [0.814 10.704 [0.564 10.396 | 0.222 | 0.105
Outer circumferential crack, Ne=0, Mof0
1.0 10.94470.805 10.627 |0.443 [0.273 [0.134 [0.040 [-0.011 [-0.034
20 |0.966 10.874 |0.74% 10.580 |0.407 |0,242 |0.110 | 0,021 [-0.028
3.0 |0.975 10.905 |0.797 [0.656 '0.491 {0,318 |0.164 | 0.048 {-0.020
4.0 10.980 [0.922 |0.830 [0.705 [0.549 10.375 [0.209 | 0.073 }-0.011
5.0 10.982 |0.933 |0.852 [0.738 10.591 |0.419 [0.245 | 0.095 |-0.002
6.0 |0.984 [0.940 [0.866 {0.761 |0.622 |0.453 (0.275 | 0.114 | 0.006
7.0 10.986 |0.944 l0.877 |0.778 l0.645 (0.480 10.300 | 0,130 | 0.014
8.0 10.986 10.948 10.884 {0.790 |0.662 [0.401 10.320 1 0.145 | 0.022
. S Inner circumferential crack, No#0, Me=0
T.0 [0.944 [0.814 [0.658 ]0.502 [0.360 [0.243 |0.145 0.073 { 0.033
2.0 |0.965 |G.876 |0.754 10.613 [0.465 10.326 |0.200 0.102 | 0.048
3.0 10.973 [0.903 |0.800 -|0.672 |0.527 10.380 |0.239 | 0.123 | 0.058
4.0 10.978 |0.918 (0.827 |0.709 10.568 |[0.419 |0.269 | 0.140 | 0.067
5.0 10.980 10.927 10.845 [0.734 |0.598 |0.448 |0.292 | 0.155 | 0.074
6.0 10.982 10.933 !0.857 |0.752 |0.620 |0.471 [0.311 | 0.167 | 0.081
7.0 10.983 |0.937 |0.866 [0.766 |0.638 (0.489 {0.327 0.177 | 0.086
8.0 10.984 !0.941 10.872 |0.760 |0.651 [0.504 |0.341 | 0.186 | 0.092)
: _ Inner circumferential crack, No=0, Mo#0
1.0 10.942 [0.80T 10.620 |0.435 |0.266 |0.128 [0.037 [-0.013 ]-0.034
2.0 10.964 |0.867 |0.727 [0.562 10.387 10.224 [0.097 | 0.015 |-0.030
3.0 10.972 |0.896 10.777 |0.629 |0.459 {0.287 |0.141 | 0.036 |-0.024
4.0 |0.977 (0.912 |0.809 |0.671 [0.507 |0.332 [0.174 | 0.054 |-0.018
5.0 10.980 [0.922 |0.828 [0.700 [0.541 10.365 {0.200 | 0.069 |-0.012
6.0 10.981 10.928 |0.841 |0.720 |0.566 |0.331 [0.221 | 0.081 |-0.007
7.0 |0.983 {0.933 [0.851 0.735 |0.585 (0.412 {0.239 0.092 |-0.001
8.0 {0.984 10.936 10.858 !0.746 [0.600 !0.429 |0.254 | 0,102 : 0.004




Table 8. K/K0 in a Tine pipe with 0D = 36 in., h = 0.625 in.

O~ PBwWwMN

L/h) 10 1 2.0 130 {40 |50 [6.0 |7.0 | 80 | 9.0
a/hy Quter axial crack, N0, Mo=0
1.0 [0.946 {0.820 [0.668 [0.573 10.377T [0.750 [0.149 | 0.075 | 0.034
C |0.968 [0.887 [0.775 10.640 10.495 10.352 10.219 | 0.111 | 0.050
.0 10.978 10.918 10.830 [0.714 [0.577 |0.429 10.277 | 0.144 | 0.064
0 [0.983 10.936 |0.864 {0.764 |0.637 [0.490 [0.328 | 0.175 | 0.079
.0 {0.986 {0.947 !0.887 [0.799 |0.683 {0.540 {0.373 | 0.204 | 0.093
.0 [0.988 [0.955 !0.903 |0.826 {0.718 10.581 10.412 | 0.232 | 0.107
0 [0.990 [0.961 [0.915 [0.846 10.747 (0.616 [10.447 | 0.258 | 0.121
0 [0.991 10.965 10.924 [0.861 10.769 |0.844 |0.477 (3.282 0.134
Quter axial crack, No=0, MHf0
1.0 10.945 10.808 [0.632 [0.449 [Q.279 [0.138 [0.043 [-0.010 1<0.034
2.0 {0.967 10.880 [0.752 |0.595 |0.424 [0.257 10.121 | 0.026 !-0.026
3.0 [0.977 0.913 {0.813 |0.680 10.520 (0.348 10.187 | 0.061 {-0.015
4.0 10.982 [0.932 |0.85% 10.737 |0.59C |0.420 |0.246 | 0.096 !-0.002
5.0 10.986 |0.944 |0.876 [0.777 |0.643 {0.479 {0.299 | 0.129 | 0.012
6.0 [0.988 |0.953 10.894 {0.807 {0.684 10.527 10.344 | 0.160 | 0.02%6
7.0 |0.989 10.959 10.907 |0.829 |0.716 {0.566 [0.384 | 0.189 | 0.041
8.0 {0.990 [0.963 |0.917 [0.846 |0.742 10.599 10.418 | 0.216 | 0.055
Inner axial crack, N.#0, M,=0 :
1.0 |0.944 0.815 [0.660 [0.503 [0.361 [0.244 [0.745 | 0.073 1 0.034
2.0 [0.966 10.878 10.759 i0.619 [0.471 10.332 i0.205 | 0.105 | 0.049
3.0 {0.975 10.907 |0.809 10.684 !0.541 |0.394 |0.250 | 0.130 | 0.061
4.0 |0.980 ;0.925 [0.841 {0.729 [0.592 [0.443 [0.288 | 0.152 | 0.072
5.0 10.983 {0.936 |0.863 [0.761 [0.632 10.483 [0.322 ! 0.173 | 0.082
6.0 10.985 [0.944 |0.879 [0.786 |0.664 |0.517 [0.352 !.0.193 | 0.092
7.0 {0.987 {0,950 {0.892 |0.806 {0.690 [0.547 10.379 | 0.211 | 0.102
8.0 [0.988 [0.955 [0.902 10.822 10.712 {0.573 10.404 | 0.228 ! 0.111
Inner axial crack, Ne=0, Me#0
1.0 10.943 10.801 {0.621 [0.437 [0.267 70.129 [0.037 [-0.012 [-0.034
2.0 10.965 {0.870 [0.733 [0.569 |0.395 |0.232 10.103 | 0.017 !-0.029
3.0 10.974 10.901 |0.789 [0.645 [0.477 10.304 10.154 | 0.043 [-0.021
4.0 {0.979 [0.979 !0.824 [0.695 |0.536 |0.362 i0.198 | 0.068 |-0.012
5.0 [0.982 [0.932 |0.849 10.732 10.582 10.409 [0.237 0.090 [-0.003
6.0 [0.985 10.941 |0.867 {0.767 [0.619 [0.449 [p.272 | 0.112 | 0.006
7.0 10.986 [0.947 |0.881 [0.783 [G.650 {0.484 |0.303 ! 0.133 | 0.016
8.0 0.9@8 0.952 10.892 10.802 {0.675 |0.514 10.331 { 0.152 | 0.025
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Table 9. K/K0 in a line pipe with 0D = 30 in., h = 0.373 1in.

/Al o1 102 |03 |04 |05 |06 107 | 0.8 [0.9
a/hy Quter circumferential crack, No#0, M.=0
\T-0 0945 [0.617 [0.664 |0.508 [0.366 |0.247 [0.147 | 0.073 | 0.033
2.0 10.967 [0.883 |0.766 |0.628 {0.481 |0.340 {0.209 | 0.106 | 0.048
3.0 10.976 [0.912 [0.817 |0.696 |0.554 [0.405 {0.257 | 0.132 | 0.060
4.0 10.981 10.928 [0.848 |0.740 {0.605 |0.455 {0.296 | 0.158 0.070
5.0 (0.983 10.939 [0.869 0.770 [0.643 |0.494 0.329 | 0.175 | 0.078
6.0 (0.985 |0.946 |0.883 [0.793 |0.672 :0.526 [0.357 | 0.193 0.088
7.0 |0.987 [0.951 {0.893 (0.810 |0.695 :0.552 [0.381 } 0.209 0.096
8.0 |0.988 [0.954 |0.201 |0.822 !0.713 [0.573 |0.401 | 0.223 | 0.103
Quter circumferential crack, No=0, Mo#0
7.0 10.944 10.805 |0.627 |0.447 ]0.273 [0.133 10.040 [-0.011 -0.034
2.0 |0.966 l0.874 |0.741 [0.581 |0.407 [0.242 [0.109 | 0.020 |-0.099
3.0 [0.975 |0.906 |0.798 ;0.658 |0.492 0.318 [0.163 | 0,047 !-0.021
2.0 |0.980 [0.923 10.833 {0.708 10.552 |0.377 |0.209 | 0.072 |-0.013
5.0 [0.983 |0.935 [0.855 0.743 {0.595 [0.423 {0.246 | 0.094 -0.004
6.0 10.985 [0.942 10.871 |0.768 |0.629 [0.459 |0.278 | 0.114 | 0.004
7.0 10.986 |0.947 |0.882 |0.786 |0.654 |0.488 [0.305 | 0.132 } 0.012
8.0 10.987 10.951 |0.891 |0.800 [0.674 |0.512 {0.328 | 0.147 0.019
: Inner circumferential crack, Nef0, Me=0
70 10,044 10.815 10.660 10.503 [0.361 10.243 [0.145 | 0.073 | 0.033
>0 l0.965 |0.878 !10.757 |0.616 [0.468 [0.328 [0.202 | 0.103 | 0.048
3.0 10.974 10.905 |0.805 |0.677 |0.532 [0.385 |0.242 | 0.124 0.058
1.0 10.978 10.921 |0.833 |0.716 |0.576 [0.426 !0.273 | 0.142 0.066
£.0 10.981 {0.930 [0.852 [0.743 [0.608 [0.457 |0.298 | 0.157 0.073
6.0 (0.983 |0.937 |0.865 {0.763 [0.632 {0.482 10.319 | 0.169 0.080
7.0 (0.984 10.942 10.874 |0.778 10.651 (0.502 0.336 0.181 § 0.086
8.0 10.985 10.945 ]0.881 |0.789 {0.666 {0.518 [0.351 | 0.190 0.091
' Inner circumferential crack, Ne=0, Mo#0
7.0 10.943 [0.802 |0.622 10.437 |0.267 [0.129 10.037 |-0.012 -0.034
12.0 |0.964 10.869 {0.731 {0.566 |0.391 0.227 10.099 | 0.015 {-0.030
3.0 [0.973 |0.898 {0.784 10.636 [0.466 (0.293 |0.144 | 0.037 -0.024
4.0 10.978 |0.921 |0.833 |0.716 i0.576 0.340 [0.180 | 0.056 -0.018
5.0 10.981 10.925 [0.836 |0.712 [0.553 |0.377 [0.208 0.072 1-0.013
6.0 10.983 10.933 [0.850 10.733 |0.581 [0.405 |0.231 0.085 ;-0.007
7.0 (0.984 {0.938 [0.860 |0.749 |0.602 0.428 10.250 | 0,097 [-0.002 |
8.0 10.985 10.941 |0.868 !0.761 [0.618 [0.446 10.266 | 0.107 | 0.003 [



Table 10. K/K0 in a Tine pipe with 6D = 30 in., h = 0.375 in.

Wi 01 o2 [03 Toa [05 |06 |07 |os8 0.9
a/hy Quter axial crack, N#0, M.=0
1.0 10.946 [0.820 [0.667 [0.517 10.369 [0.74G [0.148 | 0.074 0,033
2.0 10.968 10.886 |0.773 [0.637 {0.49%1 {0.34% 10.216 | 0.109 | 0.050
3.0 {0.977 {0.917 [0.828 |0.711 |0.572 {0.423 10.271 0.140 0.063
4.0 10.982 [0.935 [0.862 [0.760 10.637 10.482 10.220 | 0.169 0.075
5.0 10.986 10.947 {0.885 [0.796 {0.677 10.532 10.364 ! 0.197 (.088
6.0 [0.988 |0.955 |0.802 [0.823 {0.713 10.573 10.402 | 0.224 0.101
7.0 |0.990 10.961 {0.914 [0.843 |0.742 |0.608 10.437 1 0.249 | 0.114
8.0 [0.991 [0.965 10.923 0.859 I0.766 |0.637 10.468 | 0.273 0.127
Quter axial crack, N, =0, M.#0
1.0 [0.944770.807 [0.630 [0.447 10777 C.135 [0.042 [-0.070 1-0.034
2.0 |0.967 [0.879 |0.749 [0.592 (0420 10.253 10.117 0.024 |-0.027
3.0 10.977 [0.872 {0.810 {0.676 {0.514 10.34] 3.181 0.057 |-0.018
4.0 10.982 |0.931 |0.848 !0.733 [0.584 10.471 {0.238 0.089 |-0.006
5.0 {0.985 10.943 |0.874 [0.773 [0.637 i0.469 |0.?288 0.121 0.006
6.0 |0.988 {0.952 [0.892 |0.803 10.678 |5.517 10.333 0,151 0.020
7.0 10.989 10.958 [0.906 |0.826 10.711 10.558 10.373 | 0.179 6.033
8.0 [0.991 10.963 !0.916 [0.844 10.738 [0.592 {0.408 | 0.205 0.046
' Inner axial crack, Nef0, Me=0
.0 10.945 [0.815 |0.660 10.504 [0.362 10.244 [0.7145 [ 0.073 0.033
.0 |0.966 [0.879 |0.760 [0.620 [0.472 106.332 '0.205 0.704 | 0.048
-0 10.975 10.908 (0.811 [0.686 |0.542 {0.394 (0.250 | 0.129 | 0.060
.0 10.980 10.925 10.842 10.730 10.593 10.443 |0.287 0.151 0.070
.0 10,983 |0.937 [0.864 [0.763 [0.633 10.482 10.320 | 0.171 0.080
.0 [0.985 10.945 [0.880 |0.788 0.665 [0.517 10.350 | 0.7190 | 0.089
.0 [0.987 10.951 10.893 1{0.807 [0.691 {0.546 [0.377 | 0.207 | 0.098
.0 10.988 [0.956 10.903 [G.824 14,713 10.572 10.407 0.224 | 0.106

SRS O O ) RN —

Inner axial crack Meo=0, Mo#D

10.943 10.802 10.622 10.438 0. 0.130 10.038 {-0.012 [-0.034
0.965 (0.871 10.734 10.571 |0O. 0.232 |0.103 | 0.017 {-0.030
0.974 10.902 [0.791 [0.647 |0 0.305 {0.154 | 0.043 [-0.022
0.979 |0.921 |0.826 |0.697 |0. 0.362 {0.197 | 0.066 [-0.014

10.983 10.933 10.850 [0.734 10.584 [0.409 |0.235 0.088 ;-0.006
0.985 |0.941 [0.868 |0.762 |0. 0.448 10.270 | 0.109 | 0.003
0.987 |0.948 [0.882 {0.785 |0. 0.483 10.300 | 0.129 | 0.012

10.988 10.953 10.893 10.803 [0 0.513 ]0.328 | 0.148 | 0.020

651
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Table 11. K/K0 in a line pipe with 0D = 30 in., h = 0.5 in.

L/mto1 to2 | 0.3 | 0.4 0.5 0.6 |0.7 0.8 9.9
a/h+ Outer circumferential crack, N.£0, Me=0 _
T.0 [0.945 [0.817 [0.664 |0.508 [0.366 [0.247 10.147 | 0.074 | 0.033
2.0 10.967 i0.882 |0.766 (0.628 [0.481 10.340 10.210 | 0.107 | 0.049
3.0 [0.975 i0.911 10.816 |0.695 i{0.553 [0.405 |0.258 | 0.133 | 0.060
4.0 (0.980 [0.927 10.847 |0.738 {0,604 [0.454 10.297 | 0.156 | 0.071
5.0 10.983 |0.937 !0.866 |0.767 10,640 10.492 (0.329 | 0.176 | 0.080
6.0 [0.985 10.944 10.880 (0.788 |0.668 (0.522 [0.356 | 0.193 | 0.089
7.0 10.986 [0.949 |0.890 [0.8C4 10.689 |0.546 [0.378 | 0.209 | 0.098
8.0 10.987 [0.952 10.896 [0.815 10.705 10.565 10.397 | 0.222 .105
. : Quter circumferential crack, No=0, M.#0
1.0 [0.944 J0.805 [0.677 10.443°710.273 [0.7134 [0.040 [-0.011 {-0.034
2.0 |0.966 [0.874 |0.741 [0.580 |0.407 [0.242 (0.110 | 0.020 |-0.028
3.0 |10.975 10.905 |0.797 [0.557 10.491 |0.318 |0.164 | 0.048 [-0.020
4.0 |0.980 {0.922 (0.831 |0.706 |0.549 [0.376 |0.209 }{ 0.073 [-0.01]
5.0 10.983 {0.933 |0.852 [0.739 [0.592 [0.420 |0.245 | 0.095 [-0.002
6.0 10.984 10,940 10.867 |0.762 {0.623 [0.454 |0.276 | 0.114 { 0.006
7.0 (0.986 {0.945 |0.877 [0.779 10.546 {0.481 10.301 ! 0.131 [ 0.014
8.0 |0.987 {0.948 |0.885 {0.792 [0.664 |0.503 [0.32] 0.145 0.022
: Inner circumferential crack, Ne#0, Me=0
1.0 [0.944 T0.814 [0.659 [0.507 [0.360 [0.243 [0.145 | 0.073 | 0.033
2.0 [0.965 |0.876 |0.755 [0.613 [0.465 10.326 [0.201 | 0.102 | 0.048
3.0 [0.973 [{0.903 |0.801 |0.673 [0.527 [0.381 |0.240 | 0.124 | 0.058
4.0 [0.978 [0.918 |0.828 |0.710 |0.569 |0.420 |0.269 | 0.141 | 0.067
5.0 [0.980 |0.927 |0.846 10.736 |0.600 |0.450 [0.293 | 0.155 | 0.074
6.0 '0.982 10.934 |0.858 |0.754 |0.622 |0.472 |0.3712 | 0.167 | 0.080
7.0 10.983 10.938 |0.867 |0.767 |0.639 {0.491 {0.328  0.177 | 0.086
8.0 f0.984 {0.941 0.874 10.778 |0.653 [0.506 [0.342 0.187 | 0.092
Inner circumferential crack, Neo=0, Mwf0
1.0 [0.942 [0.807 [0.620 [0.435 [0.266 [0.128 [0.037 [-0.013 {-0.034
2.0 [0.964 |0.867 |0.728 [0.562 [0.388 10.225 |0.098 { 0.015 {-0.030
3.0 [0.972 [0.896 {0.779 |0.630 |0.460 [0.288 ]0.141 ¢ 0.036 |-0.024
4.0 [{0.977 (0.912 {0.8G9 |0.673 |0.508 10.333 {0.175 { 0.054 {-0.018
5.0 {0.980 |0.922 |0.829 |0.701 [G.542 [0.367 |0.201 | 0.069 |-0.012
6.0 {0.982 [0.923 |0.842 |0.722 [0.568 |0.393 [0.223 | 0.082 [-0.007
7.0 10.983 |{0.933 [0.852 |0.737 |0.587 [0.414 (0.240 ¢ 0.093 [-0.001
8.0 0.602 10.431 |0.255 | 0.102 | 0.004

0.984 0.93? 0.859 |0.748



Table 12, K/KO in a Tine

pipe with 0D = 30 in., h = 0.5 in.

00~ U1 Lo N

M 0.1 [o02 [0.3 [0 |05 los 1o7 | o8 | o0
a/hv Quter axial crack, N.70, M.=0
1.0 10.946 [0.820 [0.668 [0.573 [0.370 [0.750 C.148 1 0,744 7 0.034
2.0 10.968 [0.887 10.775 {0.640 10.494 |0.352 0.218 | 0.111 0.050
3.0 10.978 [0.978 [0.830 |0.714 10.576 |0.428 0.276 0.143 | 0.064
4.0 10.983 {0.936 [0.864 [0.764 {0.636 [0.489 0.327 1 0.174 | 0.078
5.0 [0.986 {0.947 10.886 |0.799 [0.682 |0.539 G.371 0.204 0.092
6.0 [0.988 {0.955 [0.503 [0.825 |0.718 |0.580 0.411 0.231 0.106
7.0 10.990 [0.967 |0.915 :0.845 10.746 |0.615 0.446 | 0.257 | 0.120
8.0 10.991 !0.965 [0.924 [0.861 10.759 10.543 0.476 | 0.281 0.133
; Quter axial crack, No=0, M,#0
1.0 1]0.945 [0.6808 [0.632 [0.449 10.778 0.138 10.043 7 1-0.07T0 1.-0.034
2.0 10.967 [0.880 !0.751 [0.595 {0.423 0.257 (0.120 0.026 |-0.026
3.0 {0.977 |0.913 [0.812 |0.680 l0.519 0.347 {0.7856 | 0.061 |-0.016
4.0 10.982 }0.932 |0.850 [0.737 {0.590 lo.479 0.245 0.095 {-0.003
5.0 [0.985 [0.944 |0.876 10.777 {0.847 G.477 10.297 1 0.128 | 0.011
6.0 |0.988 [0.925 [0.894 [0.807 [0.683 |0.525 0.343 | 0.159 | 0.026
7.0 10.989 ]0.959 |0.907 |0.829 {0.816 10.565 0.383 | 0.188 | 0.040
8.0 |0.990 :0.963 [0.917 i0.846 |0.741 {0.598 0.417 1 0.214 | 0.054
: - Inner axial crack, Nef#(Q, Me=0 :
1.0 [0.944 0.81% 1C.660 0.503 [0.362 {0.244 10.745 1 0.073 0.034
2.0 |0.966 {0.879 {0.759 G.619 0.471 10.332 {0.205 | 0.105 | 0.049
3.0 §0.975 {0.908 [0.809 |0.685 !0.54] 0.394 [0.250 | 0.130 | 0.061
4.0 [0.980 |0.925 {0.841 10.729 (0.592 0.443 10.288 0.152 0.072
5.0 10.983 10.936 !0.863 [0.761 |0.632 0.483 [0.322 | 0.173 | 0.082
6.0 [0.985 [0.944 {0.879 |0.786 10.664 0.517 {0.352 0,192 0.092
7.0 10.987 |0.951 [0.892 10.806 |0.690 0.547 10.379 0.210 G.101
8.0 10.988 [0.955 10.902 |0.823 {0.712 0.572 10.403 | 0.228 | 0.110
' : Inner axial crack, No=0, Mo#0
.0 10.943 10.802 [0.677 [0.437 10.267 0.129 [0.038 [-0.012 [-0.03%
.0 10.965 10.870 0.733 |0.570 {0.395 {0.232 10.103 0.017 |-0.029
0 10.974 {0.901 0.789 10.645 [0.477 10.304 |0.154 0.042 [-0.021
0 [0.979 {0.920 [0.825 {0.696 [0.536 0.362 {0.198 | 0.067 {-0.013
.0 [0.982 [0.932 10.849 [0.732 l0.582 0.409 10.237 0.090 (-0.004
.0 10.985 [0.941 10.867 [0.761 [0.619 0.44% (0.271 0.112 | 0.006
0 10.987 [0.947 (0.881 {0.784 (0.650 (.484 1(0.303 0.132 0.0715
.0 10.988 [0.952 |0.892 |0.802 10.675 0.514 10,331 0.151 0.024
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Table 13.° KiKO in a line pipe with 0D = 24 in., h = 0.344 in..

CO =L OO L P —

LMl o1 toz 103 {04 |05 |06 |07 | 0.8 | 0.9
a/hy © Quter circumferential crack, Nof0, M.=0
1.0 [0.945 [0.877 ]0.664 [0.508 [0.366 [0.247 [0.147 | 0.073 | 0.033
2.0 10.967 t0.882 10.766 [0.628 [0.481 (0.340 10.2710 | 0.106 | 0.048
3.0 10.976 [0.911 i0.817 |0.6%5 |0.553 [0.405 [0.257 | 0.132 g.060
4.0 10.980 [0.928 {0.847 10.739 10.604 10.455 [0.297 | 0.155 | 0.070
5.0 [0.983 [0.938 i0.868 {0.769 |0.642 10.493 10.329 0.175 0.080
6.0 |0.985 [0.945 [0.882 10.79 10.670 {0.524 |0.357 | 0.193 | 0.088
7.0 [0.987 10.950 10.892 (0.807 10.692 |0.549 i0.380 | 0.209 0.097
8.0 |0.987 |0.953 {0.899 |0.819 [0.709 [0.570 {0.400 | 0.223 | 0.104:
Quter circumferential crack, Neo=0, Mu#0
0 10.944 [0.805 [0.627 [0.443 10,273 10.733 [0.040 [-0.011 [-0.034
0 {0.966 [0.874 [0.741 |0.581 ;0.407 |0.242 |0.109 | 0.020 |[-0.028
0 10.975 |0.905 |0.798 (0.657 10.4%2 [0.318 (0.164 0.048 |[~0.021
0 {0.980 (0.923 [0.832 |0.707 |0.551 |0.376 [0.209 | 0.072 |-0.012
0 |0.983 |0.934 |0.854 !0.741 [0.5%94 '0.427 [0.246 | 0.094 [-0.004
0 [0.985 {0.941 |0.869 [0.765 [0.626 10.457 (0.277 | 0.114 | 0.005
0 [0.986 |0.946 |0.880 [0.783 {0.651 |0.485 |0.303 | 0.131 | 0.013
.0 [0.987 |0.950 [0.888 [0.797 [0.670 !0.508 [0.325 | 0.146 | 0.020
' Inner circumferential crack, N0, M,=0
1.0 [0.944 10.814 |0.659 [0.503 [0.361 10.243 [0.145 [ 0.073 | 0.033
2.0 10.965 {0.877 |0.756 (0.615 (0.467 |0.327 [0.201 0.102 0.048
3.0 10.974 [0.904 |0.803 [0.675 {0.530 [0.383 [0.241 0.124 0.058
4.0 [0.978 10.919 |0.83%1 |0.714 (D.573 10.423 ;0.271 0.141 0.066
5.0 [0.981 [0.929 10.849. |0.740 10.604 '0.453 [0.296 | 0.156 ' 0.074
6.0 10.983 [0.935 |0.862 |0.759 |0.628 [0.477 {0.316 | 0.168 { 0.080
7.0 10.984 10.940 10.871 |0.773 10.646 10.497 10.332 0.179 0.086
18.0 10.985 |0.943 10.878 10.784 [0.660 |0.513 (0.347 | 0.189 | 0,091
Inner circumferential crack, Ne=0, Mc#0 :
1.0 [0.943 [0.801 i0.621 [0.436 [0.267 [0.129 10.037 [-0.012 [-0.034
2.0 10.964 |0.868 |0.729 |G.565 (0.380 |0.226 10.099 ¢ 0.015 (-0.030
3.0 [0.973 |0.887 10.782 |0.634 [0.463 [0.291 |0.7143 | 0.037 |-0.024
4.0 (0.977 |0.914 (0.813 (0.677 10.513 10.337 [0.177 | .0.0585 |-0.018
5.0 [0.980 |0.924 [0.833 [0.706 :0.548 [0.372 {0.204 0.070 {-0.012
6.0-10.982 0,931 :0.846 [0.728 {0.575 |0.35%9 (0.227 0.084 (~0.007-
7.0 {0.983 10.936 |0.856 10.743 (0.595 |0.421 |0.246 0.095 [-~0.002
8.0 {0.984 [0.939 10.864 10.755 10.611 [0.439 !0.261 0.:05 | .0.003




Table 16. K/KO in a Tine pipe with OD = 20 in., h = 0.344 in.

tMl o1 {02 [0.3 [0 |05 Jos 1o7 | os 0.9
a/hy Quter axial crack, N.#0, M.=0 ' :
1.0 [0.946 [0.820 [0.668 0.513 10.371 [0.250 10.749 | 0.074 0.034
2.0 10.968 [0.887 10.775 [0.640 10.494 |0.352 10.219 0,111 | 0.050
3.0 :10.978 10.918 [{0.830 {0.714 |0.577 0.428 |0.276 | 0.144 | 0.064
4.0 10.983 10.936 |0.864 [0.764 [0.637 |0.490 10.327 0,175 | 0.079
5.0 10.986 [0.947 {0.887 |0.799 0.683 10.540 [0.372 | 0.204 | 0.093
6.0 :0.988 10.955 [0.903 [0.826 [0.718 10.581 [0.412 0.232 | 0.107
7.0 10.990 10.961 [0.915 |0.845 |0.747 10.615 |0.446 | 0.258 | 0.121
8.0 [0.997 |0.965 [0.924 10.861 !0.769 0.644 10.477 | 0.282 | 0.134
- Quter axial crack, Ne=0, M.#0
1.0 10.944 70.808 10.632 10.448 0.279 [0.138 [0.043 [-0.010 -0.034
2.0 |0.967 10.880 !0.752 !0.595 0.424 [0.257 {0.120 | 0.026 |-0.0%6
3.0 [0.977 ;0.913 [0.813 {0.680 0.520 (0.347 |0.187 | 0.061 |-0.015
4.0 10.982 (0.932 [0.851 10.737 0.590 |0.420 |0.246 0.095 1-0.002
5.0 |0.985 |0.944 0.876 [0.777 0.643 |0.478 [0.298 0.129 0.012
6.0 [0.988 [0.955 |0.894 [0.807 0.684 [0.526 (0.344 | 0.160 0.026
7.0 {0.989 [0.959 ¢.907 0.82% (0.716 |0.566 10.383 | 0.189 0.041
8.0 [0.990 |0.963 [0.917 0.846 (0.742 {0.599 10.418 0.215 0.055
' Inner axial crack, Ne#0, Me= ' _ :
1.0 [0.944770.815 [0.660 10.503 0.367 [0.24470.745 0.073 0.034
2.0 [0.966 {0.879 |0.759 [0.619 0.471 10.332 [0.205 0.105 | 0.049
3.0°10.975 |0.907 10.809 [0.684 0.541 [0.394 [0.250 | 0.130 . 0.061
4.0-10.980 [0.925 10.841 [0.729 10.592 |0.443 |0.288 0.152 | 0.072
5.0 10.983 #.936 [0.863 [0.761 [0.632 0.483 [0.322 0.173 | 0.082
6.0 {0.6985 [0.944 [0.879 10.786 0.664 [0.517 !0.352 0.192. ! 0.09?2
7.0 10.987 0.950 [0.892 |0.806 !0.690 !0.547 0.379 0.211 | .0.101
8.0 10.988 i0.955 10.902 [0.82? 0.712 10.573 [0.403 | 0.228 0,111
. Inner axial crack, N.,=0, M_#0
1.0 |0.943 10.80T1 T0.622 10.437 0.267 [0.129 [0.038 1-0.012 [-0.034
2.0 [0.965 {0.870 [0.733 |0.569 0.395 [0.232 10.103 | 0.017 -0.029
3.0 {0.974 |0.901 [0.789 [0.645 10.477 0.304 (0.154 | 0.043 |-0.021
+4.0 10.979 ]0.920 |0.824 10.695 0.536 [0.362 [0.198 | 0.068- -0.013
5.0 10.982 10.932 {0.849 {0.73? 0.582 [0.409 {0.237 | 0.091 —0.0p3
6.0 {0.985 [0.941 [0.867 |0.761 0.619 [0.449 [0.272 0.112 0.006
7.0 0.986 {0.947 [0.881 {0.783 [0.650 0.484 (0.303 { 0.133 | 0.015
8.0 {0.988 10.952 |0.892 lo.802 0.675 [0.514 10.331 0.152 0.025




Table 17. The stress intensity factor ratio 104(K/K0) at the deepest pene-
tration point of a semi-elliptic outer circumferential crack in.
a pipe subjected to parabolic loadings. 0D = 20 in., h = 0.344 in.,
v =0.3.
- 2 2 =
| Nyp = NeaXp?/2R%, Myy = 0
a/hLo/h 0.1 0.2 (0.3 lo0.4a {05 [0.6 [ 0.7 |0.8 0.9
1.0 0.024 [0.062 |0.080 {0.078 {0.063 [0.043 |0.026 | .012 0.004
1.5 0.032 (0.089 |0.129 |0.138 |0.121 [0.089 |0.055 | 0.026 | 0.010
2.0  |0.083 {0.247 |0.379 {0.432 {0.400 }0.311 {0.200 | 0.096 | 0.035
2.5 0.175 10.538 |0.863 |1.032 |1.003 [0.813 {0.542 | 0.271 | 0.097
3.0 0:320 {1.006 |0.673 |2.077 {2.098 {1.764 1.217 | 0.625 ; 0.227
3.5 0.529 |1.699 [2.896 [3.711 (3.875 [3.366 [2.396 | 1.263 | 0.467
4.0 0.810 |2.645 |4.616 |6.076 [6.530 {5.843 14,277 | 2.312 | 0.875
4.5 1.169 {3.882 |6.904 [9.302 {10.261]9.429 [7.088 | 3.928 | 1.526
5.0 1.618 [5.429 {9.822 |13.5141]15.254|14.366(11.064} 6,281 | 2.512
= = 2 2
N]] 0, Mﬂ mez_/ZR
L_’h v
a/h & 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0;8 0.9
1.0 0.025 |0.069 [0.097 |0.098 {0.082 |0.057 [0.032 | 0.013 § .002
1.5  10.033 [0.100 |0.154 |0.173 |0.157 |0.119 |0.072 | 0.311 | 0.066
2.9 0.127 10.402 |0.659 |0.786 {0.756 |0.604 [0.385 | 0.175 | 0.043
2.5 0.184 (0.602 [1.032 }1.290 |{1.300 |1.082 |0.723 | 0.344 | 0.093
3.0 0.336 {1.129 |1.997 }2.591 |2.715 |2.358 }1.628 | 0.805 | 0.236
3.5 0.555 11.899 |3.453 |4.620 |5.003 |4.491 }3.207 | 1.641 | 0.518
14:0 . |0.850 {2.956 |5.495 |7.547 |8.410 {7.780 {5.724 | 3.026 1.015
4.5 1.229 {4.333 }8.205 |11.531}13.182112.521}9.468 5.154 | 1,828
5.0 1.698 |6.053 [11.653{16.709119.540119.020|14.751} 8.251 | 3.077

c-20




APPENDIX D
CIRCUMFERENTIALLY CRACKED CYLINDERS UNDER EXTENSION OR BENDING

I. Introduction

_The'so1ution for cylinders containing a part-through surface
crack given in Appendices B and C of this report is based on a
shell theory. Even though no solution has appeared yet, the prob-
Tem can also be solved numerically by using the fin‘te element
method. Since the analytical solution of the surface crack problem
itself is intractable, the next best thiﬁg would be to obtain an
exact upper bound to its results analytically. Such a bound can
be obtained by assuming that the part-through crack goes along the
entire circumference of the cylinder, that is, the geometry of the
problem is axisymmetric. The general problem considered in this
Appendix is three-dimensional in the sense that the external loads
are assumed to be nonaxisymmetric. Thus the results are given for
a cylinder under bendfng as well as under axial tension.

Elasticity solutions for penny-shaped and ring-shaped cracks
in an infinite medium or in Tong cylinders with uniform symmetric
tractions acting on the crack surface abound in the literature
[1]-[4]. The circumferentially cracked thick-wa11éd cytinder sub-

jected to symmetric loading has recently .been solved by.R; Erdo]

- and F. Erdogan [5] using integra?%transfcrm teéhhiques in a very
straightforward manner. Their numerical solutions coincide with

the first term of the general solution presented in this study.
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The problem of a penny-shaped crack in an infinite medium
opened by the application of a nonsymmetrical pressure has been
solved by using a variety of techniques starting with the method
used by Kobayashi in 1931 [6]. The nonaxisymmetrically loaded

penny-shaped crack is also formulated in 7] and [8] by expanding

the TOgd in terms of a Fourier series and using integral trans-
form techniques. More recently, M.K. Kassir and M. Singh have
solved the problem of a solid cylinder with a penny-shaped crack
subjected to bending [9] by expanding the Toad in a Fourier
cosine series. The numerical results presented by Kassir and
Singh represent the 1imiting values of stress infensity factors
for Smél1 inner radius, hollow, thick-walled cylinders with
internal edge cracks in bending. The numerical results presented
here for this special case are in excellent agreement with Kassir
and Singh. |
The formulation presented in the following investigaﬁion
represents a general technique for.the solution of a three-
dimensipnal elasticity problem in cylindrical coordinates with
mixed boundary conditions imposed along a plane perpendicular
to the z axis. Mathematically, direct reduction of the prob]em
to a singular integral equation is.accbmplished in a straight-
forward manner after the boundary conditions have been applied

and the dominant singular behavior extracted. The resulting




integral equation of the Fredholm type is solved numenica]ly for
a variety of problems by neducing the probiem to a system of
simultaneous 1inear algebraic equations. Consideration of edge
cracks in the cyTinder present no theoretical diffigu]ties and
are also handled in a direct manner without the introduction of

any additional conditions or constraints.

The numerical results presented are of yseful engineering
significance. Stress intensity factors obtained for axial load-
ing anc pure nending are of direct interest to the design engin-
eer and are useful in the correlation and deve]dpment-bf,various
numerical and analytical models used in the determination of
structural failure. |

The effect of transient thermal stress fields on a cracked
hollow cylinder is pertinent in the design of nuclear reactor
coolant systems and components. The numerical results presented
for this transient form of Inading are for the particularly
critical situation when the zoo0lant is suddenly introduced into
a pipe with a circumferential crack on the inner surface. In
this situation, which is usually difficult to inspect visually,
high tensile stresses develop in a thin layer on the inner radius
and may cause significant crack growth radiai]y'outwards

Another 1nterest1ng exampie of nonuniform ]oading presented

in this study, is the effect residual stresses in the cylinder
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wall have on varying crack lengths. These residual stresses
usually develop after sudden cooling of the cylinder during manu-
facture or welding. A circumferential flaw in the cylinder wall
underAsuch residual loading, is extremely difficult to detect
due to the closure of thé crack in the compressive stress field

near the cylinder surface. In some cases residual stresses may

be the only stress state in the body. For example, in consider-
fng the problem of subcritical crack growth due to static Tatigue
in glass pipes and other ceramics which do not.nonna1]y carry
any external loads, the crack driving force is mainly provided

by the residual stresses.
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IT. Formulation

The problem which is to be farmulated mathematica]]y is
that of a long thick-walled cy1inder which contains a-ﬁoncen*
tric ring-shaped crack in the z=0 plane, z being the axis of
the cylinder (see figure 1). The cylinder is subjected to
external loads which may be mechanical, thermal or residua]
and are independent of z.

Since the applied Toading p{r,s) is in general nonsymmetric
the problem must be formulated as a three-dimensional é]asticity
problem. The usual superposition technique, which results in
a traction free crack surface, is employed to express thé
problem in terms of an infinite region with a crack‘pius a
hollow cylinder without a crack. The crack surface tracfions
in the infinite media are equal in magnitude and opposite in
sign to the stresses on the z=0 plane in the unéracked hol Tow
cylinder.

Two shear stress symmetny conditions,
Tzr(r‘,B,O) = Ty (rs6,0) =0, a <r<b,0<0 <2, (1)
six stress boundary conditions,

0, . o {2)

'.fr.z(asesz) = Tr.z(b‘se:z)

Tro(a:0,2) = 1 (b,6,2) = 0, | )
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opp(2:6,2) = g, (b,8.2) =0, 0 <0< 27, 0 £z <> - (4)

and the mixed boundary conditions,

u(r,6,0)=0,af_r<c,df_r<b,0<e<21r, (5)

GZZ(‘Y‘,GaO) = “'p(-r:e)s c<r d, 0 =< 6 < 2'“: (6)

| A

)

where u, is the displacement in the z direction, must be satis-

fied for the complete solution of the perturbation or crack

- problem in the infinite region. This is accomplished by

expanding the applied load p(r,8) on the z=0 plane in terms of
a cosine Fourier series. Of course, the 1oadiﬁg could have
bégn éxpanded in a general Fourier series, but since the prob-
1éms of primary intérest in this investigation are axial exten-
sion and pure bending, assuming loading to be even in_e is
not a serious‘restriction and simplifies the énalysis.

The applied load is represented in series form as

-p(r,8) = - T Pn(r)cos(ne) ) - (7)
n=0
with _
by =t pree @
o] ' :
2 {7 |
ey = 2 ptrodeostno)es . (9)

0




The solutions of most three-dimensional elasticity prob-
lems are obtained in termsJof displacement potentials. It
can be shown, Green and Zerna [10] or Sih [11], that the solu-
tion for an infinite medium with a crack may be obtained in
terms of one potential function on]y The displacements and
stresses in terms of a single potential function ¢ may be_

expressed as {10]-[11];

2uu, = (1-2v) —i +z §§§% , (10).
2uu, = (1~ Zv) l 5%—+ F'ﬁgg% , ‘ (1j)
2uu, = -2(1-v) g§-+ 2-55? , | (12)
Opp = 2 agaaz * %%%" 2; (%;%'+ gi ).’ | o (13)
9227 2 g;%—- gi : | ' (15)

-, 33
o T T - (e

-2z 33
Y20 T ¥ 36322 : (17)

o T U BIGE - L) -2 st vz (g
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where y is the shear modulus, v the Poisson's ratio and ¢

satisfies Laplaces equation in cylindrical coordinates

526 , 136 . 1 3% . 3%% _
SF% rar T FE'SE%'+ EE%' o . (19).

If it is assumed that the displacement potential is of

the form

¢(T,6,Z) =

it 8

@n(r,z)cos(ne) R (20)

n=0

then the application of Hankel integral transforms to (19)
would show that the harmonic function ¢{r,e,z) may be expressed

- as

o(r2) = §  costne)| A ()3 (ar)ue™ do. (21)
! =0 n -

o]

If body forces are neglected, Lure [12], Green and Zefna
[10] and Kassir [9], demonstrate that the general problem of
a cylinder without a crack can be expressed in terms of four
harmonic functipns. The displtacement vector expressed in.terms
of these Papkovich-Neuber displacement potentials is given by

{12] as
U= 4(]-v)§-- graa(ﬁ3§_+ Bo) . - ; (22) |

where

(23)
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and

-5
B=Br_ 1]r,+Be i +Bz i, . (24)

Since Br- and B8 are not necessarily harmonic [12], the
example of [9], (101 and [12] is followed and the form of the
four potential functions is chosen in such a manner as to
ensure that the functions are harmonic in Cy]indrica] coof'dinates.
The displacements and stresses expressed in terms of these four

new functions are ([91-010]):

- 3B
2uu, = (3-4v)[Bcose + Bysine] - r‘[—a—r_l coss
3B aB
—£ sing] - 0 4 2 3%
Y or Sinel - e 8 36 (25)

- _ 2B,

2;'5;ue = (3—4u)[82cose ~ Bysine] - [—35_— cos6
aB a8 ‘ :
—2 sinel - 150, 8y :
t e Sinel - Lo -2 2k | (26)
3B 38, 28, | |
2uuZ T orsmcosp - r 57 sine T  {27)
o du :

rr _ va Y :
2n  T-2% + ar (28)
a au ' '

88 _ wa 1 o) : ' o
25 T Tyl | o ' (29),
c ou -

ZZ VA 2z ‘

Tt R _ _ (30)




. .
gz _ 177z 8 .
u r 98 * ¥4 ' : : (31)
T au ol
rz_-r
U T oz ¥ ar ('32)
T au au u '
re . 1.r 8 _ _6
1 r 3o ¥ ar r _ (33)
where
3u u 3u 3u
p=_ bty ry 18,2
ar r r o 3z
aB aB aB aB '
1-2v 1,172 YA R R
= 2 (—+ — —= + (= - = — .
u [(ar r 99 Jeoso + 3r r 238 Jsine] (34)
Since S is assumed to be even in o, B, and B must be even

in o; and 82 and y must be odd in 8. Thus the functions may |

be expressed in the following form ([9] & [12]),

11 _ © - ,cos(n+l)e :
B | nEO Lsin(n+1)e’ G(rsz) > (35)
2
B, = ©_cos(ne) Gy(r,z) (36)
n=0 _
P = ? sin(ne) GS(r,z) . | (37)

n=0

From (19) and (35)-(37) the final form of the displacement

potentials are determined. As an exampie, for u, to be an odd
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function in z and B> an even function in z a cosine transform

solution in the z-direction is assumed. This yields,

B, = £ cosl(n#1)e] 2 f (€30 () Tpay (57) + Cop (DK, (57 Jeos(s2)ds,

n=0
o]

(38)

where In(sr) and Kn(sr) are modified Bessel functions of the

- first and the second kind. In the same manner 82, Bo'and b are

determined.

5 = 1 sinl(n1)e] 2 r[é-]n(s).lnﬂ(_Sr.)’fCZn(S)knﬂ.(Sr‘)]CQS.(SZ)dS
(39)

By = I cos(no) -§—[:_[cg,;snn(s'rﬁc%(s)Kn(sr)]cos(sz)ds . (40)

! =n§0 sin(ne) ?2;* E[Cg,n(;)In(sr)+65n(s)Kr,(sr)]cos'(SZ)ds (41)

The displacement re]ations (10)—(12) and (25)~(27) when
added together represent the displacement field for the super-'
1mposed problem. Thus, with the 1ntroduct1on of the displace-
ment potential functions defined by (21) and (38)-(41), the

displacements for the cracked cylinder may'be'expressed by:




el

2, = ngo.cos(ne)'{fo(2—2v+az)An(a)aan(ar)e-azda
+ % E[c1 (s)r I hq(sr) + Cy (S)K q(sr) + €5 (s) I (sr)
* Cyy(s)K (sr)]s sin(sz)ds} | (42)
2uu, = nEO cos(ne){]:(1—2v-az)An(a)an'(ar)ae‘“Z da
%r[cm(S)[w 4v)In+}(sr) rIq(sr)] + Gy (s)
(3-49)K 4 (s7) = 1 Kpq(sr)] = Cop(s)Tp(sr) - Cyp (5)K (s7)
* Cg,(s) 27" I (sr) + Csn(s)_ %.'3- K,(sr)]cos(sz)ds}  (43)
Zuue.= ngo sin(ne){j: gv(az+zy-1)An(a)an(ar)ae‘uzd;-

[+ -]

_g.f [(4-8wsn)[Cy ()T, ,q(sr) + Cpr(S)K 4q(sT)T

o

+

+

(s)I (rs) + — r 4n(s)Kn(rs) - 2C5n(s)I {sr)

2Csn(S)K,'I(sr_')]cos(sz)ds} o, - (44)

where J (ar) is the Bessel function of the first kind and the

primes represent differentiationwith respect to r.




.........

The stresses are expressed in a similar manner by com-
bining the stress relations (13)-(18) and (28)-(33). The
stress field is described by:

;0 cos(ne){J -(]+aZ)An(a)Jn(ar)aaehaz do

0

Q
1

ZZ n

(-]

+2 L{C]n(s)EZ\)In(sr) #1151 (s1)] + Gy (5)[-25K (sr)

+ rs Kn+1(sr)] + s C3n(s)In(sr) + s C4n(s)Kn(sr)}s cos(sz)ds}

(45)

(=)

e = I c0s(no) ([ {[(1-2v-02) A1 _ 42 206213 (ar)

Q
n

* 3 (120-02)d g (ar)A, (e)oe™ 20y + 2 L{C]“(S )«

*{(3-2v)s In(sr) - [Lﬂ;ll-(4-4y+n)+r52]1n+1(§})} - CZH(S)*

*

13295 o tor) + L (@dpm)erszIk (sr)3 - €y (s)s
{[Q%l_l + 521 (sr) - 21 (sr)} - C4n(s'){[¢ﬂé'l)- + 521

Kp(sr) + 2 Koq(sm)y + g (s) 20 plnsb) g gy s S Loy (sr)]

*

*

+

Con(s) 22 L0=0) g (sr) - s fer(sriDcos(sz)asy
| (46)
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cos(ne) €] Ay(a)lf 3y(ar) - & Iy (ar)lz 2™ dn
[¢]

[
T = I
rz n=0

o«

+ 2[4y (5)DrsTy (5r)-(2-2v) Ly (501 = €y ()Trs K, (sr)

+ (2-2v4n)K g (sP)] + Cg (s)s T (sr) + T T (sr)]

+

CantSIIE Kylsr) = s Koyq(sr)] = Cgp(s) 1, (s)

Cﬁn(s) % Kn(sr)}s. sin(sz)ds} (47)

a0

P sin(no)t] DA (a)z a%e™ 3 (ar)ds

Teg i n=0
T o : o
+ 2 [ (20201 ()14 (15) + Cop()K,1 (1) = C3 (s Ty{rs)
- Canls) T K (sr) + g (s)ls I (rs) + £ 1 (sr)]
+ Cﬁn(s)[%-Kn(sr) -5 Kn+](sr)]}s sin(sz}ds} | (48)
o ° ngo_sfn(ne){J Dazrav- 1) g (ar) = o g4y (ar))*

o]

o

*An(a)ae—azda + % j {c1,n(s")[- 5(3:'—_]—)—_(4—4v+n)1n;1 (sr) -




* rvms T(sn)] ¢ ()= ) (0t (o

_(2—2b+n)s'Kn(sr)] + Csn(S)[%? In+](5r)+ %%-(n-])ln(sr)]

+.

Can($)- 2K (sr) + 1 (n-13K, (5¢)1 + €5 (5)[~(22 (1)

+52)I(sr) + 221 (sr)] + Con(s)[- (22 (n=T)4s2)K (sr)

-_%?—Kn+](sr)]}cos(sz)ds} . : (49)

From the ahbove expressions it can readily be seen that the
‘ sywmetny condition T, (r,e,O) = TZG(r’e’O) = 0 is identically
satisfied, _

The unknown coefficients A n(a) and Cs (s) (1 1,6) are
determined from the boundary conditions (2) -(6) for each value
of n (n=0,1,2,...). Direct appllcat1on of the mixed boundary
conditions (5) and (6) may be implemented by introducing a new
unknown function ¢n(r). Thus, the displacement uz(r,e,O)'is
given by,

u,(r,e,0) = n§0 ¢p{r)cos(ne), c < r < d, 0 <o <2, (50)

u, (r.e, O) 0 d<r<c,d<r<b,0 <8 <2m. - {51)




Application of the displacement boundary condition gives
the unknown coefficient An(u) in terms of ¢n'. Equation (42) 1in

conjunction with (50)-(51) and the Hankel inversion yield

d
hle) = 5 Bt et . (82)
C ' o
The six unknown coefficients Cin(s) {i=1,6), which occur
in the stress and displacement equations (42)-(49) for each
value of n, are obtained by app]1cat10n of the six boundary-
conditions {2)-(4) to the three stress equations (46), (47) and
(49). For each equation the inverse Fourier transform is
taken and the resulting six equations are solved for the.six.
unknowﬁ coefficients. Obviously, due to the complexity of
the matkix‘which must be inverted for the solution of the
coefficients Cin(s)’ this inversion is not attempted algebraically.
The general expression which describes the coefficients Cin(é)
is given by,
_ .
Cpls) = - 5 my (5,2 b){ £ 4,(£)6;(s,t)dt, 1=1.6  (53)
: c Jj=1,6

where the matrix m, (s a,b) is defined as m (s a,b) =
f (s a,b) and the coeff1c1ent matrix f (s a,b) is obta1ned
from the stress equations (46), (47) and (49) and is given 1n

apgendlx A. The terms G (s,t} are obta1ned by 1ntegrat1ng in




o the Bessel integrals which result from the substitution of
(52) into the streés equations (46}, (47) and (49). These
definite Bessel integrals are eva1uéted in closed form by
differehtiating a related integral given by Erdélyi [13]
and the resulting expressions for G (s,t) are listed in
append1x A.

Application of the last mixed boundaty cond1t1on (6) y1e1ds
the following integral equation, |

2]
oo

r { lim f «(T+qz)An(a)Jn(ar)a3e_“Z de

n=0 Z2-+0
o
+ 2 m(g C. (s)N.(s,r))s ds—-—z P (r) ' (54)
T i=1 in jroe =0 n'’ o _
o] . ’
“where the terms Ni(s;r) are given by

MNyfs,r) = 2v1n'(sr) +rs I, (sr) | ' | (55)
Nz(s,r) = —ZyKn(sr) *rs Ko q(sr) o (56)
Na(s,r) = s I (sr) ' ' (57)
N4(s,r) =s K (sr) . - (58)

The asymptotic behavior of the first 1ntegra1 in (54) is
extracted after the substitution of (52). This behav1or is

added and subtracted and the added port1on of the asymptotic -
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integral is evaluted in closed form. Taking the Tim, a strong
z-0
singular form for the first integral term is obtained. This

is expressed as,
gd Ttk 1
[ L& el - ot (59)
C

where Lo(t,r) is given by,

el

Lottr) = [ a2t 3, (03, (er) - L (B (coslalt-r)]
o

+ (-1)" sinfa(t+r) ) 1o . | (60)

The singular behavior in (59} is stronger than the Cauchy
type singularity and is in general nonintegrable. This does
not present a difficulty though, since integration by parts
weakens the order of the singularity and enables one to express
(59) in terms of the derivative of the unknown function, ¢;(t).

After integration by parts (59) becomes

_/ B k2 d
—H—¢n(t){§-+_——‘>—— Tog [YF= b

1"\) 2'/!'_‘ C

d ] 1 , '
+%j@@5%ummmmﬁ, (61)
c

with L](t;r) given by,




1 “1”2

L(tr‘)—-;r—z—r;'iog[

(+7 ]+ f {atln J(at)S, | (at)

Tn-1(et)Sy ()39, ar) - ?1" /%_ [sina(t-r) - (T)”cosa(t“‘fr)_]

[C(%EE)(sfn(ar)+(;1)ncos(ar)) - S(%Ef)(cos(ﬁr)

Tro

+(=1)" sin(ar))]3da .  e2)

In the pkeceeding equation'S (z) s the standard notation for .
Lommel's function. The 1ntroduct1on of this function resylts
from the evaluation of indefinite integrals which contain

Bessel functions [14], [15]. Appendix C contains a brief S um-
mary of the properties of these functions and conven1ent methods
for ca1culat1ng their values numer1ca]1y The functions C(x)
and S{x) are forms of the Fresnel 1ntegra]s given by [16] and

are expressed as;’

t}(x) dt | - (63)

_l__f cos t
2r iyt

S(x) 2= dt. . (63)

_l_.J Sin t
- VZr o &

Carefu] exam1nat1on of equat1on (61) indicates that the

first, or constant term is zero 1f the crack is embedded in the




cylinder wall since the displacement at the crack tips is

zéro and from (50}, (51) ¢n(c) = ¢n(d) = 0. If the crack is

a penny shaped crack the constant term is also zero siﬂce

the terms in brackets are zero at t=0, The only situation in
which the constant terms, which result from the integration by
parts, are nonzero is when the problem of an edge crack is
considered. In this particular case ¢(c) and ¢(d) may be .

expressed as;

for an inner edge crack:

d . |
o(@) =0, alc) =~ | o(ene O (65)
' C
and for an outer edge crack:
g .
p{cy =0 , ¢(d) = [ o' (t)dt . (66)
C

The problem_of edge cracks is considered separately and for the
sake of simplicity the final form of the integral equation is
'derfved assuming the constant term in (61) equals zero.
Integration by parts of the second term in.(54) is now
performed and combining this result with the expression given

in {61) the singular integral equation becomes:

][t NG d ' \
R [ T N O BN NG
c -C
s . 17y ¥ P(r), c<r<d. (67)
1 _ n .
n=0
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The Fredholm Kernel Ly(t,r) is the term which modifies the
1nf1n1te space crack solution and is the resultIng effect of

f1n2te cy11nder boundar1es Lz(t r) s given by,

Ly(t,r) ='§-J

o

; g m; (s,a b)v (s, t)N:(s.r)s'ds, ' (68)
i=1 j=1
where N;(s,r) has been previously defined (55)<(58) and the
matrix m; i is given by the 1nverse of f which is expressed in
appendix A. The terms. v (s,t) are expressed in terms of modi-
fied Bessel functions and Lommel's function of 1mag1nary argu-
ment and are recorded in appendix B.

The formulation of the singular integral equation of the
- first kind (67), has been quite general. No restrictions have
been placed on the crack location and the dimensions of the
inner and outer radii. Thus, for instance, with the omission
of the Fredholm kernel Lz(t,r), (67) becomes the singular inte-
gral equation for a concentric ring-shaped crack in an infinite
medium subjectgd to general loading. If c=g this is'the equa-
tion for a penny-shaped crack. Inclusion 6f kernel Ly(t,r)

yields the equation for cylinder problems, hollow or solid.
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II1. Numerical Solution

The singular integral equation (67) with a Cauchy-type
singularity is a standard form which can be solved in a direct
manner numerically [17]. When normalized with respect to the

crack length, (67) may be expressed as

o 1f 2tz o
n:_Z»O m J [g_:g + Qj:?_] T=p *
e A
+1 - _
- , 1-
w80 [Ty (B) IR (e = = 5 EP(r),
-1 _
1<, p <, c < t,r<d , {63)
where the unknown function
Folr) = op(t) - (70)
- and
d- + ‘
e=9E 58, (71)
R (72)

For situations where internal cracks are considered an

" additional single-valuedness condition is given by
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d | -
f 4a(t)dt =0 , n=0,1,2,. .. , (73)
C . .

which, in norma]ized.form; becomes
f Fpladde =0, n=0,1,2,... , (74)
. | L _

The integral equations in this normalized form are readily

solved using the methods detailed in [183.

Internal Crack

Examination of kernels Ll(t,r) and Lz(t,r)‘defined by
(62) and (68) indicates that-Ll(f;r) has a Togarithmic'éingular-
ity, whereas L2(t,r) is bounded'in the closed interval c <
(r,t) < d provided a < ¢ < d‘< b, that is if the crack is a
fully embedded interna] crack. If this is the Case, the Cauchy
kernel 1/(t-p) is the dominant kernel. The index of the inte-
gral equation is +1 and the éo]utjon of the integral equation
(69) has integrable singu]afﬁties at the end points. Thus ‘the

solution is of the form [5],
4y (1) = o) () [(r-c)(d-r)]5 . (75)
Following the standard procedure for an integral equation of

~index +1 [17],'[18],the solution of (69) and (74) reduces to
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solving the following system of Tinear algebraic equations,

m de o+ &
2 2 1% 1
kET Nkfn(".’k) {[ d-c w+ ﬁs] T, =0
) 7 Pt k1
o+ K(Tksp-‘)} s o= pn(p-‘) 3 is= ]:---sm'l (76)
m
k:] Wy fn(rk) =0 , forn=20,1,2,... , _ (77)
where
CF (1) . |
nt ' _ 1 u .
AT - on(b) T-v Fn(T) ? (78)
Klrao) = EE a(Ly(t,r) + L5(t,0)) (79)
pple) = Polr)/o (b} » n=0,0,2,... . (80)

" The weights and abscissas for (76) and.(77) are gﬁven by [18]

as,

Wy = W= ot W, = - k=2 1 (81)
1 ™ 2T "k m-1 ° B RERE L

T = COS (n %}%— s k=T1,...,m (82)

p; = COS (w %%E%J , 1= 1,...,m1 (83)
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Once the integral equation has been solved the quantities
of particular interest are the stress intensity factors, which

are defined by ,

kn(c) = lim vZ(c-r) o,, (r,8,0), (84)
r-C n ‘
ko (d) = Vim /20r=d) o__ (r,6,0) , n=0,1,2,..., *  (85)
n r+d zzn : .

which may also be expressed.aS'

u, (r)
k (c) = 11m v2(r=c) —5- cos ne (86)
ma® :
or |
kn(c) = 11m 2{r<c] f (p)(1-p2) cos ne o (b) (87)

Thus the final form for the stress intensity factor becomes

kn(c) = JE;E_ fn(—l).tos ne Un(b) | - (88)
kn(d) = - ‘/Q%E fh(]).cos ne &n(b) , h = 0,1,2,... ) (89)

- where (1) and f(-1) are obtained from the solution of (76)
~and (77} and o n(P) is defined for n= =0 and n=1 as

P,

co(b) = 7(62-aZ} : _ | : (90)
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01(b) = ;(%Qggny- R | (91)

with P the applied axial Toad at infinity and M the applied

bending moment.

Edge Cracks

Wwhen the crack is an edge crack, the constant terms which
are obtained from integration by parts are no longer zero (61).
Using the expressions given in (65) and (66) the integral equa-

tion {67) for an edge crack becomes,

- d d
5 ¢ '(t) - 5
[ & 15 e &

£
r

0 ™8
———
3 |t

b Ly (tar)-Ly (o)t (tor)-Ly(ear) Jop ()t

1-\;‘ b
-——~2 ¢ PAr}) , c<r<d . (92)
. n=0 n ‘ o

" An inner edge crack in the hollow cylinder opens on the inner
radius and e=c. For outer edge cracks, e=d.

Casting the 1ntegra] equat1on in this form clearly demon—
strates that all coefficients of the unknown values ¢ *(c) or
¢'(d) are equal to zero for the inner edge crack and the outer

edge crack respective1y. This is an_important result since it




demonstrates that for edge cracks‘there-is one less unknown.

It is 6n]y natural that this is the case; since the auXiTiany
eduatiqn associated with the internal crack problem is no Tonger
applicable. Thus, the solution of an edge crack prob]em will
1nvo1ve the simultaneous solution of m-1 Tinear algebraic equa-
‘tions as opposed to m equat1ons for an internal crack. This
means such statements or additional equations as ¢'(c) < « or
$'{d) < =, which have been previously employed in the solution
of edge crack problems, are redundant and unnecessary.

When the case of edge cracks is being coﬁsidéred the
Fredholm kernel Lz(t,r) becomes very difficult to evaluate
numerically since when both t and r simultaneously go to an
endpoint the kernel becomes unbounded. To obtain any.reasonable
degree of accuracy in the numerical solution of'the edge crack
problem the generalized Cauchy kernel muyst be extracted. This
1s virtually impossible analytically since L2 is not_known in
closed form, but instead calculated numerically. In this
investigation the asymptotic behavior of the integrand in (68)
was obtained by modifying the closed form asymptotic expression
for symmetric Toading given in [5]. This was done 1in such a
manner as to ensure that the numerical va]ues ca]cu]ated for
the 1ntegrand in (68) for large va]ues of s and the asymptotic

expression were identical.
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Numerically, excellent agreement was obtained for large
values of the integrand of L2.1n combarison with the modified
c]ﬁsed form asymptotic behavior from [5]. Numerical values
for the infinite integral in Lz(t,f) were obtained by integrating
numerically from O to A, where A is a finite number, and then
adding the asymptotic "tail" thch wés determined by integrating
in closed form the asymptotic behavior. Symbolically this '

process is described by,

A
_ 2 ,r L [
L2(t,r) =y 151 jil Mg Y N; s ds + ks(t,r) . | (93)
0
where
ke (t, r) ke (t r) + ksb(t,r‘) - (34)
with |
ke (t r) = JET{%gitazggda) 4A(r-?l£§‘g))3(t -a)-{r-a)
, 22(r-a)(t-a)-[3(t-a)+(r-a)Jare , e"A(r*t-2a) (35)
{r+t-2a} ?

_ 4(b=r)(b- aA{b-r)}(b-1)-3(b-t)-(b-
b(t r) f{ (2(b r_( t) , 2A( Y‘l(th])ﬁtg t)-(b-r)

2A2(b-r) (b-t)-[3(b- t)+(b P2, e ~A{2b-r-t)
2

(2b-r-tj (96)
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Besides the stress intensity factor, another quantity of

particular interest is the crack opening displacement or COD

at the mouth of the crack. This displacement for an inner edge

crack is defined by

8(¢) = uy(c,6,40) - u_(c,6,-0) , (97)

where u (r,e,O) is given by (50). Using expressions (65), (70)
and (78), the crack opening d1sp]acement at the crack mouth ¢,

s{c)

. is written in terms of the following norma11zed express1on.

] | |
o 8(c) ~cos(ne) Q:E- fh(T) dr , (98)
T-v fig, (] " h L — C

n=0,1,2,.

In a similar manner the Crack opening displacement for an outer

edge crack is written as

-

_ w - )
T%G'hg db = cos(ng) Qﬁ£~f A 47, (99)
n=20,1,2,... ,

where h = b-a.

When edge cracks are cons idered, very accurate numer1ca1

re:u]ts are obtained for stress 1ntens1ty factors and crack

open1ng d1sp1acements Equat1on (92) is so]ved in the same
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manner as {67), by making use of the same numerical schéme

summarized in equations (76)-(83).

Numerical Techniques

Numerical evaluation of the integral equations (67) and
(92) present certain difficulties which will be explained in
greater detail. First, numerical evaluation of the Fredho]m
kernel L1(t,r) involves the computation of Lommel's function
for both small and large values of the product at. The
methods used to accomplish this are outlined in appendix C.

Another difficuity in the evaluation of kernel L](t,r)
is that the infinite integral in this expression converges
very slowly for virtually a?] values of t and r. The reason
for this can be easily seen by examining the first grouping
of Bessel functions in expression (62). Since the Bessel
function decays asymptotically as ~ i%;and the product of Bessel
functions in (62) is multiplied by a, no decay in ampiitude
occurs in this integrand. Cbnvergence in this infinite inte-
gral occurs for very large o when the asymptotic oscillatory
behavior of the Bessel terms is identical but opposite in
sign to the trigoﬁometric terms given in (62). This suggests
that direct numerical integration of the integral in (62)
would be unwise, since either véry large upper limits must be

set for a finite Gauss-Legendre quadrdture or a great number
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of quadrature points must be used for the Gauss-Llaguerre
quadrature technique usually emp]oyed when evaluating well
behaved infinite integrals. In this investigation the infinite
integral in (62) was evaluated by determining an analytic
expression for the asymptotic behavior of the “integrand which
included higher order terms. This expression was Integrated

in closed form from A to « and added to the original integral
evaluated numerically between the finite Timits 0 and A. The
resulting form of Li(t.r) to be calculated numerically is then

given by

_ =11 £ Tr L
Li(t,r) = —5p 10g [ o] - ;‘[ Tor

-'EQEAELE:El.- (-1)” §lﬂ-&L§iEl f {Qt[nJ («t)S 0 n- }(at)

ter t4r
0

Jn_1(at)51,n(at)]dn(ar)-

Tro

= S(/aE)(cos(ar)+(~1)"sin(ar) ) Ixda + [Ay#Ay+A,],

n=20,1,2,..., (100)

where the terms A1, Aé'and A3 are given in appendix D. The
finite integra1'expressed in (100) was evaluated numerica]ly
using Gauss-Legendre quadrature with the upper 1im1t A usually

set at 200.
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Fredholm kernel Lz(t,r), (68) or (93), is evaluated
numerically without difficulty for internal and edge cracks.
When edge cracks are investigated the asymptotic analysis
given by {93)-(96) greatly improves the rate of convergence.
Gauss-lLegendre quadfature was used with the upper 1limit in
(93) set at 150 and the 6x6 matrix m; 5 determined by numerical

inversion of fij'
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Iv. Resu]ts

| Extens1ve numerical results are given in tables 1 through
33. Most of these results were obtaIned by solving the set of
simultaneous linear algebraic equations designated by (76) and
(77).  In most cases it was found that 20 Chebyshev absc1ssa
points (m=20) were sufficient for 3 significant figure accuracy.
Unless otherwise noted, a1l values were calculated for Poisson's
ratio equal to 0.3.

Stress intensity factors for ring shaped concentric cracks
in an infinite medium subjected to axial tension (n=0) and pure
bending (n 1} are determined by omitting the Fredholm Kerne]
Lz(t,r) in (67). Numerical and graphical results for th15 prob-
Tem are given in table 1 and in figure 2. For inner crack
radius c=0 the probiem becomes that of a pennymshaped crack
in an infinite medium, The numer1ca1 results obta1ned for this
special geometry are identical to va]ues obtained from exact
closed form solutions. As clearly indicated in figure 2, 1in
axial extension the normalized stress intensity factor at the
inner crack tip is always greater than at the outer crack tip.

It is also observed that in pure bending this situation is
reversed, with the outér crack tip having the greater normalized
stress intensity factor. |

Tab]es 2, 3 and 4 give stress intensity factors for cohcen4

tric cracks fuTTy'embedded in the cylinder wall, where the crack
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js symmetrically located between unbroken 1igament§ of equal
radial thickness. Results for this geometry are given for axial
loading and pure bending, where the ratio of crack length tc wall
thickness (d-c)/(b-a) is 0.1 and 0.5. For (d-c¢)/{b-a) = 0.9,
results are presented for axial loading only. When the loading
is uniform axia1 tension co=Pm/n(b2—a2), where P_ is the Toad

at infinity acting in the z direction and for pure bending, oy=
aMb/n(b%~a%), with M equal to the applied bending moment. The
stress intensity factors for {(d-c)/(b-a) = 0.5 are displayed
graphically for axial tension in figure 3. It can clearly be
seen from tabies 2, 3, 4, and figure 3 that the stress intensity
factor at the inner crack tip is always greater than at the

outer crack tip for equal net 1ligament th1ckness when the load-
ing is axial tension. Also, it can be seen in figure 3 that

as the a/b ratio approaches 1.0 the stress intensity factor
approa;hes the value given for a flat strip with a centrally
located embedded crack. It thus becomes apparent.tﬁat this plane
strain solution is nbt a bad approximation for smélT crack lengths
and a/b ratios which are not excessively small.

The bulk of the numerical results were obtained for cylin-
ders with edge cracks'(interna1 and external) in axfa] extension
and pure bending and are presented in tables 5 through 16. The
stress intensity factors and’crack‘opening displacements at the

crack mouth (COD) presented in the tables were calculated for
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a/b ratios from 0 to 1.0. The values tabu]ated are for inter-
nal and external edge cracks w1th the crack ]ength 2-to wall
th1ckness h ratios from 2/h=0.1 to 2/h=0.6.

When a/b = 0 these tabulated crack solutions correspond
to solid cylinders with either internal penny-shaped cracks
or external circumferential cracks. In pure bending the results
for a penny-shaped crack in a solid cylinder are 1dent1ca1 to
the results given by the investigators in [9]. .

As in the embedded crack problem, in the limit as the
a/b ratio goes to 1.0, the edge crack stress intenSity factor
is identical to stress intensity factors for the cracked str1p
so1ut1on F]gure 4 clearly indicates that for smal] edge crack
Tength to wall thickness ratios (spec1f1ca]1y £/h=0.01), under
axial loading, the plain strain cracked‘strip solution is a Veny
gbod approximation for a broad range of a/b.

~ Figures 5, 6, 7, and 8 are plots of the values of stfess

1ntens1ty factors vs. a/b for 2/h ratios equal to 0.7 and 0.5
where the loading is uniform axia] tensjon or pure bending.
It can be seen that for longer crack lengths the strip solution
is no longer valid over a large range of a/b and is only a good
approximation when the ratio a/b is very close to 1.0

Comparison of figures 5, 6, 7, 8, 9, and 10 a]so demonstrates
.that while the curves for stress intensity factors of 1nterna1

edge cracks are fairly similar for various crack ]engths, this
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is not the case for the external edge crack. The variation is
particularly noticeable in bending. Also, in pure bending for
¢/h ratios equal to or greater then 0.5 the solid cylinder with
an external edge crack has a maximum normalized stress intensity
factor which is greater than the p]ane‘strain crack solution
in a strip. This is not the case in axial tension, where the
plane strain solution is the maximum value of the stress inten-
sity factor for all 2/h ratios greater thaﬁ 0.01. -

Figure 9 also indicate§ that for certain a/b ratiog the
Quantity k(d)/colf, which is the stress intensity factor for
an internal edge crack, may decrease with increasing crack
length 2/h before increasing. It is also clear that this
behavior only occurs for very thick-wa]]ed cylinders where
a/b < 0.6. Fi gure 10 indicates that a similar type of variation
does not occur for the internal edge crack in pure bending and
that for any value of a/b the quantity k(d)/q1/—'cose increases
with increasing 2/h rat1os

Tables 17 through 26 contain numerical results for tempera-
ture f1e1ds and stresses generated for the transient thermal
stress prob]em descr1bed in appendix E. These numer1ca} results
are given for 5 different a/b ratios and are tabulated with
respect to the nondimensional Fourier number Fo=Dt/b2, where D
is the theymal diffusivity, t is the time and b is the outer

radius of the hollow cylinder.
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When a fluid or vapor suddenly cools the.inner surface
of a heated cylinder, the results given represent the hdst
~severe thermal transient conditions and thus an upper bound on
the actual elastic thermal stresses. | '

Figures 11, 13, 15, and 17 are p1ots of nondimensional
temperature vs. (r-a)/h for a/b ratios of 0.3, 0.5, 0.7, and
0.9 respectively. Figures 12, 14, 16, and 18 graphically display
nondimensional thermal stress vs. (r-a)/h for the same a/b
ratios. It can be seen in all plots, but especially in the
very thick wa11ed cylinders, that for very sma]1 fo the thermal
stresses are represented by a sharp tensile spike of magnitude
Eabw/(1-v) restricted to a material layer very close to the
inner radius. The coefficient of expansion is given by o and
8, is the initial temperature differencé at the inner radius.
For small Fo the stresses are compressive in most of the cylin-
der wall. As Fo increases, the tensile stressed region moves
deeper into the wall thickness but decreases in magnitude while
the compressivé stress increases in magnitude. As can be clearly
" seen in figurgs 16 and 18, when Fo'begins to approach'steady
state_conditions the;magnitude of the tensile and compressive
stresses decrease as expected,

From these thermal stress curves it can be seen. that from
'the point of viéw of fracture very small internal edge cracks

are the most severely loaded due to the thermal transience.




examined in this exmaﬁ1e. This rather obvious observation fis
born out by the numerical results presented in tables 27-31.
In these tables stress intensity factors kT(d) are determined
for various a/b and &/h ratios using the transient therma1
stress loading determined in appendix E and recorded.with
respect to Fo. These results show that for a fixed crack 1eng£h
the stress intensity factor generally increases for increasing
-Fo, reaches a maximum and'then decreases. It is also interesting
to note that for fixed 2/h the stress intensity factors reach
a maximum "sooner" for a/b ratios which are close to 1.0 (i.e
thin-walled cylinders). |

Figure 19 depicts the crack geometry in a.ho113w cylinder
with residual stresses. These residual stresses usually deveiop
| after sudden cooling of the cylinder during manufacture or
‘welding and are highly compressive at the free surface. Approx-
jmating the residual stresses with a parabolic distribution

which satisfies the se]f—equi]ibrium condition
b
f oz(r) rdr=0 |, (101)
a

yields an internal stress distribution of the form

o () = a1 - 6(r-afb-r) ;| | " (102)
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where gs s the stress at the surface. It is obvious that for
cirdumfefentia1 edge cracks under such residﬁa] Toading, crack
closure and contact will occur in the compressive stress field
near the cylinder surface. The edge crack under this type of

loading witl be cusped shaped and equivalen: to an eccentric

embedded crack (figure 1) with the conditia~ that

k(c)=0 . | . (103)

Thus, the residual stress problem is solved by determining

the stress intensity factor for an eccentric embedded crack
from equation (67).and (73) with the ioading determined by
equation (102). The location of the crack tip.furthest from
the surface is fixed and by iteration the location of the crack
tip closest to the surface is determined when condition (103)
is satisfied.

The resulting stress intensity factors at the fixed crack
tip are presented in normalized form in figure 20. In this
graph the quantity k//E]cs[ is plotted for internal and external
edge cracks for cylinders with a/b ratios equal to 0.7 and 0.9.
It can be seen ‘that differences in the normalized stress inten-
sity factor are not great for the two different a/b ratios.
Also, external edge cracks havg a slightly higher maximum

stress intensity factor than internal edge cracks, when subjected
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to the same assumed resicual stress distribution. Both crack
geometries have a maximum k value when the crack depth is about
0.63 (b-a).

Figure 2} is a plot of the crack contact length ¢ in the
compressive zone, which is equivalent to {c-a) for the internal
crack model and (b-d) for the external crack model. The figure
is for a/b=0.9 and demonstrates that for crack lengths between
0.21 (b-a) and 0.7(b-a) the tontact length decreases in a linear
manner.

Unlike the situation “n plane stress or plane strain where
the stresses are usually independent of Poisson's ratio, the
stress field in three-dimensional problems depends on the value
" chosen for Poisson’s ratio. Tables 32 and 33 show the effect
Poisson's ratio has on the stress intensity facto} and COD in
both axial tensicn and pure bending. In the example chosen
a/b = 0.5 and 2/h = 0.3. It can be seen that Poisson's ratio '
has a very slight effect on the stress intensity factor. When
v=0 the stress intensity factor is a minimum and for v=0.5 the
stress intensity factor reaches é maximum. Small change§ in v
at large values of Poisson's ratio apparently have a greater
effect on the stress intensity factor tﬁan changes in v for
small Poisson's ratio. Also it is noticed that varying Poisson's
| ratio has a slightly greater effect on COD than on stress inten-

sity factor.
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It should be emphasized that the solution ir thié investi-
gation was obtained in terms of a sum of Fourier terms. Thus,'
strictly speaking, the bending results should not bé'conéidered
indepéndent1y from the values given for axial tension. Referring
to tables 5 - 16 it is obvious that for /2 < 6 < 3u/2 the stress
intensity factors resulting from the bend1ng terms are negative.

.For these quant1t1es to have a physical significance the ax1a1
load must be of sufficient magnitude to cause a positive stress
intensity factor around the entire crack periphery when the axia]
problem is superposed on the bending problem. |

Since this investigation does not admit the solution of
crack problems where the crack surfaces are in nonaxisymmetric
contact, it-ié important that the axial Toading is of sufficient
maghitude to prevent crack surface contact when superposed with
the bending component, The stress intensity factor is a quan-
tity at the crack tip which is determined by the local stress
field. Fhus, requarjng the stress intensity factor to be positive
does nbt alone ensure that crack surface contact will not take
place.

It is also necessary to monitor the crack displacement afong
the entire length of the crack using expressions similar to
(98) and (99) to ensure that no crack surfaces are in cqntaét
when the axia]_problem is superposed with the bending pfob]em.

For external edge cracks the maximum displacements are at the
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" mouth of the crack and thus the COD's given in the tabTes are
useful in checking to see that this condition is satisfied.
In any case, the above conditions do not appear to be
a severe restriction onlthe usefulness of the results since
in many problems of interest the loading is dominated by
axial loading which, for instance, may be the result of inter-

nal pressurization.
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V. Conciusion

In conclusion, it can be stated that the mathemat1ca1
methods in this investigation are quite general and the tech-
niques emp]oyed may be used in the solution of many other three-
dimensiohq] elasticity problems, especially problems of the so-
called "mixed" type. Reduction to a singular integraf equation
of the first kind is stvaighthrwahd and the numerical anatysis
yields very accurate results,

The results presented in this investigation are of great
practical interest. These results may be incorporated directly
-in any calculations which are being used to predict fracture in
cyTindricaT'pressure vessels and piping with circumferential
fTaws : A]so, the numerical trends and actual values should be .
of use to Programmers and users of the finite element method
who wish to check special cases and verify accuracy in their
three-dimensional code.

As noted in the introduction, the résu]ts presented in
this study for cylinders with axisymmetric edge cracks can be
considered a reasonable upper bound on solutions for cylinders
with circumferential_part-through surface flaws of finife arc
Tength. Recent results by Delale and Erdogan [20] using the
Tine-spring model confirm this for part through elliptic surface

cracks in thin-walled cylinders.
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This investigation has showh_, for small crack lengths
and sufficiently large radius to thickness ratios, the plane
strain cfacked strip solution is of adequate accuracy when con-
sidering circumferential cracks and it is often unnecessary
to make use of the general three-dimensional calculations.

Future areas of investigation in the circumferential crack-
ing of hollow cylinders should examine the coupling effect
between nonaxisymmetric crack surface contact and the stress
intensity factor and crack opening displacement,

Other areas of interest, which would probably be most
éasi]y investigated using finite element techniques, would be
the important problems where the crack is not axisymmetric and

situations where plastic phencmena are included.
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Table DI.

Stress intensity
cracks in an 1in
sion (n=0) and

factors for concentric ring shaped

Tinite medium subjected to axial ten-
pure bending (n=1).
tip is located at ¢ and the outer c¢r
(see figure 2). S
axial tension and o
stress at point d.

The inner crack
ack tip at d

is the uniform applied stress in
m 1S the maximum linear bending

n=0 n=1 n=0 n=1
k(c k{c k{d k{d
c/d S éc o —%E-cose ;;Jégél cmugﬁg-cose
0 oo -0 G.900 0.600
0.01 5.922 0.070 0.3800 0.604
0.1 1.972 0.250 0.909 0.633.
0.2 1.502 0.370 §.918 0.669
0.3 1.310 0.470 0.927 0.708
0.4 1.204 0.560 0.936 G.749
0.5 1.137 0.643 . 0.946 0.792
0.6 1.089 0.721 - 0.957 0.835
0.7 1.057 0.796 0.967 0.878 -
0.8 1.032 0.867 0.978 0.920
0.9 1.014 0.935 0.988 0.961
0.99 1.0017 0.994 0.999 0.996
5.0 | »1.0 -1.0 +1.0 1.0
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Table D2. Stress intensity factors for a symmetric embedded
crack in a thick-walled cylinder subjected to axial
) tension and pure bending. ((d-c)/{(b-a)=0.1, o4 =
' § Pm/['ﬂ'(bz"az)]: 0]=4Mb/[‘ﬂ'(b‘+"al})])-

2 | dc | ¢ k(c) T _k{d) k(c) k(d)
B | b | b Uon-éfQ cp,dﬁﬂ oy Jd-'zi cose | ay Jdif- cose
0.1/0.09 [0.505 | 1.028 | 0.989| 9.538 0.562
0.2/0.08 10.56 | 1.024 | 0.991| 0.590 0.612
0.310.07 [0.515 | 1.020 | 0.994| 0.643 0.662
0.4/0.06 [0.67 | 1.017 | 0.99€] 0.695 0.711
0.5/0.05 [0.725 | 1.014 | 0.998] 0.747 0.761
0.6/0.04 {0.78 | 1.012 | 1.000| 0.799 0.810
0.7{0.03 [0.835 | 1.010 | 1.002 | 0.85] 0.859
0.8{0.02 [0.89 | 1.009 | 1.003] 0.903 0.908
0.9/0.01 |0.945 | 1.007 { 1.005| 0.954 0.957
+1.0 %0 | »1  |+1.006 |-+1.006 +1.006 >1.006

Table D3. Stress intensity factors for a symmetric embedded
crack in a thick-walled cylinder subjected to axial
~ tension and pure bending. ((d-c)/(b-a)=0.5, o=
Po/[n(b2-a2)], o1=aMb/[=(b*-a"}]).

oo | o | X TKE [ __KC) 36
b {b b oonﬁc- “oddﬁc' 01Ja§£~cose GEJr” oS0
0.1]0.45|0.325] 1.383| 1.117 |  0.506 0.671
0.2(0.40 | 0.40 | 1.330| 71.724|  0.593 * 0.733
0.3]0.350.475| 1.294| 1.131|  0.677 0.795
0.4/0.30|0.55 | 1.268} 1.139]  0.758 0.856
0.5]0.25|0.625| 1.247 | 1.147 |  0.836 0.914
0.6/0.20/0.70 | 1.231| 1.155| 0.911 [  0.971
0.7|0.15|0.775{ 1.217| 1.162| 0.98 | 1.026
0.8(0.10]0;85. 1.206| 1.170|  1.054 1.080
0.9|0.05}0.925 | 1.196| 1.178| 1.121 1.133
51.0] 50 | »1 |o1.187 051,187 0 otis7 | s1.187
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Table D4. Stress intensity factors for a symmetric embedded
crack in a thick-walled cylinder subjected to axial
tension. ({d-c)/(b-a)=0.9, 65"Po/ [m{b*-a")]).

a d-c . k(c) k(d)

b b | b 00115-9 codﬁc—
0.1 0.81 0.145 3.740 2.412
0.2 0.72 0.24 3.300 2.404
0.3 0.63 0.335. | 3.081 | 2.410
0.4 | 054 | 0.43 | 2,085 | 2 49
0.5 0.45 (. 525 2.850 2.437
0.6 0.36 | 0.62 2.778 2.456
0.7 | 0.27 0.715 2.720 2:479
0.8 0.18 | 0.81 | 2.671 2.506
0.9 | 0.09 0.905 2.627 2.536
1.0 50 5] 2.585 | 2.585

Table D5. Stress intensity factors and crack opening displace-
ments for an internal edge crack in a thick-walled
cylinder subjected to axial tension and pyre bending. .
(2/h=0.1, h=b-a, 0o=P_/[w(b2-32)7, o1=4Mb/[w{b*-a")]).

a | KO TTTRE T g T e g
N GO./E U]/E coso T-v h % T-v ho.-lcose
0 | 0.637 0.042 0.128 0
0.1 | o0.882 0.123 0.212 0.921
0.2 | 0.940 0.225 0.244 0.050
0.3 | 1.000 0.334 0.261 0.080
0.4 | 71.042 0.447 0.272 0.111
0.5 1.073 0.563 | 0.281] 0.142
0.6 | 1.007 0.680 0.287 0.174
0.7 1.119 0.800 0.292 0.206
0.8 | 1.138 0.922 0.297 0.239
0.9 1.158 1.048 0.302 0.273

+1.0 +1.189 +1.189 +0.310 - -0.310
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- Table D6. Stress intensity factors and crack opening displace-
o " ments for an external edge crack in a thick-walled

cylirder subjected to axial tension and pure bending.
{2/h=0.1, h=b-a, 00=Pw/[w(b2—a2)], 01=4Mb/[w(b4-a“)]).

a k{c) k(c) u_s(dj u___8{d)
b 9 ozyi'cose T-v h I T-v hc] cos8o
0 1.181 1.166 0.302 0.308
0.1 1.176 1.159 0.302 0.306
0.2 | 1.172 1.153 0.302 ©0.304
0.3 | 1.170 1.149 0.302 0.303
¢4 | 1.168 1.147 0.302 0.302
0.5 | 1.167 1.147 0.302 0.301
0.6 1.167 O 1.149 0.303 0.30}
0.7 | 1.168 1.152 0.303 0.302
0.8 | 1.169 1,158 0.304 |  0.303
0.9 | 1.173 1.166 0.306 0.305
51.0 | +1.189 ~1.189 -0.310 +0.310

Table D7. Stress intensity factors and crack opening displace-
ments for an internal edge crack in a thick-walled
cylinder subjected to axial tension and pure bending.
(£/h=0.2, h=b-a, o =P/[n(b?-a%)], o1=4Mb/[n(b"-a*)]).

o | K@l k(d) u_ olc) O]

b ogV% /2 €OSB T-v h o, 1-v hoy cos
0 | o0.644 | 0.085 0.258 -0
0.1 ' 0.775 0.153 0.373 ~ 0.036
0.2 0.869 0.241 0.441 0.089
0.3 0.942 0.342 0.488 0.148
0.4 1.003 0.452 0.524 - 0.212
0.5 | 1.055 0.571 0.555 0.280
0.6 1.104 0.699 0.582 0.353
0.7 1.150 0.833 0.608 © 0.429
0.8 1.198 0.978 0.635 - 0.511
0.9 1.253 1.139 0.666 0.602

o 51,0 | 1.367 +1.367 50,732 +0.732

-D-48




Table D8. Stress intensity factors and crack opening displace-
ments for an external edge crack in a thick-walled
cylinder subjected to axjal tension and pure bending.
(2/h=0.2, h=b-a, 9o=Pu/ [7(b2-a2)], o;=aMb/[n(b%-a*)]).

%— §O§% c]tépcose Tg%’ﬁigg". T%G'ho]§cgse
0 1.260° | 1.314 0.625 0.705
0.1 1.244 1.279 0.622 0.685
0.2 1.235 1.253 0.623 0.669
0.3 | 71.231 1.234 0.626 0.658
0.4 1.230 1.222 0.630 0.65T
0.5 1.232 1.217 0.635 0.647
0.6 1.238 1.218 - 0.643 0.648
0.7 | 1.247 1.226 0.652 0.652
0.8 1.261 1.243 0.663 G. 66T
0.9 1.285 1.274 0.680 0.677
51.0 | »1.367 +1.367 50.732 +0.732

Table D9. Stress intensity factors and crack opening displace-
o ments for an internal edge crack in a thick-walled
- cylinder subjected to axjal tension and pure bending.
(2/h=0.3, h=b-a, 0y=Po/[m{b2-a2)17, o1=4Mb/{x(b%~a")]).

a kid) _Kk{d) _u s{c) L 8(c)

b ub/E o1/% COS8 1-v h o T-v ho1 cosB

0 0.651 0.127 0.390 0

0.1 0.753 0.188 0.526 0.050
0.2 0.840 0.266 0.626 0.123
0.3 0.918 0.359 0.707 0.210
0.4 0.991 0.466 0.776 0.308
0.5 1.060 0.587 0.841 0.419
0.6 1.130 0.724 0.906 10.543
0.7 1.203 0.876 I 0.973 - 0.681
0.8 | 1.286 1.053 1.050 0.841
0.9 1.392 1.267 1.150 1.038
>1.0 +1.660 +1.660 +1.410 +1.410
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Table ‘D10. Stress intensity factors and crack opening displace-
ments for an external edge crack in a thick-walled
cylinder subjected to axial tension and pure bending.
(2/h=0.3, h=b-a,-ao=Pm/[w(b2-a2)], c1=4Mb/[n(b“—a”)]).

R k() k(<) G )
5 N oy/T COSB T-v h o, ]—y ho] c0S8
0 1.388 1.592 0.987 11.307
0.1 1.350 1.450 0.976 1.225
0.2 1.328 1.431 0.975 1.165
0.3 1.316 1.381 0.983 1.122
0.4 1.313 1.347 0.996 1.093
0.5 1.317 1.327 1.015 1.078
0.6 1.329 1.323 1.040 1.077
0.7 1.350 1.334 1.073 1.089
0.8 1.384 1.365 1.117 1.120
0.9 1.442 1.428 1.185 1.181
+1.0 +1.660 +1.660 +1.410 +1.410

TabTe D11. Stress intensity factors and crack opening displace-
ments for an internal edge crack in a thick-walled
- cylinder subjected to axial tension and pure bending.
(2/h=0.4, h=b-a, 00=Pm/[ﬁ(b2—a2)], o=4Mb/[n(b*-a*)1)..

2 k{d). _k(d) __ n s{c) u &(c)
b _ 00/E ' o]JEbose 1-v h 9, T-v hq] cose
0 | 0.665 | 0.171 0.531 0
0.1 | 0.754 0.226 0.686 0.062
0.2 0.838 0.296 0.817 0.155
0.3 0.920 0.383 0.935 0.269
0.4 1.001 0.487 1.046 . 0.404
0.5 1.085 0.611 1.158 0.563
0.6 | 1.174 0.757 1.277 0.752
0.7 1.275 0.928 1.412 0.973
- 0.8 1.397 1.141 1.580 1.254
0.9 1.568 1.426 1.821 1.638
- =+1.0 52112 +2.112 +2.614 -2.614
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Table pi12. Stress intensity factors and crack opening displace-
ments for an external edge crack in a thick-walled
cylinder subjected to axial tension and pure bending.
(£/h=0.4, h=b-a, 0, Pul[n(b2-22)], oq=4Mb/[n(b*-a")]).

: 130] 36 o 3(d) TR C))
B | 95/ ~ Oy/s cos® T-v h 9 1-v hoy cose
0 1.593 2.077 1.422 - | 2.337
0.1 1.513 1.865 1.288 2.078
0.2 1.465 1.715 1.381 1.899
0.3 1.437 1.606 1.392 1.774
0.4 1.425 1.531 1.419 | 1.692
0.5 1.427 1.486 . 1.459 1.646
0.6 | 71.443" 1.467 1.516 1.633
0.7 1.475 1,476 1.594 1.658
0.8 1.533 1.520 1.706 :© |.  1.730
0.9 1.641 1.626 1.897 ©1.890
1.0 | s2.112 >2.112_ | 52614 | s2.61a

Table D'3. Stress intensity factors and crack opening displace-
ments for an internal edge crack in a thick-walled
cylinder subjected to axial tension and pure bending.
(2/h=0. 5, h=b-a, 9o=Pa/[n(b2-22)], o,=aMb/[n(b4-a%)]).

a k{d) k() n_ s(c) u 5(c]
b 9or% 01y €OS6 T-v h % T-v ha, coss
0 0.691 L 0.217 0.689 0
0.1 | 0.775 0.267 0.864 0.074
0.2 0.859 . 0.333 1.029 0.187
0.3 0.945 0.415 1.189 0.329
0.4 1.035 0.517 1.351 0.503
0.5 1.131 0.643 | - 1.523 10.718
0.6 1.239 0.799 1.718 0.985
0.7 1.366 10.989 1.954 1.318
0.8 | 1.529 1.243 2.267 1,775
0.9 1.779 1.612 2,765 2.472
+1.0_ | +2.8% +2.826 +4.,950 +4.950
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Table DI4.

Stress intensity factors and crack opening displace-

cylinder subjected to

‘ments for an external edge crack in-a thick-walled

axial tension and pure bending.
{(2/h=0.5, h=b-a, 00=Pm/[n(b2*a2)], o]=4Mb/[n(b“-a“)]).

a k(c) _ kic) G u §(d)
b co/g 01/E'cose 1-v h %y T-v hc1 cos6
0 1.922 2.929 1.989 4.291
0.1 1.762 2.468 1.901 3.548
0.2 1.667 2.163 1.873 3.076
0.3 1.610 1.946 1.884 '2.753
0.4 1.580 1.780 1.924 2.546
0.5 1.572 1.707 1.994 2.426
0.6 1.586 1,660 2.097 2.382
0.7 1.627 1.658 2.248 2.417
0.8 1.709 1.712 2.478 2.558
0.9 1.878 1.867 2.888 2.904
1.0 +2.826 +2.826 +4,950 54,950

Table D15. Stress intensity factors and crack opening displace-
- ments for an internal edje crack in a thick-walled

cylinder subjected to a
(2/h=0.6, h=b-a, GO=Pm/

xial tension and pure bending.
[w(b2-a2)], oy=4Mb/[x(b*-a*)]).

0 0.736 0.265 0.877 0
0.1 0.820 0.314 1.077 0.087
0.2 0.908 0.378 1.283 0.222
0.3 1.000 0.459 1.493 0.393
0.4 1.099 0.561 1.716 0.611
0.5 1.208 0.691 1.966 0.890
0.6 | 1.333 0.856 2.261 1.253
0.7 1.484 1.066 2.636 1.729
0.8 | 1.688 1.359 3.166 2,431
0,9 2.025 1.824 4.091 3.623

1.0 | »4.035. |  +4.035 +9, 965 +9.965
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Table D16. Stress intensity factors and crack opening displace-
' ments for an external edge crack in a thick-walled
- cylinder subjected to axial tension and pure bending.
(2/h=0,6, h=b-a, 00=Pm/[ﬂ(b2“a‘2)], c1=4Mb/[w(b‘+-a‘*..)]).

a k) _kle] T e(dy o _8(d)

Iy _ UOJE O1/% COSE T-v h % T-v hc] cosBo
0 2.478 4.579 2.798 | 8.542
0.1 2.159 3.527 2.589 6.365
0.2 1.977 2.880 2.510 5.095
0.3 1.866 2.460 2.506 4,307
0.4 1.802 2.194 2.557 3.833
0.5 1.773 2.021 2.661 3.550
0.6 | 1.776 1,923 2.826 3.424
0.7 1.818 1.895 3.080 ©3.455
0.8 1.918 1.949 3.491 3.5692
0.9 2.153 2.155 4.289 4.354
+1.0 +4.035 +4,035 +9.965  59.965
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Table D17. Transient temperature distribution 8/6, in a hollow
cylinder due to a sudden temperature change on the
inner radius. (a/b=0.1, Fo=Dt/b2, 8/8.=(T(r,t)-

: 'To)/(.Tm"To))- . ‘ :

Fo=.0005 | Fo=.001

| Fo=.0001 Fo=,005 | Fo=.01
h 9/ 8o 8/ 0 8/ 6 0/ 6 8/ 6
0 1.000 0.999 - 0.997 |. 0.987 0.974
0.05 0.001 0.129 0.263 0.545 0.618
0.10 0 0.003 0.032 0.271 0.383
0.15 0 0 0.002 0.118 0.225
0.20 0 0 0 - 0.044 0.124
0.25 0 0 0 - 0.138 0.063
0.30 0 0 0 0.004 0.030
0.35 0 0 0 0.001 0.137
0.40 0 0 0 0 0.005
0.45 0 0 0 0 0.002
0.50 0 0 0 0 0.001
0.55 0 0 0 0 0
0.60 0 0 0 0 0
0.65 - 0 0 0 0 0
0.70 0 0 0 0 0
0.75 0 0 0 0 0
0.80 0 0 0 0 0
0.85 0 0 0 0 0
0.90 0 0 0 0 0
0.95 0 0 0 0 0
1.00 0 0 0 0 0
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Table DI8. Stress distribution o* in a hollow cylinder due tg
a sudden temperature change on the inner radius.
(asb=0.1, Fo=Dt/b2, c*=(1-v/Ea)<>'zz/aw', e;Tm—TO).

r-a | F0=.0001 T Fo=.0005 | Fo=.007 | Fy=_06% Fo=.01
h o* g* a* o* g*

-.997 ©-.993 -.989 | -.966 -.943
0.05 .001 -.123 -.254 -.524 | ..587
0.10 .002 .002 -.024 -.250 -.353
0.15 .002 .006 . .006 -.097 -.195
.0.20 .002 .006 008 | -.023 | - 93
0.25 .002 .006 .008 .007 -.033

0.30 .002 - .006 008 | 017 .001

0.35 .002 .006 .008 .020 .018
0.40.| .002 006" | g0 020 | .oz
0.45 .002 006 .008 | 020 .029
0.50 .002 .006 .008 .020 .030
0.55 .002 .006 .008 .020 .031
0.60 .002 .006 .008 .020 .031
0.65 .002 .006 .008 .020 .031
0.70 .002 .006 .008 .020 .031
0.75 .002 .006 .008 .020 .031
0.80 .002 .006 .008 .020 .031
0.85 .002 .006 . .008 .020 .031
0.90 .002 .006 .008 | 020 .031
0.95 002 | .006 .008 020 .031
1.00 .002 .006 | " .008 .020 .03]
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Transient temperature distributionr 8/6, in a hollow
cylinder due to a sudden temperature change on the
inner radius. (a/b=0.3, Fo=Dt/b2, 8/8, = (T(r,t)-

Table‘DIQ.

To)/(Tm"TO))-

T TRo= 0007 [Fo=.0005 |Fo=.001 |Fo=.005 [fo=.07 [f0o=.05
h e [ Tefen /0 | 0/6. | 978 | 8/6

o | 1.000 | 1.000 | ©0.999 | 0.997 | 0.994 | 0.969
0.05 | 0.013 | 0.254 | 0.411 | 0.687 | C.760 | 0.842
0.10 0 0.024 | 0.106 | 0.437 | 0.559 | 0.729
0.15 0 0.001 | 0.016 | 0.254°| 0.395 | 0.629
0.20 0 0 0.001 | 0.134 | 0.267 | 0.539
0.25 | O 0 0 0.064 | 0.173 | 0.459
0.30 0 0 0 0.027 | 0.106 | 0.389
0.35 0 0 0 0.011 | 0.062 | 0.327
0.40 0 0 0 0.c04 | 0.035 | 0.272
0.45 0 0 0 0.001 | 0.018 | 0.225
0.50 0 0 0 0 | 0.009 | 0.185
0.55 0 0 0 0 | 6.004 | 0.151
0.60 0 0 0 o | 0.0c2 | 0.122
0.65 0 0 0 o | 0.001 | 0.098
0.70 0 0 0 0 0 0.079
0.75 0 0 o 0 o | 0.063
0.80 0 0 0 0 0 | o0.051
0.85 0 0 0 0 0 | 0.042
0.90 0 0 0 0 0o | 0.036
0.95 0 0 0 0 0 0.033
1.00 0 0 0 0 0 | 0.032
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Table D20. Stress distribution o* in a hollow cylinder dye to
a sudden temperature change on the inner radius.
(a/b=0.3_, Fo=Dt/b?, 0'*=(1-v/Ea)crzz/6m, em=Tm-T0}.

r-a |F0=-000T [Fo=.0005 [Fo=.00T TF;= 005 Fo=-0T [Fo=.05

h g* o? g* ag* o* o*

0 ] -.992 =982 ] -.975 | -.939 | _ 909 | - 755
0.05 | -.005 =237 1 -.386 | ~630 | -.675 | -.637
0.10.1.007 [ -.007 | -.081 |-.379 | -.475 | - 518
0.15 | .007 016 008 | -.196 | -.311 | -.a418
0.20 | .007 017 023 | -.076 | -.183 | -.378
0.25 | .007 .017 024 | -.006 | -.088 | ~.249
0.30 | .007 .017 .025 030 | -.22 1 -.178
0.35 | .007 017 .025 047 1 022 | -.116
0.40 | .0o07 .017 .025 .054 .050 | -.067
0.45 | 007 .017 .025 .057 .066 | -.014
0.50 | .007 017 .025 .057 075 | Lo26
0.55 | .007 .017 .025 .058 .080 | .060
0.60 | .007 017 025 | -.058 .082 | 089
0.65 | .007 .017 .025 .058 .084 | 113
0.70 | .007 .017 .025 .058 084 | 132
0.75 | .007 017 .025 | .os58 084 | 148

0.86 | .007 017 .025 .058 .084 | 160
.85 | .007 .017 025 | .058 .084 | 168
0.90 | .007 .017 .025 .058 084 | 175
0.95 | .007 .017 .025 .058 .084 | 178
1.00 | .007 .017 .025 | .os8 .084 | 179
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Table D21. Transient temperature distribution 8/6~ in a hoilow
cylinder due to a sudden temperature change on the
inner radius. (a/b=0.5, Fo=Dt/b2, 8 /0,=(T(r,t)-
To)/(Ta:“TO)) .

——[Fo=.0001 Fo=.0006 [Fo=-001 [Fo=005 [Fo=.0T [Fo=.05

h 6/8e 6/8c /00 | 6/8n | 8/08x | 8/8q

o | 1.000 | 1.000 | 1.000 | 0.998 | 0.996 | 0.980
0.05 | 0.075 | 0.419 | 0.562 | 0.783 | 0.837 | 0.900
0.10] - 0 0.109 | 0.251 | 0.588 | 0.689 | 0.824
0,15 0 0.016 | 0.087 | 0.423 | 0.556 | 0.752
0.20| o0 0.001 0.023 | 0.290 | 0.438 | 0,684
0.25) 0 0 0.005 | 0.189 | 0.337 | 0.620
0.30 ] 0 0 0.001 | 0.117 | 0.254 | 0.561
0.35 0 0 0 0.069 | 0.186 | 0.506
0.40 | 0O 0 0 0.038 | 0.133 | 0.455
9.45 | 0 o 0 0.020 | 0.093 | 0.409
0.50 | 0 0 0 0.010 | 0.063 | 0.367
0.55 0 0 0 0.005 | 0.042 { 0.329
0.60 | 0 0 0 0.002 | 0.027 | 0.296
0.65] 0 0 0 0.001 | 0.017 | 0.266
0.70 | 0. 0 0 0 0.010 | 0.241
0.75 | 0 0 0 0 0.006 | 0.220
0.80 | © 0 0 0 0.003 | 0.203
0.85 | 0 0 0 0 | 0.002 | 0.190
0.90 | 0 0 0 0 0.001 | 0.181
0.95 | © 0 0 0 | 0.001 | 0.176
1.0 | © 0 0 0 0.001 | 0.174
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Table D22. Stress distribution o* in a hollow cylinder due to
a sudden temperature change on the inner radius.
(a/b=0.5, Fo=Dt/b2, c*=('|—v/Ea)chZ/8,x,, em=Tm—T0)

r-a |10=-000T |Fo=.0005 TFo=.00T [Fo=.005 [Fo=.01 |Fo= 0%
h ag* ag* o* o* o | o¥

0 -.985 | -.965 -.951 | -.885 | -.833 | -.587
0.05 | -.060 | -.385 -.513 | -.670 | -.674 | ~.507
0.10 015 | -.074 -.202 | -.476 | -.526 | -.43]
0.15 .015 .018 -.038 | -.310 | -.393 | -.3509
0.20 | .015 .033 026 | 177 | -.275 | ~.297
0.25 .015 .034 044 1 -.076 | -.175 | -.227
0.30 015 .034 .048 | -.005 -.091 | -.168
0.35 .015 .034 .049 .044 | -.023 | -.113
0.40 { .015 .034 .049 074 030 | -.062
0.45 | .015 03¢ [ 049 .092 .070 | -.016
0.50 .015 L0348 | 049 .103 .100 | .026
0.55 |  .015 .034 .049 .108 211 .064
0.60 .015 .034 .049 1 136 | .097
0.65 .015 .034 .049 112 146 | 127
0.70 .015 .034 .049 112 153 | 182
0.75 |  .015 .034 ,049 N3 157 | 173
0.80 .015 .034 .049 113 2159 | .190
0.85 .015 .034 .049 113 .161 .203
0.90 .015 .034 .049 113 J162 | 212
0.95 | - .015 .034 .049 .113 162 | 217
1.60 .015 .034 .049 113 162 1 .219




Table D23. Transient temperature distribution 6/6. in a hollow
cylinder due to a sudden temperature change on the
inner radius. (a/b=0.7, Fo=Dt/b2, e6/e=(T(r,t)-
To)/ (Ta-T,))

o [Fo=-000T [Fo=.0005 fFo=.001 [Fo=.005 |Fo=.01 [Fo=.05
h 8/0,, &/ 8/6,, 6/6 6/ 0y 8/ 8
0 1.000 | 1.000 | 1.000 | 0.998 | 0.997 | 0.985
0.05 | 0.286 0.628 | 0.729 | 0.870 | 0.904 | 0.953
0.10 | 0.033 0.336 | 0.492 | 0.748 | 0.813 | 0.922
0.15 | 0.001 0.150 | 0.305 | 0.632 | 0.726 | 0.892
0.20 0 0.055 | 0.172 | 0.526 | 0.644 | 0.863
0.25 0 0.017 | 0.089 | 0.431 | 0.566 | 0.835
0.30 0 0.004 | 0.042 | 0.347 | 0.494 | 0.808
0.35 0 0.001 | 0.018 | 0.274 | 0.427 | 0.783
0.40 0 0 0.007 | 0.213 | 0.367 | 0.759
0.45 0 0 0.002 | 0.162 0.312 | 0.737
0.50 0 0 0.001 | 0.121 | 0.264 | 0.717
0.55 0 0 0 0.089 | 0.221 | 0.698
0.60 0 0 0 0.064 | 0.184 | 0.681
0.65 0 0 0 0.045 | 0.153 | 0.666
0.70 0 0 0 0.031 | 0.126 | 0.653
0.75. 0 0 0 0.021 | 0.704 | 0.642
0.80 0 0 0 0.014 | 0.087 | 0.633
0.85 0 0 0 | 0.010 | 0.074 | 0.626
0.90 0 0 0 0.007 | 0.065 | 0.621
0.95 0 0 0 0.005 | 0.060 | 0.618
~1.00 0 0 0 0.005 | 0.058 | 0.617

D-GO




Table D24. Stress distribution o* in a hollow cy1inder'due to
. a sudden temperature-change on the inner radius,
(a/b=0.7, Fo=Dt/b2, c*=(]-v/Ea)ozz/6m, Beo™ Teo=Tg)

r-a |10=-000T [Fo=.0005 [Fo=.00T |Fo=_00% Fo=.01 [Fo=.05

h o¥ o* | o* o* g* o*

0 | -.969 ~.930 =200 | -.770 | -.669 | -.250
0.05 | -.225 -.558 -.630 | -.642 | -.575 | -.219
0.10 | -.002 -.265 ~.392 | -.519 | -.485 | -.188
0.15 | .030 -.080 =.205 | -.404 | -.398 | -.157
0.20 | .031 .015 ~.073 | -.298 | -.316 | -.128
0.25 | .031 .053 01T | -202 | -.238 | -.100
0.30 | .031 .066 .058 | -.118 | -.166 | -.07a
0.35 | .031 .069 .082 | -.046 | -,099 | - 0ag
0.40 | .03 .070 093 | 016 | -.039 | -.g25
0.45 | 031 .070 097 | .066 016 | -.003
0.50 | .031 .070 099 | 107 064 | .018
0.55 | .031 .070 00 | 139 | 107 | .036
0.60 | .03 .070 100 | .64 144 | 053
0.65 | .03 .070 100 | .183 176 | .068
0.70 | .03 .070 100 | 197 .202 | .08]
0.75 | .031 .070 J100 | 207 226 1 092
0.80 | .031 .070 00 {214 | 281 | 107
0.85 | .03 .070 100 | 219 .254 | 108
0.90 | .03 .070 100 | 222 263 | 113
0.95 | .03 070 100 | .223 268 | .116
1.00 | .03] .070 100 | .224 270 | 117
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Table D25. Transient temperature distribution 6/8. in a hollow
cylinder due to a sudden temperature change on the
inner radius. (a/b=0.9, Fo=Dt/b2, 8/6,=(T(r,t)-
To)/(Tm'To)}

s “Fo=.0001 | Fo=.8005 | Fo=.00T Fo=.005
h Tole_ | ele., | ele, 678,
0 1.000 1.000 1.000 0.999
0.05 0.723. 0.872 0.908 0.967
0.10 0.477 0,748 0.818 0.937
0.15 0.286 0.630 0.731 0.906
0.20 0.156 . - 0.521 0.648 0.877
0.25 0.076 0.423 0.568 0.848
0.30 0.033 0.337 0.494 0.820
0.35 0.013 0.263 0.426 0.794
0.40 0.005 0.201 0.363 0.769
0.45 0.001 0.151 0.307 0.745
0.50 0 0.111 0.257 0.723
0.55 0 0.080 0.213 0.703
0.60 0 0.056 0.176 0.685
0.65 0 0.038 0.144 0.668
0.70 0 0.026 0.117 0.654
0.75 0 0.017 0.095 0.641
0.80 0 0.011 0.078 0.631
0.85 0 0.007 0.065 0.623
0.90 0 0.005 0.056 0.617
0.95 0 0.003 0.050 0.614
1.00 0 0.003 0.048 - 0.613
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Table D26. Stress distribution o* in a hollow cylinder due to
_ a sudden temperature change on the inner radius.
(a/b=0.9, Fo=Dt/b2, %= (1-v/Ea)o,, /0as 8e=TorT,)

r-a Fo=.0001 Fo=.0005 Fo=.001 ~Fo=.005
h o o T T | T
0 -.892 -.758 - 656 -.251
0.05 -.614 -.630 -.565 | -.220
0.10 -.369 -.506" -.475 -.189
0.15 -. 179 -.388 -.388 -.159
0.20 -.048 -.280 - -.304 -.129
0.25 .031 -.182 -.225 ~.100
0.30 074 -.096 ~.151 -.073
0.35 .094 -.022 -.083 | -.046
0.40 .103 . 040 -.020 - -.021
0.45 .106 .091 .036 .002
0.50 107 L1317 .086 .025
0.55 .107 .62 130 .045
0.60 107 186 167 | 063
0.65 .107 .203 200 | 080
0.70 . 107 .216 .226 .094
0.75 .107 .224 | .248 106
0.80 107 .230 .265 117
0.85 |  .107 .234 .27 125
0.90 07 .237 .288 .130
0.95 107 .238 293 134
1.00 .107 o239 [ 205 135
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Table D27. Stress intensity factors for internal edge cracks
subjected to transient thermal stresses (ky(d) =

..L(_g_)__-':_\f_ 9_.—. "‘Dt =h- =] -
72 Feoo ° b 0.7, FO—B“Z', h=b g, 0. Tcm TO)

0=.0001 |R=.0005 |[Fo=.00T [Fo=.005 [Fo=.01 [Fp=.05
k1(d) ke(d) ke (d) | kg {d) | kp(d) [ k()

=

0.01 | 0.721 0.885 | 0.923 | 0.957 | 0,945 | 0.789
0.1 0.045 0.170 | 0.169 | 0.364 | 0.427 | 0.414
0.2 0.014 0.032 | 0.048 | 0.135 | 0.198 | 0.261
6.3 0.006 0.015 | 0.022 ! 0.059 | 0.095 | 0.173
0.4 0.004 0.008 | 0.012 | 0.031 | 0.050 | 0.114
0.5 0.002 0.005 | 0.007 | 0.018 | 0.029 { 0.075
0.6 0.002 0.003 | 0,005 | 0.012 | 0.018 | 0.049

Table D28. Stress intensity factors for internal edge cracks
subjected to transient thermal stresses. (kT(d) =

_m.l:.\.’._ g.:‘ :Dt = ' = -
g s b7 0.3, Rom g7 hebaa, T, T,)

., |Fo-.000T [Fo=.0005 [Fo=.001 ]Fo=.005 |Fo=,01 Fo=.05
h kK7(d)  Kkqld) ko (d) | kqld) k() k;(d)
0.01 0.832 | 0.961 0.987 | 0.994 | 0.972 | 0.820
0.1 0.094 | 0.235 0.329 | 0.566 | 0.624 | 0.601
0.2 0.035 | 0.080 0.117 | 0.288 | 0.373 | 0.437
0.3 | 0.018 | 0.041 0.059 | 0.150 | 0.220 | 0.318
0.4 0.011 | 0.025 0.035 | 0.086 | 0.131 { 0.231
0.5 0.007 | 0.016 0.023 | 0.054 | 0.082 | 0.165
0.6 0.005 | 0.012 0.016 | 0.037 | 0.054 | 0.117
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Table D29. Stress intensity factors for internal edge cracks
: subjected to transient thermal stresses, (k1(d)=

~ K{d) T-v a _ S0t =
"‘E—'Ea'é: » 5 T 0.5, Fp= BT » h=b-a, 0= T~ T )

Fo=.0001 F0=.0005..Fo=.001 Fo=.005 [Fp=.01 Fo=.05
R O @ S e

- e

0.01 | 0.906 0,988 0.997 | 0.957 | 0.907 | 0.644
0.1 | 0.154 | 0.364 | 0.485 0.671 - | 0,686 | 0.525
0.2 | 0.064 0.146 0.214 | 0.435 | 0.495 | 0.420
0.3 | 0.037 0.082 0.117 | 0.277 | 0.351 | 0.332
0.4 | 0.024 0.054 0.076 | 0.179 | 0.246 | 0.267
0.5 | 0.018 0.038 0.053 | 0.121 |.0.173 0.203
0.6 | 0.013 0.029 0.040 | 0.087 | 0.123 | 0.154

Table D30. Stress intensity factors for internal edge cracks
subjected to transient thermal stresses. (ky(d)=

___k_Ld_l______]‘\) 2.2 . = Dt =h- B =T -
/o Eeo. ' b = 0.7, Foe BT h b-a, 8 7T~T,)

o= 000T o =. 0005 [Fo=-00T [Fo=-005 [Fo= 0T TFa="05
@ @ %@ T [

e

0.01 1 0.968 | 0.988 | 0.969 | 0.884 | 0.736 | 0.276
0.1 | 0.285 | 0.562 | 0.650 | 0.689 | 0.622 | 0.237
0.2 1 0.725 | 0.292 {0.399 | 0.548 | 0.519 | 0.202
0.3 1 0.079 | 0176 | 0.253 | 0.432 | 0.431 | 0.17]
0.4 1 0,057 | 0.124 | 0.175 | 0.337 10.354 | 0.144
0.5 | 0,045 | 0.095 | 0.131 | 0.263 | 0.288 0.119
0.6 | 0,03 | 0.076 | 0.104 | 0.205 | 0.230 0.097
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Table D31. Stress intensity factors for internal edge cracks
subjected to transient thermal stresses. (kq{d)=

- Eé%?-éggi , 2=0.9, Fo= JF , heb-a, 8.TurT)
, | Fo=-000T | Fo=,0005 Fo=.007 | Fo=.005

0.0 0.962 0.833 0.724 0.277
0.1 0.657 0.701 0.633 - 0.247
0.2 | 0.426 0.589 0.560 0.224
0.3 0.300 0.501 0.502 0.206
0.4 0.238 0.432 0.453 1 0.190
0.5 0.205 0.378 0.408 0.174
0.6 0.185 0.334 0.367 | 0.158

Table D32. The effect of Poisson's ratio on stress intensity
: factors and §{c) when loading is uniform tension
(a/b=0.5, £/h=0.3, o =Pu/[n(b2-a%})], h=b-a).

v=0 v=0.1 | v=0.2 | v=0.3 | v=0.4 } v=0.5
k(d) _ .
W 1.048 | 1.051 ] 1.055 | 1.060 | 1.067 | 1.076
T§;-§1§1- 0.814 | 0.821 | 0.831 | 0.841 | 0.854 | 0.870
0

Table D33. The effect of Poisson's ratic on stress intensity
factors and §(c) when loading is pure bending
(a/b=0.5, 2/h=0.3, 0134Mb/[w(b“—a”)],-h=b-a).

| - =0 v=0.1. | v=0.2 | v=0.3 | v=0.4 | v=0.5
;—~=§9)—m~—— 0.574 | 0.577 | 0.582 | 0.587 | 0.594 | 0.602
1/% €0s6
U §(c) '
T feycose | 0-39 0.402 | 0.410 | 0.419 | 0.430 | 0.443
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Fig.D2

c/d

Stress intensity factors for concentric ring
shaped cracks in an infinite medium subjected
to axial extension (n=0) and pure bending {n=1).
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Fig.D3  Stress intensity factors for a symmetric embedded
3 crack in a thick-walled

Cylinder subjected to axial
- tension. (d-c)/(b-a)=0.4. -
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Stress intensity factors for edge cracks in a N
thick-walled cylinder subjected to axial tension.
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Fig.D5 Stress intensity factors for edge cracks ina

thick-walled cylinder subjected to axial ten57on"

2/h = Q.1.
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Fig.DG Stress intensity factors for edge cracks in a
- thick-walled cylinder subjected to pure bending.
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Fig.D? Stress intensity factors for edge cracks in a
thick-walled cylinder subjected to axial tension.
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Fig.D8 Stress intensity factors for edge cracks in a
thick-walled cylinder subjected to pure bending.
L/h = 0.5. '
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Fig.D3 Stress intensity factors for internal edge-cracké
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Fig. D10 Stress intensity factors for internal edge cracks
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© Fig.p11 Transient temperature distribution 6/6w in a hollow -

cylinder due to a sudden temperature change on the
~inner radius. a/b=0.3, h=b-a, Fo=Dt /b2,6/6s =

D-77




z
| 1 o
LOp— a7 ]
- a =0,
- | ///’_ a/b=0.3
A ' o .To _
' Too 7/
N/
el L .
i i i ] I ] l i 1
o | 0.5 | e
(r-a)/h

Fig.D12 Transient thermal stresses in a hollow cylinder which
' has been suddenly cocled by a temperature T, on its
inner radius. a/b=0.3, h=b-a, Fg=Dt /b2, o* = '
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Fig.p13 Transient temperature distribution e/sm'iﬁ a hollow

~ cylinder due to a sudden temperature change on the
inner radius. a/b=0.5, h=b-a, F,=Dt /b2,p/p, =
(T(rst)'To)/(TW'To)- _ '
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F1g D14 Transient thermal stresses in a hollow cylinder ‘which
. has been suddenly cooled by a temperature T, on its
1nner radius. a/b = 0.5, h=b-a, Fo=Dt /b2, o* =
( ) 07/ G- |
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Fig.D15 Transient temperature distribution 6/6. in a hollow
oo cylinder due to a sudden temperature change on. the
inner radius. a/b=0.7, h=b-a, Fg=Dt /b2,8/6, = :
(Ter,t)=Ty)/(Te=Ty).
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Fig.D17 Transient temperature distribution /6. in a hollow
o ¢ylinder due to a sudden temperature change on the
inner radius. a/b=0.9, h=b-a, Fo=Pt /b%,6/6e &
(T(r,t)-To)/{Tw-Ty). i
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has been suddenly cooled by a temperature T on its
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Appendix A

"The coefficient matrix fij(s,a,b)'whose inverse mij(s,a,b)

is used to ca1cu1ate.the unknown coefficients in the stress and

displacement equations.

fiy=rs in(sr) - (2-2v+n) In+](sr) (A-1)
Fip = mDrs Ki(sr) + (2-2vin) Ko q(sr)] (A-2)
fi3=8 T q(sr) + %-In(sf) | O (A-3)
fig = %-Kn(sr)'- s Kn+](sr) | | (A-4)
R
=LKk (sr), =12 -  (A-6)
for i =1, r = aand for i=2,r=b.

fig = - A8 (4guin) 1, (sr) + (2-2vtn)s I (sr) (A-7)

fig = - {2 (g-auin) o (sr) - (2-2vm)s K (sr)  (A-8)
Fi3 = 7 Tpa (1) + 5 (1) T(sr) | (r-9)
gt e ) ke (0
fi5= - (B (n-1)s2)1 (5r) + 25 1, (sr) (A-11)
fig = = G (1-1ss2)K(sr) - £ Ky (o) (A-12)

D-90



for i = 3,4; when i = 3, r = a and when i = 4, r = b.

fi1 = (3-2v)s I (sr) - [iﬂall (4-4vin) + rs2]1_ ., (sr)
| | (A-13)
fig = = (320)s K (sr) + U (4gumn) + rs2Ik o (sr)y
| | | | N (A-14)
Fi3=- ezl 21 (sr) = 21 (s0)3 (A-15)
fia =-~'{[EL$§ll-+'SZJKn(SP) 2K (sr) R (A-16)
fig = %?-[iﬂﬁll-ln(sr) ts In+1(sr)j (A-17)

- for i = 5,6; when i = 5, r = a and when i = 6, r'= b.

The terms Gj(s,t) iﬁ (53) aré obtained by intégrating‘the Bessel
~integrals which result from the substitution of (52) into the
stress equétions (46), (47} and (49). These definite Bessel
integrals are evaluated by differentiating a related integral
given by Erdelyi, v2. p. 49. |

Erdélyi gives:

[ (52002) Yy (aa)d () = (-T)SVEOL (as)K (t5)

o .
a>0,Res>0,a<t<w,

Re u -~ 2n+1 > Re v > -n-1 , n = integer. (A-19)
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Tak1ng the der1vat1ve w1th respect to s on both sides, the

1ntegra1 becomes, ”

O . . o N
_ I av-n+2n+1(52+a2)—2J#(au)Jv(ta)da = i{%)—-'{(v-u+2n) *
o]
* SVELL (as)K(ts) + & THENa 1 (sa) + BT (sa) I

v-p¥2n-1 v .
*_Kv(ts) +s Iu(as)Eg Kv(st) t Kv+1(st)]}

a>0,Res>0,actcw, o (A-20)

Re p-2n+4 >Re v > -n-1
Thus, the terms_Gj(s,t)_(j=1,6) are expressed as:

G1(s,t) = Kn(st){gﬂlgill In(as) + (4+3n)s In+](as)

+s2a Iﬁ+2(as)} -t Kn+1(st)'{%f-ln(as) + 52 In+](as)}
_(A-Z])

| Gz-(s,t) - xn(st){?—"—(g-ﬁl Ky(bs) = (B35 Ky, (55)
+s2bK +2(bs)} HtL(st) OE Kn(bs) - 52K (bs)}
| (a-22)
Byls,t) = Ik (st)[2lazlllomn) 1 () + s(2v+3n+l)1n+-[(as)
v 521 (as)] - t Kn+1(st)[——ﬂ-ll-1 (as) + 2T (@)

SA-@&)
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6y(sst) = P g1 (st)p2lnclivin Ka(bs) - s(2vt3n+1)K, (bs)

+ 5% K p(09)] + & 1 (st) L) ¢ (bs) - 52k, (bs) T3

(A-24)

G(s,t) = Kn(st){-[z"(“;l)("*”) + 2(n+1)52]1n(;a)
+ -[—:— (-n2+3n+2(v+1))-s3a']In+1(sa) + 521n+2(sa)}

-t Knﬂ(st){-[ig—'i)- +527s In(as) + 5;— In+1(as)} | (A-25)

Gglsat) = 1 (st) -2 4 p(nan)sagk (bs)

+ [§ (n2-30-2(v#1)) + s3IK 1 (bs) + s2K ., (bs)}

+t T (st) -0 + 235 ¢ (bs) - kL (bs)} (A-26)
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Appendix B
'The-terms'vj(s,t) in equation (68).

Vj'“"YjK QK for' j = !,3,5 s K= ],2

Vj = 'YjK QK+2 fOI“ j = 2’4,6 N K = ],2

For example,
17l el
=v21% * vl

V3 = Ty *vgelp s ete

P gﬂéﬂfll In(as) + (4+3n)s In+1(as):+ s2a In+2(35)

'112 = %E-In(as) + szln+1(as)

TZ] - zngn'l‘]! Kn(bS) - (4-{-3")5 Kn+-|(b5) + s2b Kn+2(b5)

(B-1)

(B-2)

(B-3)
(B-4)
(8-5)

(B—G).

Yy = g— Zlﬂzigixiul I (as) + s(2vt3n+1) ., (as) + s?a In+2(§5)]
(BN

Y32 = 2.5512211 In(as)'+ 521n+](as)] C | (BfS)
vy - %5[§iﬂzgllxiﬂl.Kn(bs) - s(2v+3n+T)Kn+1(bS) +52b K, (bs)]
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Pl bs) - sk 0801 (8-10)

Yaz T
Ys1 . -[2“(";;)(“4"’) + 2(n+1)s211, (sa) + [-:- (-n243n+2(v+1})

- sSa]In+](sé) + sZIn+2(sa) - ) (B-11)
Yep = -[D_L:}ll +s2]s I (as) + %%- I 4 (as) | (B-12)

ver = BTN & 5(041)s23K (bs) + [ (n2-3n-2(v#1))

+ s3b]Kn+1(bs) + sZKn+2(bs) 4 - (B~13)
vep = -7 + 5235 K (bs) - SZ K . (bs) ' (B-14)

The terms in (B-1) and (B-2) denoted by Qg are defined as,

Qi(s.t) = - & [nt K (st)s, _q(ist) - it K _q(st)S, (ist)]
| . (B-15)
Qpsst) = gz [(n#2)t K4y (5)S; (ist) - it K (st)S, 1 (ist)]

(B-16)
'QB(S,t) = - g— [nt In(St)So,n-l(iSt) + it In_](st)s]’n(ist)] |
(8-17}
Q(s,8) = = g7 L)t 1(st)sy (ist) + it I (st)s, . (ist)].
| | | (B-18)

- The Lpmmel functions of imaginary argument which are encountered

in Qg are not in a form which is convenient for numerical
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computation, but with the aid of certain identities involving

 the Struve function (see Appendix C) QK may be expressed in

terms of real functions with real arguments. The terms QK

K=1,...,4 for five harmonics n=0,...,4 are given.

n=0
Qy(s,t) = F Ky (st)
Qy(s.t) = §§ K](st)+%? Ko(ﬁt)
Qy(s,t) = £ 14(st)
Q4(s,t) = - %% I,(st) +'%§ I,(st)

. 1
Tet: uo(z) ='f‘ t=3"':l"(1-p‘3)"1‘('2 dp

" .
uy(z) = 22 I e 2P (1-92)%% dp,
0

thén for éﬁlz"
qls,t) = 2 [Ky(sthuy(st) + K (sthuy(st)]

Qé(s,t) = g%-[BKz(st)u1(st$ +'K1(sf)u2(st)]
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(B-20)
(B-21)

(B-22)

(B-23)

(B-24)

(B-25)

(B-26)
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Qy(s,t) = & [I,(sthuy(st) - I;(sthu (st)] - ~ (B-28)

Qyfset) = SE 3T, (sthu (st) - Ip(sthuplst)] (B-29)
o2 o

O(sit) = F Kylst) - £ '-t§%723K1(5f) (8-30)
Qp(s,t) = —2' [1 - '(s_t)'z]K (st) ""7: [st - ¢+ -(s—f)-s-]Kz(St)

| (8-31)

Qg(sst) = - & Lyst) + g [1 - eyl (st) (8-32)
Qls:t) = T 01 - eyelislot) + & Ist - &+ (B (s)

(8-33)

n=3
Q-I(s t) =t {K (st)[3u (st) st u](st)] + Kz(st)[3u1(st) t 2(st)]}

-_(B 34)
Qp(s,t) = 57 (Ky(st) B2 uy(st) - 15 uy(st)]

120 120

+ K3(st)[st 15 u (st) + =2 53 ul(st) GO uz(st)]} (B-35)

Qylst) = & 1,(st)03 uy(st) - & uy(st)]

- Iz(st)[Bu](st) - E?“é(St)]} ‘ L | (B-36)

Q4(s t) = —z' {14(st)[st Uy(st) - 15u,(st)]

120 120

- +'13(st)[.-51;+15u0(st) < ul(st) +W 2(st)]} (B 37)
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n=4

Qls,t) = 2 [ 5 + iyl (st) - £ 00 - i3y
T%%%¢~K3(st)

24'

Qyst) = S0 - ¢ ABakg(st) + b st - B

. 576 _ 9216
* 07~ (seysikalst)

03s,t) = T [- 5 * reqyella(st) + £ 01 - oy
1}—2%;]13&1:)

e+ 0l e

24 + (gz?s - %i:gb]l4(5t)

+ —2'[St
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Appendix C - Some Properties of Lommel Functibns.

A bfief §uumahy of certain properties associated with
Lomme?'s functions are 1nc1uded These functions occur quite
frequently in this investigation and are generally associated
with indefinite integrals of Bessel funct1ons For morg cam—
p'lete information see [14], [15] and [16]. |

- Lomel's functions were first encountered in this inves-
tigation when it became necessary to éva1uate indefinite inte-

grals of the following type [14];

I z“Jv(z:dz = (utv-1)z Jv(z)Suéliv_l(z) -z Jvﬁl(z)su,u(z)
| . (c-1)
where Su’Q(z) is known as Lommel's function.
When either of the ﬁumbers utv is an odd positive integer
Su,v(g% cah be represented by the following series which tenninates

risl..

@) = 2T - e TGl eg)en]

(c-2)

When u=v Lommel's function is given by [14],
1 - - . Lo
S,,0(2) =72 27 eG4 () - V(2] (c-3)

where H (z) is the Struve function and Y (z) is the Bessel

function of the second kind.
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Also from [14]

Y,
£+ W)Y, ()] = 2 by’ j (1+£2)°" 672t at

0
Rez >0 . , . (c-4)
Thus,

. ® Y.
s,,u(2) = 2°G2)° (k2 e Rez>0.  (CH)
[s)

Two usefu] recursion relationships are given by

@5, (2) = etve)S, g (2) - Gueve]) S,y q(2) (C6)

-
S gl = 2 [l @) . (D)

Using the relationships described above Lommel's functions
of real argument which are encountered in L1(t,r) can be deter-

mined from the following expressions for n=0,...,5.

n=20 SI’O(z).# 1 (C-8)
ey
| Sg,0(2) = | (1+82)7 e at (c-9)
n=1 ° % y
[5y,000) = 2 [ (1412) "o et (c-10)
3 . ° :
n=2 {Smﬂﬂ=24 | (c-11)
Sy.0(2) =1+ 427 | (c-12)
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s (z) = 22"1 S. (z) -s. (z) . (C-Ié)
5 [ 0,2 1,1 0,0
n=3 " <

[ $1,3(2) = 4 + (4272305, ()12 (2)
| | (c-14)
S, o(z) =z + 873 (C-15)
[ 0,3
n=4 < _
l Sy 4(2) = 1+ 16272 + 192774 o (C-16)
S . (z) = 82-1+(482'3-82'1)S (z)+(1-24z'2)3 (z)
-T0,4 : ' 1,1 0,0
n=5 | (c-17)

{ S1.5(z) = --4+3202-2+(19202-4-3602'2+5)S1 ](z)

+ (602']-—960::"3)50 o(z) (C-18)

Lommel's functions of imaginary argument are encountered
in-the Fredholm Kernal Lé(t,r) through the‘térms QK(s,t) (see
(68) and appendix B). For n an even positive integer QK can
be calculated in a straight fonwérd manney since in this case
the necessary Lommel's functions satisfy the property that
utv is an odd positive integer. Thus, (C-2) may be used to
defermine the finite series, The'ré501ting expressions for QK
are always real. |

- For odd values of n, determination of Lommel's function
for imaginary argument is facilitated by equation (C-3) in

conjunction with the following expressions;
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> k2

Lz} = -ie” v Hv(z.ei ) (c-19)

- 1
T+ )T (2)-L (2)] = 2 %&c%z)“[ e"Z(1-t2)" V24t (c-20)
' 0

inf2y _ o A nf2 2 -: /2
Y(ze Wey=3e' ™ I(z) - Se Ty Kv(z), (c-21)

where Lv(z) is known as the modified Struve function.
Aftek simple substitution S\J v(i z) may be expressed as
: : 3

y o o1 w2 v -y
s, (i2) =12 2 rg e i e - ey (G 2)

1 = .
o f et 1t2) V2 gt - 24 T g (2)] (C-22)
o

which is in a form convenient for numerical computation.

" Defining the following integrals

1 .
uy(2) = [ e (1-e2) /2 e (c-23)
| .
L -zt 1/2. '
u(z) = z [ e Zt(1-42)1/2 44 (c-24)
] _
1
uz(z) = z2 I ezt (1--t2)3/2 dt . | (c-25)
0

Lommel's functions for odd valdes of n with 1maginary arguments

can be expressed in terms of these integrals. For example,
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So012) = Ty 4 xo(a) (cas)
o 31,1(1‘z) = uy(2) - 1 Ky(2) . o (c-27)

Again, as in the case of even n the resu1ting_expressions for
QK(s,t) are real. |
Numerica]‘eva]uation of the Fredho]m kernel L1(t r)
involves the computat1on of Lommel's function for both sma]l
and large argument When utv is odd, no d1ff1cu]t1es are
encountered, since Lommel‘’s funct1on can be expresﬁed by the
truncated series given by (C- 2) It is when u=v that certaln
difficulties ar1se. In this case it was found that for small
values of z the representation of Lonme1 s function g1ven by
(C- 3) was the most conven1ent, w1th the necessary Struve func-

tion for small argument given by the series [19]

z5

'Ho(z)ﬁfz"’r%‘?yr*m'--- I (e

Hy(z) = %‘[ 3 '12-§Z"g -z-gzwgz- ].-' (c-29)

When Lommel's funct1on for intermediate and large argument
is to be determ1ned, the 1ntegra1 representat1ons {C-9) and
(C-10) were found to be most usefu] These 1ntegra1$ were
evaluated numer1ca11y using Gauss-Legendre quadra%ufe. _

Numerical evaluation of the Fredholm kernel Lz(t,r).inVOIves

computation of Lommel's function for imaginary argument (C-26)- |

' .
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(C-27). To perform the necessary calculations, the integrals
(C-23)-(C-25) must be evaluated. For small values of z this
| can easily be accomplished by expanding the integrand in a

series and the result is,

I

=X LA SR SR & T 26
Uo{2) =7-2+g2 - Fr1E 2 - ot e0s

+ 28 - 2o __ (C-30)
11025 * 294912 893025 o ;

X 6

3_Zq’ O N Z
372 -t Tes 2 - T8

o 2
uq(z) = %—z - %;-+

m 7 z8 . -
* 36867 ¥ - 99275 - (c-31)

(2) =352 2y om0 2, w6
(2} =16 2° -5 * 552 - o5 * 2088 *

z’7 ' 29

- L) 8 _ -
7775 * 152880 & " %R0 (C-32)

Ih actua]'caicu1ations expression (C-30) was used for z<2 and
expressions'(c—31), (C-32) were used for z<1. For all other
Va]ues of z, Ugs u].and u, were calculated by numerical quadra-
ture using thé integral expressions given in (6-23)-(0-25).
Thirty Gauss-Legendre quadrature points were found to'give'

sufficient accuracy.
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Appendix D

With the aid of asymptotic EXPPESSTOHS given by Watson
[15] and Magnus [14] the asymptotic behavior of the integrand
in (62) can be expressed and evaluated in closed form. Impor-

tant asymptotic expansions are given by:

o =L
J“(Z) - (%—wz) 2 {cos(z~-%21- 0 - jgnz—{%é4n2-a) 272 4.1

2.1 -1 2. 2_ 2. -
-sin(z - z_)[4n 1.,-1_ (4n 1)(g372a)(4n 25) 3__.]
{(D-1)
So.n-1(2) ~ 21 (-n242n)z"%+. .., n=0,1,2,... s - (D-2)
n2 -2 : .
S],n(Z) ~ ] +""2""' Z " cea » n=0’],2’-i.. 3 . ’ (D"S)
1__1 1 LI 3.1 1
S{x} ~ - — = cos x2+—-—-———3-51n X2 + 3 —— — cos x2
X L o
| (D-4)
1 1 1. 1 1 1 ' 3 1 1
C(x) ~ 5+ — —s1nx2+-——-—--—~3-cosx2-—-——--—,-s1n x2
2 X 2 o7 X 4y X
| (D-5)

After substitution of the above asymptotic expressions in (62)
and integrating, the portion of the integraT which'is evaluated

in closed form becomes
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. |
Ay =3 @7 Ci(At-r)) + (-1)"TF - Si(A(t+r))]

a2 1 2. 2.
+ [4“8 1 _J_r - (4" Bélln 9) (%Iz__i_ ?.]Z')] *

o [0S Alter) ' qyn s1n2ﬁ£t+r) . (tér) sin ﬁ(t~r)

s (0 L5r) cos Alttr) 4 (6-0)2 6; (p(4p))

- (1M B s ) + 2L AL,

* [ sin ﬁ!t-r‘! + (_])n Qs ﬁ‘t‘*‘f‘! - (t—r‘)C'i(A(t—r‘))

- ek F - SiAGe)ID (0-6)

3 o )
b L - ) 2

- (4(n;1)2_1)§gén-1)2-9)-64n§ 271 ;in A(t-r)

- (t-r)Ci(A(t-r)) - (-1)" SSARET) (41)"(t+r)(%

- SiAe#r)))] + 0021 =T fgiagery)

SN G- s DT+ B T eiaer))

* "G - Si(Ale)))] + TN ()T,

*[sin Alt-r) _ (t-rXCi(A(t-r)) + (-1)" €98 ﬁ(t+f]

St} (§ - s (AE+R))T) (0-7)
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—(-1)" -5
Ay = - L (o) - SRR - L ()
. . _ _3
*[1)"G3 - Si(At+r))] - Ci(A(t-r))] - '&1?:" r * t .
o[- SRLET) o (p)ci(ACtr)) + (-1)" %ﬁiﬂl

- (D" ()G - SIAHDT . n=01,2,...,  (D-8)

where Ci and Si are the standard notations for cosine and sine

integrals defined [16]

' X

Ci(x) = j 9-93—‘5- dv : (D-9)
™ siny |

Si(x) = J BT dv . (D-10)
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Appendix E - Tfansient‘ThermaT Stréss Problem

.The‘transient thermal stress problem for & cracked hollow
cylinder is én interestfng example where the axial stress is
nonuniform. Consider the following problem: A fluid or vapor
at temperature T, suddenly f{lls an insulated. pipe of inner
and outer radii a and b, respéctive]y (see figure 1). The
initial temperature of the pipe is Toe Find the unsteady tem-
peratufe and thermal stress. | |

The unsteady temperature field
o(r,t) = T(r,t) - 7, (E-1)

in the idealized, uncoupled, linear model is determined from

d8(r,t) (E;g)

v2o(r,t) = 2D

where D, the thermal diffusivity, is expressed as
= X -
D=2, (E-3)
with ¢ = coefficient of thermal conductivity, p = density and
c = specific heat. The initial temperature condition and

idea?i?ed'thermhl ?oundary conditions may be expressed by

o(r0) = 0 | (E-4)

(E-5)

ooelat)=e =T, - T,

D-108



abt) .o | (E-6)

The thermal stresses L. in a hollow cylinder where the

ends are traction free is given by

o b |
op(rst) = () [ [ olntirdr - o(rt)]  (E7)
a

ﬁhere‘ E-= modulus of elasticity, v = Poisson's ratio and o =
coefficient of thermal expansion.

Using Laplace transforms and asymptotic expansions Qf the
modified Bessel functions, solutions were obtained which are

valid for small time. The temperature for small time is given

by ;

ol | ~x2/4Dt
M= 215 erfc[w]-l-F[Z( ;5 *n’”

Xy erfe [0 1] + 6,[(t + Fi)erfcl—I 1]
2(Dt) " | 2(Dt)

. L x 2/a0t h
t. % “Xp/40t
K la5) e ] : ‘ (€-8)
X] =.r-a
Xy = 2b-r-a |
X3 = 2b+r-3a _ (E-9)-(E—1_2)
Xq = 4b-r-3a ' |
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7R E

ol
E3 = E4= -—B"'i"
.|=-—-—---—2——-

By

I o S e
2 B

1
O -l
3 1 gt

1

3A-[B2 + AZBl

F, =
4 2
. B]

_Bifs - MBg - ABy

[<p)
1

B

1 3
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2 5
B
1
-B.A, + AB, + 3A.B, 2A.B.°
o = Bifg ¥ MBy *+ IRB, ZME,
3 7 3
- B B
1 1
-BiA, + AB, - 3AB, 2A.B.°
o = gt MBy - 3B, ZhB
4 5 3

(E-13)-(E-18)

(E-17)-(E-20)

(E-21)-(E-24)



A] = {rb)™%
A = - - 3+ - ' | £-24)-(E~27
27 " S | (E-24)-(E-27)

A = 3(5r+3b)(b-r)
" 128(br) 72

(ab) ™%

B = - _~;/_(3a+b | o E-28)-(E-3
2 g(ab)”2 | ( )-(E-30)

B = 3(5a+t3b)(b-a)
Y
128(ab) 2

v~
—
i

Us1ng the same small t1me approximation to obta1n the

thermal stress, from (E-7) we obtain

.o, (r,t) V_ ' -
TR Y I T

% |
vgn, 52, Dqlxg) + Hydplxg) + 27 (xg)

Tfs
+Hgh(xg)y - Bt o (e-3)
wheré
(E-32)-(E-33)
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AI(x) = 2(%:’—)’i X/t |y erfe [ (E-34)

2(nt)”]

"X2/4Dt (E-35)

Az(x) = D(t + zﬁ-)erfc[ o )%] - Dx{== D) e

From equations (E-8) and (E-31) numerical values for the tem--
perature field and thermal stress are easily calculated. Once
- the thermal stress is kncwn it may be used as an input load
function in the integral equation (92). In this manner, stres§
intensity factors and crack opening displacements are deter-
" mined at various nondimensional time intervals.

It was found that for small values of the gquantity Fo =
%%—, equation (E-31) gave very accurate results. For larger
va?ues of Fo more accurate stress resu1ts were obtained by
evaluating the integral in (E-7) numer1ca11y This integration

was done using 60 Gauss-Legendre quadrature points.

=112




APPENDIX E

- STRESS INTENSITY FACTORS IN A HOLLOW CYLINDER
CONTAINING A RADIAL CRACK :

1.  Introduction

In this paper we reconsider the plane problem of a hollow cylinder
containing an arbitrarily oriented radial crack and subjected to arbitrary
normal tractions on the crack surfaces. Aside from its direct applica-
tions to plane prob]ems such as cracked r1ngs and rotating disks, the
problem has potentially important applications to pressure vessels and
piping containing a relatively long part-through crack in a meridional
plane. In this latter group of three dimensional prob1ems the plane
strain-solution provides an upper bound for the stress intensity factor
in the mid-region of the longitudinal part-through crack in the cylinder
wall. Because of the importance of the crack geometry, the problem has
been studied rather extensively (see, for ekample, [1-71). After
Bueckner's early work in wh1ch the technique of comp]ex potent1als was
used [1], most of the subsequent analytical studies were based on the
~mapping technique or1g1na11y developed by Bowie [2—4] In [1] the
:problem of a rotat1ng disk hav1ng a radial edge crack on its inner boun-

dary is considered. The same crack geometry under uniform tensile
tract1ons_app11ed to the outer boundary of the ring is studied in f2].

The problem of multiple cracks located on the inner or outer boundary

of the ring is considered in [3]. The problem of a curved beam or a .

ring segment containing a radial crack is studied in [4]. In [5] the
problem of a hollow cylinder containing an external edge crack is con-
sidered for various loading conditions where a numerical technique

similar to finite difference approximations is used for the solution.

In [6] the ring problem with an inner edge crack is solved by using the
method of weight functions, However, it may be observed that the existing
solutions in one form or another are all restricted with. regard to loading
and/or geometry.

In the plane strain or the generalized plane stress problem considered

in this Appendix it is assumed that the external loads are symmetric with
respect to the plane of the crack and the basic ring problem without
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" the crack has been solved. Thus. the main problem of interest is the
Mode I crack problem in which the self-equilibrating arbitrary normal
crack surface tractions are the only external loads (Figure 1a).

It should be pointed out that in the special cases of solid disk .
(Figure la, a=0, b<=) and the infinite plane with a circular hole |
(0<a<=, b—a) the problem may readily be formulated in terms of a singu-
lar 1ntegra1 equation by using the basic dislocation solutions given
in [8] as the Green's functions.

2. Formulation of the Problem -

‘The géometry and loading for the problem under consideration is.
shown in Figure la. In crack problems invelving finite geometries,
almost invariably the basic technique to formulate the problem is to
express the solution as the sum of certain number of suitable solutions
satisfying the differential equations of the problem in such a way that
at least one of the solutions contaans the main features of the general
crack problem and the total solution contains sufficient number of arbit-
rary functions or sets of'arbitnary constants to account for all boun-
dary conditions. In this: problem'the solution is expressed aé the sum .
of a crack or dislocation solution for an infinite plane and the general

solution for a c1rcu1ar ring. In order to fac111tate the application
of the boundary conditions, the dislocation solution is expressed in
polar rather than in rectangular coordinates. Let, then, the stress
state in the cracked ring problem be of the following form:

a33(rae) = opgr0) Fapgglre), (hi=re) ()

where 914; and %955 (i,j = r.9) respect1vely raefer to an 1nf1n1te plane
containing an edge dislopat1on or a crack aleng =0 line and to a con-
centric circular cy11nder

a} The infinite pﬁqné sofution.

Consider an infinite plane with an edge dislocation having a quger's

vector by = -f located at the point r=t, =0 (Figure 1b). The plane
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elasticity problem may be solved by assuming that

Opg =0 0sr<m =0, 82w - o | @

jL [u1e(r,+0) - ule(r,-d)] = f§(r-t), 0 2r<e. (3)

Referring to [8] the Airy stress function of the probIem may be expressed
as (Figure Ib)

¥y(r,8) = - “TTR“T f ry log r, cos 8

= - —T%%ET f(r cose-t) log (r2+t2-2rt cose), (4)

™

where u is the shear modulus, -3-4» for plane strain avd x= (3=v}/(1+v)
for the generalized plane stress, v being the Poisson's ratio. From
(4) the stresses are obtained to be
' 2
o 1%, a1y
rrl8) = T3t 5z

2uf «[_rcose - t - 2t sin%e -
z(k+l) re+ts - 2rt cose

2t2sin2a(r cos.‘:e -t o |
T r3FT - 2rt ¢ose)? 1 (8)

| .
(ro) = - 2 (12

= =

alre

= _f [ sine (2t cose-r)
1r(1c+1) re+te - 2rt cose

Zt sing(r coso-t)(r-t coss) ] _ (6)
(retts - 2rt cose)‘ ? : - :

32¢1
%140(rs0) = 5

=

2uf [ 2cose(r-t cose)+ r cose-t
T w(kFY) r<+t< - Zrt cose ‘

- 2(r _cose-t)(r-t coss)? ] | (7)
{(rZ+tZ - 2rt cose)? ) 3




With an eye on combining the infinite plane solution with the ring
solution, we now express the normal and shear components of the stress
state along the circles r=a and r=b in the plane in terms of the follow-
ing Fourier series: .

6159(3,6) _TT-—T H A, (t) sinne, - (8)
o1pep(2s8) = -_;T%I;j-i B (t) cos ne, . (9)
ch,e(b,e) = —n—)"; C (t sin ne, ' (10)

' b,8) = - wf__ % D (t) cos ne, 1)
9 pp(D:8) (T+J ¢ °n (i)

where the Fourier coefficients are given by

22 " 2 sine(2t cose-a)
Ag(t) = 3 f _[ aZ+tZ - Zat cosé
Q
_ 4t sine(a cosa-t)(a-t cose)
“(a%+t? - 2at cosj“
o

B, () = (- 2Ly 3—[ e (2,8)de,

1 sin ne de, (12)

. 2 T
Bn(t) = (- ) ;-J °1rr(a’e)c°5 ne de; | (13a,b)

0
+ v .
¢, () = (@l )%L 977 (:8)s1n N6 do, (14)

0 (t) = (1 2Ll -f cm,(b 0)de,

1T

| D (t) = (- 2 fﬂ Trr(h;a)cos ne:de_ T (15a,b)




After some manipulations and combining some of the terms, the inte-
grals which appear in (12-15) can be evaluated in closed form, giving

+ -
a() = L 2 n@ - (@ ]+2n()

B 1@ - @ D s, (16)
Bo(t) = - 2,
By(t) = L ¢ r‘%v“a) Ja - g
TE I O Yy
@ (In-2} z)(f’-)' B TS R
1 n-1

| L
c,,(t)=g{r52@:vu5“ S ™1 - "

n-1 n+3
r e - ) 1o, (18)
2t
Do(t) 2 - '52' »
n+1
0(t) = § - B tma)hy) - "™

[n-2|+1 -1
- HIn-2[+2)(}) ']+F§-*‘-§-z(5) -

R |
62-t2)z L) - 3(p) *2(5) 11, n>1, (19,b)

b) The ning solution.
In this case'assuming a stress function of the form .

¥y(r.e) = F(r)eP? (20)
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the general eiast1c1ty so1ut1on in polar coord1nates may ‘be obtained
as [9]

o(r,8) ='a, + by log r+ cor2 + dbrz'log r

2 2
+ (a, + by log r + cér..+ dir? log r)e
+ {a.r + byr 'l.o r+Sl+ dlral sing
! 1" r 1 ! cose
. L
* Gir + i 1og 7)o S
+I (anr + by M2y g 27Ny sin ne (21)

ps2 n. n ;oszné .
This -is basically the solution given by Michell, except that he omitted
some of the repeated roots. From (21) the stresses for an annulus are
found to be ' ' '

sing
coso

-+ 2¢ 1
Uzrr r ZC + (‘ T + 2d-|!‘)

n-2

I“' (R sing + R cosd) - I [ann(n-l)r
- n=2
n]sin ne

+ bn(n+1)(n-2)rn + cnn(n+1)r'(n+2) + dn(n-1)(n+2)r' cos no °

. sing . I-v
Toas™ ;z + 2¢, + (—1r + Gd]r)cose o (Rysine + Rxcose)
S [ann(n--l)v"’"-2 + bn(n+1)(n+2)r"

n=2 '

={n+ _ : =n45i
* epn(m ) (42) 4+ 4 (n-2) (n=1)r"T50n e >




- ag . 2¢y cose _ I-v .
°2re N (5 - 24im) G5ne - 1;;-(Rycosa + R, sine)

-3 [a n(n-T)r 2, bnn(n+1)r" - cnn(n+1)r‘("+2)
n=2 -
-d n(n-1)r n]cos ne ' .. - (22a-c)

=-s1n no

where R and‘Ry are the resultants of the tractions on r=a. In the
problem under consideration R =0, R =0 and the stresses satisfy the
following symmetry conditions' '

i

;“2nr(r5°) B aer(r,—e),_cZBB(r,é) = g9(rs=8).
02ra(r,a)'= '°2re(r’"e)' o - (23a-c¢)

Thus, from (22) and (23) it follows that

, . b , 2c1 it -
Gppp ® ;2— +2c, + (- -,.11- + 2d,r)cose - Z [ann(n-l)r" 2

-n=2

+ bn(n+1)(n~2)rn +.cnn(n+1)r + dn(n-l)(n+2)r'"]ccs ne,

ZC . . . L] ) -
g ™ (= T3+ 24yr)sing + 2 [agn(n-1)r” ¢

n-2

+ bnn(h+l)r -C n(n+1)r -4 n(n 1)r""Isin ne,

. b 2cy ® -
e = - ;§-+ 2c, + (= + 6dyr)cose + g [anl'l(l'l-l)lv'"'2

+ b (n+1)(n+2)r + ¢ n(n+1)r'" -2

+.dn(n~2)(n¥1)r'"]cos ne .
(24a#c)‘
c) denda&y conditions.

After determining the basic form‘of.the solutions for the infinite
plate with a dislocation and for the ring, the stresses in the ring
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having a dislocation may be expressed as the sum of the two solutions
(see (1), (5-7) and (24}). The combined stress state must then satisfy
the following: boundany conditions (F1gure la}:
glrr(a,e) * 0p(2,8) 20,0208 <,
a]re(a,e) f °2fa(§’°) N 0? 0<o<m,
B G]rr(bse). + Uzrr(bge) = 0" ¢ = 8 < 'H' »
°1ra(b’e) + Gzre(b,e) = 0,‘0 <8< | (25 a-d)
| °Iee(r’0) + czBe(r,G) =g(r),c<re<d (26)
where o, .. and oy, are given by.(8-15) anq %rr and g, are given by
(24), and g{r) is the crack surface traction. Note that each equation

in {25) is a sine or cosine series in which the coefficients of sin ne
and cos ng, (n=0,1,...) must vanish. Thus, defining '

-

ﬂln+|i n’

T
= Kf' —-(—TT n° (n=0,3,...) » (27 a-d)
we obtain
B, 8, |
a_z.. + 2-,(0 = ...BO , EZ- + ZYO = “’Do 3 ) (zgasb)
2vq 2vy B
- —a3’+ 261a =By, -3z ¢+ 26.'b_ =-D; (29%a,b)
Z*r > _ e
- ...}. + 261a = A1 , -5-3l+ 2860b=Cp 3 - (30a,b)

£-8




n-2 -n=2

ay n(n-1)a""% + g_(n+1)(n-2)a" + v, n(n+1)a

+ 6n(n-1)(n+2)a'" =8, (n=2;3;...)..

n-2 -2

s, 0(n=1)a"2 + g n(n+1)a" - v n(n+1)a

- dn I'I(n-l)a-n = An 3 (ﬂ=2,3,...) [}

‘o (n=1)""2 + 5 (n#1)(n-2)6" + v n(n+1)p™"2
+ sn(n—i)(n+2)b'“ ='Dn,-(n=2,3,...),

oy ne-16" 4 g n(me)e" -y n(ne1 )67

_;sn n{n-1)}b"" = C, » (n=2,3,..;) R ' (31a-d)

~ where Ap, B, Cn,'and D, (n=0,1,2,...) are known funct1qns of t and
are given by (16-19). cOnsequently, the coefficients a, bn, Cpyo and
d calculated from (27-31) will also be functions of t. From (24) it
may be observed that the coefficients ayr A7s b1 and d do not appear
in the express1ons of 9244 Therefore, if the series 1n (28) are
truncated at the nth term, there would be 4n unknown coefficients to be

determined. On the other hand, there are 4n+2 equations in the corre-

sponding algebraic system given by (28-31). Two of these equations must,

therefore, be redundant. This is, in fact, suggested by the pairs of
equations (29a, 30a) and (29b, 30b). These equations indicate that if

Ay + By =0, c] + '01 =0, (32a,b)

then {29) and (30) are identical and by, for example, ignoring (30},
the unknown coefficients may be determined uniguely from (28), (29},
and (31). Referring to (8) and (9), it may be seen that




2T

A1 + B1 = Ill?_l.#%.f [o 1ra(a’9)51" 8 - aIrr(a,e)cosa]aqe;
_ ' (33)

Consider now an infinite plane containing an edge dislocation at x=t
(see eqs. (2,3)). If we introduce a circular hole r=a, a<t into the
plane (Fig. 1), then certain tractions Tpp and g must be app11ed'
along the boundary of the hole in order to maintain the equilibrium of
the plane. It is clear that the integral in (33) is nothing but the
x-Component of the resultant of these tractions. .Since the external
force system due to the dislocation or the crack (which risults from
(2) and (3)) is self-equilibrating, this resultant must be zerc, proving
the validity of (32a). Equation (32b) follows from similar arguments
for a disk r<b containing a dislocation at x=t<b. It is because of the
relations (32) that in (16-19) the express1ons for Ay and C1 are not
included. S

After expressing the coeff1c1ents an ..,d in terms of f, the
remaining. boundary condition (26) may be used to determine f If we
now assume that the crack is formed by distributing the dislocations
along the line 8=0, c<r<d with f as a function of t, o ae(r 8) in the
ring 'may be evaluated by integrating the Green's function obtained from
(1), (7), (24c) and (27-32). Specifically, for =0 from (26) we find

I %&%}-Ht + J k(r,t)f(t)dt = Eigill g(r), c<r <d, (34)
c ' ¢ : .

where. .

: , B .2y ' w  ne
k(r,t) = - %-{- ;%—+ 210 +.1E;'f 68,r + g [n(n-])anrn 2

C+ (n¥1) (ne2)pr" + (s )y, r M

* (n-a)(n-l)§nr'"], | | | (35)
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and “n’.Bn’ vn,'andlsn (n=0,1,...) are known functions of t which are
determined from (28-32). 1If the crack is an embedded crack (i.e.; if
a<c<d<b) then from the definition of f(t) given by (3) it follows that

Jd flt)dt = 0 . | - (36)
c - : . . i

3. Stress Intensity Factors and Examples

If the crack is an embedded crack the index of the integral equa-'
tion (34) is +1 and the solution is of the following form

£(r) = [reeRe > (eer<d) @
where F(r) is a bounded function. After evaluating F(r), the stress

intensity factors at the crack tips r=c and r=d may be def1ned and
obtained from B

- kfc) = 1im /2(c-r} dée-(r;O)

=T—-1mm f(r) = f L (3

k(d} = lim maee(r 0)
rod

"'%’?l"ﬂ VT £(r) = - L '(—mz(z) : (39)

The singular integral equation (34) may be solved numerically by
nomalizing the interval (c,d) to (-1,1) and by using the Gaussian inte-
gration formula [10]. Since the Fredholm kernel k(r.f)_is-giVen in a '
simple form, one could obtain the results to any desired degree of
accuracy with a relatively modest computational effort. o |

~In- the ‘case of an edge crack (i.e., for a=c<d<b or a<c<d=b) the _
single-valuedness condition (36) is not valid and a]so is not requ1red
as an add1t1ona1 condition for a ‘unique solution. '
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~ For certain ring-crack geometries the convergence of the infinite
series giving the Fredholm kernel (35) was rather slow. ‘The results _
given in this paper were obtained by truncating the series at the Nth
term, solving the integral equations for N=100, 120, and 140 for each
ring-crack geametry and loading condition considered, calculating the
stress_ihtensity_factors k as a function of N (from (38) and (39)),
and by using a curve-fitting procedure of the following form

" . B _ ) | o
o k(N;) = A +_E?g , (N3 =100, Ny = 120, Ny = 140) . | (40).

The value of A obtained from (40 ) is assumed to be the calculated

stress intensity factor. In the examples, for the valqes-Ni considered,
e is generally greater than unity, implying that the slope of k vs. 1/N
curve at (1/N) = 0 is zero. Also, since the values k(Ni) (i=1,2,3) -
differ from each .other only in the third or fourth significant digits

in the slowest converging cases, the extrapolated values ought to be
quite reliable.

Three différent loading conditions are used ih'the examples.. Note
that g(r) which appear as the input function in the integral equation
(34) or as the traction in the boundary condition (26) is the value of
L9 in the perturbation problem. For the locading conditions considered,
g(r) is given by the following expressions:

a} Unifonm crack surdace pressune

g(r} = -0, , c<r<d : (a1)

b] Internally pressunized cylinden

. i .poaz | b2 . . .
glr) =-prgz (1 +g ) s c<cr<d, . (42)

where p is the internal pressure {i.e., Grr(a'e) = -po). Here, it
should be observed that in the case of the internal edge crack (i.e.,
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for ¢ = a < d <.b), in addition to g(r) given by (42), the crack surfaces
may be subjected to uniform (fluid} pressure g{r) = ~Po- If that is the
case, then the stress intensity factor separately obtained from g(r) =
-p, should be added to that given by (42). In the examples, results

due to (41) and (42) are listed separately.

ol Rotating disk
o) =~ 3o e s @ M)

where p is the mass density and w is the angular ve]odity. The expression
given in (43) is for the generalized plane stress and is va1id for a
rotating "disk". For a long rotating hollow cy]znder i.e., for the

plane strain case, we have

g(r-) = - 3--311_2\%9 w2 [b2 + a2 + ( 7“”2" r-2] (44)

For various crack geametries the calculated stress 1ntens1ty fac- ‘
tors are shown in Tables 1-8. To give some idea about the trends, some
limited results are also’ given in Figures 2-5. .Table 1 gives the results
for an embedded crack symmetrically located with respect to the boun-
daries of the ring or the hollow cylinder and subjected to a uniform
crack surface pressure (see (41)). Here the crack length is fixed at
half the wall thickness b-a and the ratio of a/b is varied. The results
‘are also displayed in Figure 2. Intuitively, it may be“argued that
the "constraint” at the inner crack tip r=c is greater and at the outer
crack tip r=d is less than that of a centrally cracked infinite strip.

_ Therefore, one may expect that k(c) should be less and k{d) should be
' -greatef than the corresponding stress intensity factor_iﬁ the strip.
This trend may also be observed in Figure 2 where the ring results seem
to approach the strip value as a»~ for constant wal]-thickness b-a.

Table 2 shows the effect of the crack Iength on the stress inten-
sity factors in a ring or a hotlow cyltnder with a fixed radius ratio
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Table E1. Stress intensity factors k{c) and k(d) for an
embedded crack in a ring or a hollow cylinder sub-
jected to uniform crack surface pressure cea(r 0)=

~9g" g——-c—= 0.5, 'b-—a-= 1 (Figure 'la)

a __k(c) k(d
= =Y _TT'(:%"-C Z
0.05 1.1477 1.2046
0.10 1.1498 1.2030
0.25 1.1580 1.2018
0.50 1.1664 1.2007
1.0 1.1736 1.1980
2.0 1.1788 "1.7943
3.0 1.1810 1.1923
4.0 1.1822 1.19M

- 1.1867 1.1867

Tab]e E2. Stress mtensity factors k(c) and k(d) for an
embedded crack in a ring or a hollow cylinder
subjected to uniform crack surface pressure
dge{r,0) = ~g, (columns 2 and 3) or internal
pressure arr(a,e) = -pg {columns 4 and 5).

E 2-, -5-:3- = 1 (Figure 1a) (The last column
refers to the centrally cracked infinite strip)

k(c kd) - _k(c) | k(d)

d-c _ K
b-a o, /ld< a /(" /2 P/(d-c)/2 P /d-c)IZ 9,/(d=)/2
0.0 1.0 - 1.0 . - 0.9259 0.9259 1.0
0.1 1.0060 1.0062 00,9522 0.9129 - 1.0060
0.2 1.0241 . 1.0256 : 0.9920 0.9139 . 1.0246
0.3 . 1.0556 1.0608 1.0468 0.9311 1.0577
0.4 1.7034 1.1158 ' 1.1201 0.9682 1.1094
0.5 1.1736 1.7980 - 1.2186 - 1.0318 _ 1,1867
0.6 1.2785 1.3213 1.3557 1.1341% 1.3033
0.7 1.4445 1.5146 1.5606 1.3010 1.4884
?.8 1.7407 - 1.8536 - 1.9084 ' 1.6002 1.8169
-> ‘0 -] o« -3 ‘= -]
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Table E3. Stress intensity factors k{c} and k{(d} for an
embedded crack in a ring or a hollow cylinder
subjected to uniform crack surface pressure

 oga{r,0) = g (columns 2 and 3) or internal
pressure Urr(a 8) = -p, (columns 4 and 5).

g:i 0.5, & = 1 (Figure Ta)

2 Al TR W‘(k‘ﬁ%/z -ok'd'

0.15 1.2414  1.17%5 1.4292 ~ 1.1004

0.20 1.1929 1.1777 1.3033 - 1.0554
0.25 1.1736 - 1.1980 1.2186 1.0318
0.30 . - - 1.1744 - 1.2391 . 1.1608 - 1.0290

0.35 1.1936 . T.3ns _ 1.1249 1.0533

a/b'= 1/2. The crack is again symmetrically located with respect to
the boundaries. (i.e., c-a = b-d). The table shows the results for uni-
form crack surface pressure o, (columns 2 and 3), for internal (wall)
pressure p, (columns 4 and 5), and, for the purpose of_comparison, for
a centrally cracked infipnite strip (column 6). Again to show the gen-
eral trend of the results, the stress intensity factors for a cy11nder
under internal pressure p, are also displayed in F1gure 3. In this

case, as the crack length d-c goes to zero, the stress 1ntens1ty fac-
tors k(c) and k(d) approach “aJI'E"J 0)vYTd=eJ/Z which is thg corre-
sponding 1nf1nite plane result (for a/b=1/2, oee«a+b 0) = (25/27) Po =
0.9259 p,). In this problem the initial decrease in k(d) with increas-
ing crack length is due to the decrease in g (r 0) in the ne1ghborhood
of r=d.

The effect of the relative position of the crack in the cylinder
wall is shown.in Table 3. Here it is assumed that the crack length and
radius ratio ¢f the cylinder are constant ((d-c)} = (b-a)/2, a = b/2)
and the radial position of the crack (c-a)/(b=-a) is_varied.

The results for an internal edge crack ¢ = a<d<b are given in
Tables 4-6. Table 4 shows the stress intensity factor for a uniform
crack surface pressure o, (see (41)). The strip results given in the

last c?Iumn of the table are the limit of the cylinder results for
L |

.
L

£-15




Table E4. The normalized stress intensity factor k(d)/(a,vd-a)
in a hollow cylinder or a ring containing an internal
edge crack (c=a<d<b) and subjected to un1form crack

=

ggg(a,0) = po(b2+a2)/(b2-a2)

E-16

b-a V3 | 12 1 2 3

+0 1.1216 | 1.1216 1.1216 1.1216 1.1276
0.1 0.878 0.957 1.058 1.113 1.137
0.2 0.756 0.878 1.057 1.189 - 1.239
0.3 -0.685 0.834 1.089 1.305 1.397
0.4 0.643 0.813 1.138 1.461 1.613
0.5 0.620 (.808 1.199 1.635 1.883
0.6 0.611 0.816 1.273 1.834 2.189
0.7 0.6%6 0.841 1.359 2.046 2.527

+] @ @ I . @ @

surface pressure g a(r, ) -a, .
a
b-a N\ 1/3 1/2 1 2 3 (strip)
+0 1.1216 4 1.1216 1. 1216 “1.1216 | - 1.12176 1.1216
0.1 1.153 1.155 1.157 1.159 1.167 1.1893
- 0.2 1.218 1.229 1.247 1.277 1.299 1.3674
0.3 1.295 - 1.310 1.366 1.449 1.493 1.8601
0.4 1.373 1.402 - 1.503 1.655 1.747 2.1119
0.5 1.465 1.508 1.658 1.901 2.066 2.8258
0.6 1.578 1.635 1.830 2.177 2.441 4.035
0.7 1.730 1.796 2.030 2. 475 2.851 6.361
-I-],O «© .- Lo L -] L
" Table E5. The normalized stress intensity factor k(d)/[o (a,O)/H—al
for an fnternal edge crack (c=a<d<b)} in a hol12% cylin-
der under internal pressure, opp(a,8) = -p (The effect
of pressure p on the crack surfaces is no% included)




Table E6. The normalized stress intensity factor k(d)/{c g(a,0)/d-a]
for an internal edge crack (c=a<d<b) in a rotating disk
(v=0.3) aee(a,O) = 3+ p w? (b2 +'1=v a%).
& It

a .
dea N\D-2
b-a 1/3 172 1 2 3
0.0~ | T1.1216 1.1216 1.1216 1.1216 1.1216
0.1 1.008 - 1.040 - 1.089 1.720 - 1.139
0.2 0.962 1.018 1.114 1.202 1.240
0.3 0.944 1.018 1.168 1.324 1.401
0.4 0.943 1.032 - 1,235 1.477 1.617 .
9.5 0.956 1.058 1.315 1.664 1.879
0.6 0.981 1.096 1.405 1.867 2.196
0.7 1.025 1.153 1.508 2.082 2.526
+'|_0 -] @ a w w

a+o and for constant wall thickness b-a. The results of Table 4 are
_.partly displayed in Figure 4 to show the general trend. One may again
ﬂndté.that as a/(b-a) increases, the geometric constraints decrease caus-.
ing an increase in the stress-intensitylfactors. As the crack length
d-a tends to zero, the stress intensity factor ratio approaches that

of a half plane with an edge crack namely, 1.1216.

Tadle 5 and Figure 5 show the stress intensity factor k(d) for
a hqlloy cylinder with an internal edge crack and subjected to internal
preésure °rr(a’°) = =p,e Note that k(d) is normalized with respect to
the hoop stress at the inner boundary of the cylinder, aee(a,e) =
po(b2+az)/(b2-a2). Figure 5 also shows the variation of the hoop stress
cea(r,e) through the cylinder wall, again normalized with respect to
°ee(a’3)' Thus, .the initial decrease in k(d) for increasing crack length
d-a in cylinders having small values of a/(b-a) may easily be explained
by the relativg!y sharp decrease in cee(r,e) (which is the external load
applied to the crack surface}. Again, as d-a+0, the stress intensity
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factor ratio tends to the half-plane vé]ue 1.1216.

The rotating disk'or cylinder results are given in Table 6. Here,
too, the stress intensity factor k(d) is normalized with respect to
the hoop stress Tgg at the inner boundary r=a, the expression of which
is given in the table (see {43)). Note that the expressions of the
hoop stress o,, in the rotating disk and in the long hollow cylinder
are different and are dependent on the Poisson's ratio v. Therefore,
the probiems for the disk and the cylinder must be solved separately for
a specified value of v. The resuylts given in Tables 6 and 8 are for
the rotating disk which are obtained by using the plane stress solution
with v=0.3.

The results for a hollow cylinder or a disk with an external edge
crack are given in Tables 7 and 8. Table 7 shows the results for an
internaily pressurized hollow cylinder or disk. The stress intensity
factor for a rotating disk obtained again from the plane stress solution
with v=0.3 is given in Table 8.

Table E? The normalized stress intensity factor k(c)/[a (b 0)v/b=c]
for an external edge crack (a<c<d=b)} in a ho]1ow cylinder
or a disk under internal pressure op.(a,8] = -p,; oge(b.0) =

2a2p,/ (b%-a2).
a
b-a
b-¢
b-a /3 1/2 1 2 3
+Q 1.1216 1.1216 1,1216 1.1216 1.1216
c.1 1.250 1.245 1.219 1.203 1.208
0.2 1.413 . 1.391 1.368 1.355 1.352
0.3 1.617 1.587 1.557 1.560 1.574
0.4 1.874 1.829 ¢ 1.797 - 1.832 1.873
0.5 2.207 2.137 2.095 - 2,170 2.259
0.6 2.655 2.540 2.462 2.586 2.740
0.7 3.301 3.103 2.941 - 3.085 3.320
+1.0 o0 > <0
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Tab1e E8. The normalized stress 1n£en31ty factor k(c)/(a ri(b ,0)vb=c)

1n a rotating disk hav1ng an externa] edge crac (a<c<d b)
(b 0) =3+ pu (a + 1-v b%), v = 0.3.
T k) \
a
b-a
9;2 =
b-a 173 1/2 1 ' 2 _ 3
-0 - 1.1216 1.1216 - 1.1216 .- = 1.1216 - . 1.1216
0.1 - 1.312 1.288 1.245 1.217 - 1.214
0.2 1.530 1.486 1.419 1.377 1.367
0.3 1.774 1.714 1.632 1.608 - . 1.601
0.4 - 2.053 t.982 1.893 1.894 1.911
0.5 2.380 2.299 1 2.210 2.242 1 2.309
0.6 2.777 2.691 . 2.601 2.682 2.811
0.7 3.301 - 3.210 - 3.093 3.199. . - 3.406
+1.0 o »oo 2o JRUEE S e
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Figure E-1. The geometry of the.'prob'!em. -
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Stress 1nténs1ty factors for an embedded crack in a hollow
cylinder or a disk loaded by a un1fonn crack surface
pressure agg(r,0) = ~o , cered.
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Figure E-3. = Stress intensity factors for én embedded crack in a hollow

_ . cyIinder or a disk under internal pressure an‘,(a,e) = -py-
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E-4. The stress intensity factor for an internal edge crack in
a hollow cylinder or a disk loaded by ¢ uniform crack sur-
face pressure ggq(r,0) = -g > £=d-a.
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Figure E-5,

- Z7(b-q)

The stress intensity factor ratio k' = k(d)/[aee(a,o)/a-al
and the normalized hoop stress o (r)/ogge(a,0) in a hollow
cylinder or a disk containing an ?nterna?.edge-crack and
subjected to the internal pressure o,.(a,0) =.=pys dgg(a,0) =
Po(b®+a2)/(b2-a2) (The effect of the pressure Po on the
crack surfaces is not included). (£=d-a) '
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APPENDIX F

. AN EDGE-CRACKED PLATE OR BEAM WITH .
s+ - "TENSILE AND COMPRESSIVE YIELD ZONES

1. - Introduction

In a beam with an edge crack or in a plate -onta1n1ng a re]at1ve1y long
and deep surface crack it is known that under uniform tension and part1cu1ar1y
under bending re]at1ve1y large compress1ve stresses may develop in the reg1on
opposite to the crack near and at the surface. The problem is described in
F1gure 37. The beam problem can be approx.mated by the plane stress’ problem
for an edge-cracked infinite str1p S1m1lar1y, the geometny shown.1n Figure
37a under plane strain conditions may represent the stress and deformation
state around the midsection of the plate shown in FigUre'37b."'In app]ying the
crack initiation or crack instability criteria described in Sections 3 and 4
of this report one needs a fairly accurate evaluation of the crack opening
stretch at the leading edge of the crack. Previous studies of this problem
have been’ e1ther purely elastic calculating the crack openlng d1sp1acement on
the surface for use in compliance calibration ana]ys1s or have taken 1ntc con-
51derat1on only the tensile yielding around the crack tip. In this study a
p1ast1c strip model has been used to take 1nto account the plastic deformations
in compressive as well as in tensile zones. The model used does not allow the
consideration of strain hardening. This is usually taken care of by using a
flow stress in place of the yield strength of the material. The flow stresses
in tens1on and compression are generally different and depending on the strain
hardening behavior, are somewhat higher than the yield strength.

2. Formu]ation_of the-Prob]em

The basic formulation of the related elasticity problem for nonsymmetric
. *
cracks and arbitrary loading conditions is given in Reference [1]( ). For the

(*) H.F. Nied and F. Erdogan, “"A cracked ‘beam or p1ate tranS\erseTy loaded by
- a stamp", Int. J. of Solids and Structures Vol. 15, pp. 951-965, 1979. .
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convenience of applications the plasticity effects have been considered for
two different problems. In Problem 1 it is assumed that the magnitude of the
compressive stresses is not sufficiently high to warrant the iniroduction of
a separate compnessive yield zone. This is the case'in most plate or beam‘
structures under membrane loading only. In Problem 2 yielding is considered
both in tension and compression. | | '

" Problem.1

Thé p];ne:é1asticity problem of an infinite strip Oéj<h;'-m<x<m, contain-
ing a nonsymmetric edge crack along O<y<c, x=0 (Figure 372} may be formulated
in terms of a 51ngu1ar 1ntegra1 equation of the following form [1]

f[—-—+k(y OIF(E)dE = 5L o, (0.9) o w

Fiy) = 38 (+0.y), (09y<c) @

where o*x(a,y) is the crack surface traction and the Fredholm kernel k(y,t) |
is given in [1]. The material constants are given by the shear modulus G and
k {k=3-4v for plane strain, «x=(3-v}/(1+v) for plane stress, v being Poisson's
-ratio),' The complete statement of the elastic problem, when the'cnack is
given as an édge cﬁaék must also include the additional condition:

F(0) < = | - , (3

Implementation of the plastic strip model for Problem 1. requires the
superpos1t1on of the f011ow1ng two loading conditions for the right side of

(1)
oy (0¥} = -oy  O<y<c, S
a*x(o,y) =oy  ayse. - (8)

Here the applzed Toad 9% and the yield strgngth oy.-are knownn The plastic
zone size a=c-a is unknown and is determined by the condition that at the
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ficticious crack tip c the stress must be finite, This condition may be
expressed in terms of the stress intensity factors such that:

ky +k, =0 . o (6)

where k? and'k2 are the stress intensity factors resulting from IOading con-
ditions (4) and (5) respectively. The stress intensity factors themselves
are expressed in terms of the density functions Fy and F, which ave obtained
- from the solut1on of (1). The stress 1ntens1ty factors are def1ned by

k, (c) = -1im [2(y-c) T 28 F (y), i=t,2. | (7)
Njsa®

Norma1izihglcrack'1engths with respect to the thickness h, (G)Ibecomes:

» .
5 filE) + oy HE) =0, 1) = Fily) £ ATET. (8)

. a

f and fé are determined (for unit Ioads) from (1) and the corresponding "EL

is obtained from (8} by holding the actual crack length ﬁ-constant and vany-
ing the ficticious crack 1ength e Various values of -vm-are obtained for
various plastic zone sizes E-at constant crack lengths %.. This is done in a
straight-forward ‘manner by noting that the Chebyshev quadrature technique
used to solye (1) Tocates the points at which Toads are applied through the

- equation [1] :

Sp = cos(gﬁ'; w)‘, m=1,...,n-1 - (9)

where n is the total number of quadrature points and the integral in (1) is
normalized from -1 to +1 by

y = &), | (10)
The values for ﬁ-are then determined from

2(3)
_[cos(w 2m 1)H]

& m=1,...,n}1 (11)
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where for a constant a/h the appropriate n may be chosen to give various

% % = c_}-]g) values.

Normalization and integration of the density functions F; from -1 to +1
gives the crack surface displacement (5(0) = u(+0,0) - u(-0,0)), as

46 1 s(0) _ % n o | .
o oy coD, + conzl (12)
where _ 1
000 = [ i) ds egls) sF, =020 (13)
-1 |

It was found convenient to obtain results for the crack opening displace-
ments § other than the COD by using the polynomial interpolation method as
follows:

46 1 &(0,y) _ % e |

T+e Gy P oy CTQD] + CT0D, (18)
and 3 _

croo, = [ aglsdas | s

r

with r the normalized Tocation of the crack tip a determined from (10). In
a straight-forward manner from the properties of Uj, the Chebyshev polynomial
of the second kind, ¢i(5) is rewritten as

: 2% "3
9:{s) = (1-5%)% x byUs(s) (16)
0 .
with
2 M=l k-1
bj =7 I VilsdUjlsy)s s = cos(izy m) (17)
B E N O TR L P F (18)

where n is the total number of quadrature points.

Lot
H
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Observing that

U, (cose) = sinlli#l)e] - : (13)
_ J 51ng - _
and defining r =cosg, (15) may be rewritten as
oo S c n-3 ' :
CT00; = ¢ L b }5(3), r = coss o (20)
where
g- ¥ sin 2 B j=0
Hy(g) = { in(142) | |
| sin j g8 _ sin{j+2)s = . '
3 N §=1,...,n-3. (21)

From (14) and (20) 1t is poss1b1e to directly determ1ne ‘the crack opening
stretch a(a) at the crack tip (s(a) = u(+0 a) - u(-0,a)).

Another quant1ty of interest is the stress Iy (O,y) ahead of the crack
tip p1ast1c zone h The ratio of Oy (0 h)/uY is espec1al]y important for
when this quantity is greater than one, yielding will have occurred on the
compressive side of the strip. Thus, in numerica?l calculations this ratio
is mnn1tored to assure ‘that the formulat1on of Problem 1 1s phy51ca11y va11d

Once the density function F(t), where
_ Y% : _
F(‘t) - G—Y— F](t) + Fz(t) 1] i E | (22)

is determihed, the stress axx(o,y)/uy for any value of y>c may be calculated
by direct integration of (1). This stress solution to the perturbation problem
must be superimposed with the stress f1e1d due to the applied externai loads

% (O,y)/c to give the total stress ahead of the plastic zone h

Problem 2.

In both un1form tension and pure bend1ng, for specific 2 B and & Y values,
Sy (0 h)/c becomes greater than one. The yielding which occurs due to the
magn1tude of the cempressive stress must now be taken into account in the




formulation. This may be dene by introducing a second plastic strip along
another fictitious crack x=0, b<y<h (Figuré 37a). Similar to the plastic
strip in the tensile zone a<y<c, this strip is aiso assumed to carry a con-
stant stress in x-direction. However in this case the stress is compressive
and represents the yield behavior of the material in compression. The results
obtained from the solution of Problem 1 indicated that for the case of uniform
tension only for very large relative crack lengths a/h and plastic zone sizes
a/h {i.e., for high load ratios °o/°Y“)‘did the medium yield on the compres-
sive side. Thus the more interesting problem occurs in pure bending when

this yield zone may develop more readily.

The formulation of Problem 2 proceeds in an identical manner as Problem
1. where now the elastic problem contains two edge cracks. ' The integral equa-
tion (1) is recast as a set of two coupled singular integral.equations as
follows: L | |

[0 kyp(yst)F(t)dt + [b kpp(y-t)a(t)dt = 5l o (0,y)
O<y<c, _ (23)
c h

Ky (s 0F()ee + | EPCZLOLIRE S MCRY

J

o

bey<h,  (24)

where kij(y,t), (1,3=1,2) are the same expression as in (1) (E%V + k(y,t)).
Thus, k11 and k22 have a Cauchy type singularity

k11(y,t) - Egi'; for O<y<c

| kyp(yst) - ‘1‘:‘137 , for b<y<h |
and k}2 and k21 are bounded in their respective domains of definition. The
additional edge crack conditions are given by:

CF(0) <= | o (25)
G(h) <= | (26)



It should be noted that the formulation for elastic problems with any
number of cracks is thus straight-forward and involves only the introduction
of a new unknown density function for each additional crack.

For pure bending the lcading conditions for the right side of (23)
and (24) involve the superposition of a linear traction and an opposite uni-
form loading equal in magnitude to either gy on the tension strip a<y<c or
the compressive flow stress (cY )c on the compression strip b<y<h (Figure 37).
These Toading conditions may be expressed as:

0 (05) = =5, (y) = & (y-h/2), 0<y<a (27)
o (09) = L ) +op  agyee, (28)
0 (09) = Ry - B - (o)), beyeh, (29)

where M is the applied external bending moment and I is the moment of inertia
for the strip crqss section. The introduction of the plastic strips, whether
they are tensiie or compr9551ve forces the condition that at both ¢ and b
the stresses musL be finite in magnitude. Similar to cond1t1on (8) in Prob—
~lem 1, this statement may now be expressed as |

k(c) = O'Yf'l(c/h) + (GY)C fz(cfh) * ‘glg[fS(C/h) + f4(c/h).] =0 (30}
k(b) = aygy (67m) + (o). gp(b/n) + Mg (b/n) + g,(b/n)] = 0 (31)

where it is assumed a and c¢ are known (i.e. o is known) and both b and M are
unknown. The functions f and 95 (1=1,2,3,4) are known from the solution of
the normalized form of (23) and (24) and ay (oY ) are given. Comb1n1ng
(30) and (31) the expression

file/n) + ofyle/n)  gq(b/h) + 1gy(b/n)

F3lc/n) + T, (cTR) © g,(6/h) * g,(b/R) (32)

is 6btained where,

%y

(33)

T=




and M is determined from

folc/n + of,(c/ h} .
_m__h 2
L N A D EEACK) (38)

By fixing a, ¢ and t the unknown compressive zone sjze h-b and m may be
obtained by iteration from {32) and varying these parameters in the simultan-
eous solution of (23) and (24).

 Once the compressive plastic zone size and m have been determined all
quantities calculated in Problem 1 may now be determined in a similar manner.
The crack opening displacement 8(0} is given as:

46 1 s(0) _ ' _

]+K GY ho CGD1 + 1 CODZ + m[COD3 + COD4], | . (35)
where . . .

Cop, = ﬂ%’fz ¢i(S)ds + Lgﬁﬂl J pq(s)ds _ (36)

-1<s<1, i=1,...4,

¢ and w “having been determined from the solut10n of (23), (24).

Crack open1ng stretch s(a) at the crack tip is determined as in Problem.
1 using a polynomial expression. - Also the stress distribution between the
tensile plastic zone and the compressive plastic zone is calculated by direct
integration of the normalized form of (23). Again the solution to the pertur-
bation problem for the stress must be superimposed on the stréss obtained
from the externally applied mdment in order to calculate the total stress.

Problem 3: The Effect of Strain Hardening

In the problems 1 and 2 described in this Appendix it is assumed that
the stress in the plastic strip zone is constant. The crack prob1em can also
be solved for a material which has 1inear strain hardening. For example,
consider the single edge notched strip under uniform tension discussed in
Problem 1. In this case, the integral equation (1) and the first loading (4)
are still valid. However, the second loading condition (5) corresponding to
the crack surface tractions which simulate the plastic strip must now be



replaced by , _ | _
o oyl0) =y + B u(0uy) - aye SRR € 7)

The plast1c Tigament stress expressed by (37) assumes that at the fictitious
crack 1p where the crack surface i1sp]acement u is zero the siress is equal
- to the yield strength oy and elsewhere in the y1e1d zone the stress is '
Ilnearly dependent on the stretch in the strip or on the crack opening dis- -
p]acement u. Again the plastic:-zone size c-a is determihed from (6) where
the 1nput function (37) rather than (5) 15 used to determine ko.

Referr1ng to (2), the crack surface d1sp1acement may be expressed as
c

a(+0,y) =f F(t)dt . S -
Substituting now from (37) and {38) into_(]), for the second Toading condi-
tion, we obtain | ‘ | |

c - ]' ¢ 0, (0<y<a) -
[ +k( ,t)Ftdt+K+ J‘F_t'dtf{ . ' , O<y<c ,

|y kR + S e [ Ee o y

0 o _ y . 4G Y: (a<y<C)

(39)

The 1ntegra1 equation (39) may again be solved in a straightforward manner. -

- The results’ of Prob]em 1, i.e., fora plate under uniform tension in which
plast1c deformat1ons deveTop only in a tensile zone are given in Table 1.
For various values of the relative crack depth a/h and the stress ratio 0o/
the table shows the relative size of the plastic zone o/h, ‘the crack opening
stretch §(a) at the leading edge of the crack, the crack opening displacement
{COD) 5(0) on the surface of the plate, and the relative magnitude of the net
ligament stress cxx(O,h)/cY on the surface opposite:to the crack, where oy
is the flow stress in tension. axx(o,h) is listed to monitor the possibility
of compressive yielding. It may indeed be seen that for greater values of a/h
'and dO/oY, the magnitude of the compressive stress may exceed the flow stress _
in compression (cY) It is seen that when. the external load reaches a certain
value, any small 1ncrease in the load may cause a relat1ve]y Iarge increase in
the crack opening stretch 6(a) which may 1nd1cate the tr1gger1ng of a crack
instability or plastic collapse process in the plate. |
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Table 2 gives the results for the edge crack problem in & plate under
pure bending. The bending stress shown in the table is defined by °B = |
6M/h%. In addition to the quantities listed in Table 1, Table 2 gives the
size of the compressive plastic zone (h-b)/h whenever relevant. To calculate
the results given by Table 2 the flow stresses in tension cY; and in compression
(UY) are assumed to be equal. The e®fect 9f the flow stress ratio tr =
cy/(oY) is separate1y studied for a spec1f1c crack depth a/h 0.5 and the
results are shown in Table 3. From Table 3 it may be observed that even
though the compress1ve plastic zone size h-b is rather heav11y dependent on
the flow stress ratio t, the change in 8(0) and §(a) is not very s1gn1f1cant
One should add that for numerical convenience in the calculations as t is
varied the tensile plastic zone size o rather than the applied load op Was
kept constant. If og Were to be constant the change in §{0) and s{a)
would have been somewhat higher than the change shown in the tab1e, but 1t
would still not have been very significant.

Some sample results showing the effect of the strain hardening are
given in Tables 4-6.  For higher Ep/E values the same plastic zone size a/h
seems to require higher values of the external load %y The effect of the
© strain harden1ng on the crack opening stretch s{a) seems to be neg11g1b1e
However, the crack opening displacement &(0) and the backside stress S, (0 h)
seem to increase slightly with the increasing E /E ratio. It is also 1nter~
est1ng to note that to create the same plastic zone size a one needs to apply
a smaller external load % in the plane strain than in the plane stress case.

It should be noted that in the integral equation (1)} the Fredholm ker-
nel is independent of the elastic constants. Therefore, Problems 1 and 2 and
Tables 1-3 are valid for both plane stress and plane strain cases. The two
.cases are dlst1ngu1shed by properly identifying the constant x in the tables |
(x=(3-v)/{1+v) for plane stress, k=3-4v for plane strain). However, in the
case of strain hardening materials, as seen from (39), the Fredholm kernel
is_dependent on the Poisson's ratio and (1+«) does not appear as simply a mul-
tiplying factar on the right hand side. Consequently, in this case the cal-
culations for plane stress and plane strain conditions have to be carried out
separately. : | |
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TABLE F1
RESULTS FOR UNIFORM TENSION
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Table F1 (cont.}

| 6 15 (0) 46 1 s{a)

a/h | a/h crO/cY cxx(O,h)/qY ]+K oy T+ oy h

.5 .0014 .017 -.046 8.46 x 10: 1.63 x 10:3

.5 L0131 | .051 -.142 2.80 x 10_1 1.67 x 10_2_

.5 .0402 .088 -.266 14.74 x 10_ 5.37 x 10_2

] +.0826 122 -.423 7.30 x 10_ 1.18 x 10_1

.5 L 132 -.487 8.28 x 10_1 1.50 x 10‘1

.5 1104 . 138 -.527 . 8.89 x 101 1.67 x 10_1

.5 . 1403 .153 -.645 1.07 2.26 x 10_1

.5 . 1853 7 -.350 1.37 3.34 x 10_1

.5 .2617 .186 -1.34 2.07 6.14 x 10 1

.5 23 .203 -1.72  2.61 8.5 x 107!

- TABLE F2- RESULTS FOR PURE BENDING
46 1 5(01 4G 1 s(a)

a/h G/h GB/GY Uxx(o,h)/UY 1+K Q'Y ]+|C UY h (h"b)/h
.01 .0002 110 ~.110 3.20 x 10'3 2.24 x 107"
.01 0018 .331 -.332 1.02 x 10:2 2.23 x 10_3
.01 .01 .644 -.645 2.37 x 10 2 1.02 x 10_¢ 2
01 L0313 .863 -.866 4.17 x 1072 2.47 % 1072
.01 .0540 . 956 -.961 5.56 x 10:2 3.70 x 1072
.01 .1617 1.18 -1 1.34 x 1071 1.11 x 10:1 .142
.01 L2716 1.33 ~1 2.99 x 1071 2.72 x 101 .266
.1 .0007 .070 -.076 2.04 x 10:2 7.49 ¥ 10:“
.1 .0320 .459 -.505 1.48 x 101 3.97 x 10_ 2
.1 .0516 567 . -.630 1.94 x 70:1 6.39 x 10_ K
0 .| ' 749 -.855. 2.92 x 10_1 1.26 x 1071
A . 1548 .8%9 -1 4.05 x 10_1 2.07 x 1071 .043
.1 . 1938 .985 -1 4.97 x 101 2.76 x 10_1 122
.1 . 3401 1.18 -1 1.07 7.31 x 1071 .331
2. 0013 .069 -.091 2.43 x 10*2 1.50 x 10:3
2 .0124 211 =277 1.38 x 1072 1.56 x 10”2
.2 -.0639 .469 -.643 3.41 x 10 1 8.64 x 1062
.2 . 1032 - .590 -.837 4.65 x ]0 1 1.48 x 10_1
2 .2 .808 -1 8.03 x 1071 3.46 x 101 .135

Cd
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" TABLE %2 (cont.) -

46 1 o(0) | 46 1 a@) R
a/h o/h GBIGY "xx(u’hl/“‘( T o*\. h - +c qY. ' '(.h"“t‘)/h
.3 .0020 | .065 -.110 7.35 x 102 | 2.26 x 1073
.3 | .0283 | .245 -.423 2.90 x 1071 | 3.73 x 1072
.3 1096 | .485 -.914 6.7 x 1071 | 1.71 x 1072
.3 .2098 | .661 -1 1.19 4.24 x 1071 172
3 .3 .726 -1 2.10 -1 9.03.x 107 .297
.5 0014 |. .032 -.107 1.03 x 1071 | 1.63 x 1073
.5 .0131 | .098 -.330 3.20 x 1071 | 1.70 x 1072
501 L0402 | 172 -.606 5.95 x 1071 | 5,72 x 3072
.5 [-.0826 | .252 -.946 9:.50 x 107! | 1.3 x J071 |
i 1403 | .328 -1 1.47 2.82 x 107} -106
.5 .1853 | .360 -1 2.04 4.62 x 1071 175
.5 .2024 | .367 -1 2.36 5.65 x 1071 194
.5 2617 | .376 -1 7.26 2.24 .226
TABLE F3- THE EFFECT OF THE FLOW STRESS RATIO t = (oy) /%y
46 _1_6(0)7 61 sl |
5| 1853 | 1.0 | .360 2.04 4.62 x 1071 | 175
.5 1853 | 1.2 | .379 1.98 4.50 x 101 .123
.5 L1853 | 1.4 | .389 1.97 4.46 x 1071 .078
.5 1853 | 1.6 | .393 1.96 4.45 x 1071 .038
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TABLE F4 - THE EFFECT OF STRAIN HARDENING FOR THE EDGE NOTCHED BAR
' SUBJECTED TO UNIFORM TENSION UNDER PLANE STRESS CONDITIONS

. : ES(O Es{a
a/h a/h £, /E 54/ oy axx(O,h)/oY ?5§El o
0.2 | 0.0639 o | 0.333 0185 2.80x 107 | 7.67 x 107~
0.2 | 0.0639 | 0.3 0.335 . 0.187 2.8 x 107! | 7.69 x 1072
0.2 | 0.063 | 0.6 0.338 | 0.189 2.80 x 1071 | 7.71 x 10
0.2 0.2 | o 0.489 0.175 5.35 x 107} | 2.30 x 107
0.2 0.2 0.3 0.511 0.191 5.50 x 1070 | 2.31 x 107}
0.2 0.2 0.6 0.568 . 0.209 5.68 x 10°1 | 2.33 x 10
0.2 | 0.3050 0 0.541 ' 0.090 7.23 x 1077 | 3.62 x 107]
0.2 | 0.3050 | 0.3 0.609 0.142 7.63 x 1070 | 3.62 x 10
0.2 | 0.3050 | 0.6 0.815 0.213 8.15 x 10 3.62 x 10"1
TABLE F5 - SAME AS TABLE 4, THE PLANE STRAIN CASE (v = 0.3)
a/h a/h E,/E c /o o, (0,h)/o E 6(0) E &(a)
I P oY Xt 2(T=v2oy B | Z(T-2)oy R
0.2 | 0.0639 | 0.3 0.335 0.186 2.81 x 107} | 7.69 x 1072
0.2 0.2 0.3 0.504 0.186 5.45 x 1072 | 2.31 x 107}
0.2 |0.3050 | 0.3 0.587 0.125 7.50 x 10 3.62 x 10

TABLE F6 - THE EFFECT OF STRAIN HARDENING FOR THE EDGE NOTCHED BAR UNDER
BENDING, PLANE STRESS CASE,

a/h a/h E,/E gpla o, (0,h}/ay - E &(0 E s(a)
| P B -Y | XX Y Tlﬁloy Zogh
0.2 | 0.0639 0 0.469 - .643 3.41 x 10! | 8.64 x 1072
0.2 | 0.0639 0.3 0.473 - 1648 3.43 x 1077 | 8.67 x 1072
0.2 | 0.0639 0.6 0.477 - .653 3.46 12 10 8.70 x 1072
*0,2 0.2 0 0.808 -1 | 8.03 < 1077 | 3.46 x 1077
0.2 0.2 0.3 0.856 -1.336 8.29 x 107} | 3.52 x 1077
0.2 0.2 0.6 0.899 -1.395 8.60 x 10 3.60 x 10

*Results obtained from double plastic zone model.
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APPENDIX 3
ELASTIC~-PLASTIC PROBLEM FOR A PLATE WITH A
PART-THROUGH CRACK UNDER EXTENSION AND 2ENDING
1. Introduction

In plate and shell structures such as, for example, pipelines, tank cars,
pressurized Containers, ship hulls and a variety bridge components a possible
fracture fa11ure may genera]]y initiate from internal or surface defects
which may have been introduced dur1ng menufactur1ng, 1nsta‘1at1on, or ser-
vice. If the applied load has a fluctuating component, the_1n1t1a1 flaw may'
propagate subcritically. In most cases the subcritically growing crack may
not penetrate through the wall during the entire service 1ife of the struc-
tural component. However, in some cases it may be possible for a part-through
crack to become ‘critical under a peak Toad and the wall of the structure may
locally rupture. The stability of the ensuing through crack would then
depend on the nature of loading, géometny, and the existing constraints.

Since the prppew'gesign procedure requires the operation of the component
above the trahéitfan temperature, around a reiatively'deep and long part-
through crack, the type of plate and shell structures under consideration
would invariably contain 1arge scale plastic deformations, Referr1ng to
Figure la and 1b, if the component wall is largely elastic and if the p]ast1c
deformations are confined to a small region along the crack front, then the
problems of fatigue crack propagation and fracture are said to be K-controlled
and an elastic solution is generally sufficient to study the problem. How-
ever, if the plastic zone spreads through the entire wall thickness around

the crack as shown in Figure Tc, then the problem is highly three-dimensional
and the crack may propagate and may lead to wall rupture as.a consequence

of either progressive growth and plastic strain instability (Figure 1d),

or net ligament plastic necking instability (Figure le). 1In either case

to study the probiem one needs a relatively simple correlation parameter or
Toad factor which is a realistic measure of the intensity of actual strains
around the crack front and at the same time lends itself to a reasonably
accurate analytical treatment. The crack opening displacement (COD) (or the
crack opening stretch (C0S)) is such a quantity which is one of the standardized
parameters in fracture mechanics [1].




In this study the plate with a part-through crack shown in Figure
le under membrane and bending loads is considered. fhe corresponding
prob]ém for a cylindrical shell with a circumferential or an axial
part-through crack was considered in. [2-4]. As in the shell problem
the plastic deformations in the plate will be taken into account by
introducing a plastic layer (of unknown size) in the plane of the
crack. Reissnei*'s Theory of plates will be used to treat the bending
effects arising from the nonsymmetric orientation of the surface crack.

2. Plate Bending Problem.

Even though linearized membrane and bending formulations of the
elastic plate are uncoupled, in this problem because of the existence
of a plastip_zone of unknown size,the problem is coupled. However,
due to the-particular nature of the stfip model which is assumed to
represent the plastic deformations, the coupling is through the boun-
dary conditions only and, uniike the shell problem, the differential
equations remain uncoupled. In this section a brief outline of the
bendfng formulation of the cracked plate problem is given.

Using the Reissner's transverse shear theory, the bending of
elastit plates may be formulated as follows {see, for example {5] and
[6] for the general case):

Vw=0, . | | | | (1)
J—'zln 2@ -2=0, | (2)
® w;'.2 p-p-w=0, - (3)
lﬁy‘z%-%im%%, | ' . (5)




bAS

Mxy
Vx

Yy

#

e 21 N IR
TUlre S5 0@ - 20 ),
%%*%(T-v)—a—g--b%’
-%3"%(1-\:)%+%—.

(7)

(8) .
(9)

(10)

The dimensionless quantities which appear in (1-10) are given in the
Appendix and refer to the plate geometry shown in Figure 2. In the
usual notation Nij» Myj, and Vy, (1,5=1,2) are respectively the mem-
brane, bending, and the transverse shear resultants, 81 and By are the
components of the rotation vector, U, Ugs ug are the components of
the displacement vector, and a* is a length parameter representing the
crack size.

. Assuming that the problem has been reduced to one of perturbation
and the external loads are local and self-equilibrating, using standard
Fourier -transforms the solution of the differential equations (1-3)
may be expressed as follows:

o

wix,y) = %-f (A1+yA2)e"“y cos a X da , : (11)
) S
a(x,y) = %~f A3e'r¥ sin ax da, I- (12)
] ‘
px,y) = %—I [-A1 + (2::1::--3()!!\2]9"3‘y cos ax da , (13)
(o]
where -
. 2 L Lo o R
'f‘::[ a2 + m ] (14)

(-3




and Ay, A2 and Ag are (unkhown) functions of @. In deriving (11 13)
it is assumed that x=0 and y~0 are planes of symmetry with respect to
'loadmg and crack geometry. The symmetric bending problem is subject
to the following boundary conditions:

Mxy(xfo)_= 0, Vy(x,O) =0, 0 LX< f . ._ o (1$§,b)

} | (16}
B(XO) O’XELls :
where (L+L') = {0,=), L refers to a system?bf'collinear:cracks and is
finite. Two of the three unknown functiors Aj may be eliminated by
using the homogeneous conditions (15). The third one is then obtained
from the mixed boundary conditions (16). The problem may be reduced
to an integral equation for the unknown function defined by

a - .
3 B,(x,0) = f(x), 0 < x <= - (1?)

'Notihg that f(x) =0, for x e L', aftef rather straightforward
manipulations (16) may be expressed as follows:

a*(1-2) | { Ly . de(1-v) ¢ 1 19
2wha®* t'x tHx T4 (t-x)3 (t+x)3

T [l Kolvlt=x]) + gy Koyl tex)1HF(t)dE
= (). ¥ = ey X © Lo | (18)

where K(z) is the modified Bessel function of the second kind. In
the neighborhood of z = 0 observing that

- 2 14 002 '
Kz(z) = 2 -5+ 0(z%10g. 2) , (19)
equation (18) may be shown. to be a.singu1ar integral equation with a
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simple Cauchy-type singularity of the following form:

| aZi;;:Z) L [t-x tlx *+ k(t,x) + k{t,-x)]f(t)dt

a g(x), x e L. ' .(20)

If by <'x] < €5 (151,...,n) defines the cracks aiohg the xy axis,
from (16) and (17) it follows that (18) must be solved under the follow-
ing single-valuedness conditions: -

c% -
[ a0, 1= 1,0, o (21)
- . | |

' .ll - ¥ 1 *
where by bi/a » €5 = cy/a.

" For example if the plate contains a single crack along (-a,a)
subjected to uniform bending moment My, = M', selecting a* = a it is
~ seen that L = (0,1) and the solution of the integral equat1on is of

the following form: - |

;. _ F](t) | _ o & (22
TR . !
Definiﬁg\how
oM , |
hE
I'_b'F'[(t) = F(t): Gb. 3 ho ’ (23)

.equation (18) may be expressed as

:j_I1  F(t) [3+v 1 _4e(lev) 1

: (1-t2)% T+ t-x W (t-x)3
Tt ke (rltxDldt = -1, -1 <x <1, (24)
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subject to

J‘ (1- t2)'ﬁ | : o _ (2)
-1 : :

In the symmetric bending problem under consideration the stress
intensity factor at a typical crack tip x7 = cy is defined as follows:

kT(x3) —x:lg [2(x-c; )] 022(x1.0.x3) . : (26)

-Referring to the definitions 1n the Appendix and, for exampTe to [6]
for the procedure, in the s1ng1e crack case the stress 1ntens1ty fac-
tor ratio defined by

- | | _ . ,
kyp = Ky (_h/IZ)/cb/ET R k1(x3) * Wz Kph ab_/; , | (27)

is found to be

kep = -F(1} . - (28)

- Similarly, if the plate under uniform bending contains two iden-
tical cracks along x5 = 0, b < [x;] < ¢, and if we let b' = b/a, ¢’ =
¢/a, and a = (c-b)/2 = a*, it is seen that L = (b’,c') and, after
normalizing the interval, the integral equation may be sclved in a
straightforward manner. Thus, 1etting'

L €'-b’ c'+b! dagp  F(s
e S S e - G E = o (29)

the stress 1ntens1ty factors at the crack tips b and ¢ may be obta1ned
as -

k_1b("3) = %Z oy’ kbb(b)’ kiclx3) = %? 0,72 kpyle), -
o (6) = FCT) 5 kyle) = ). (30) -

G-6




3. The Plasticity and COD

Consider now the plate with a Part-through inner or surface crack
subjected to uniform membrane loading. Figure 2 shows the surface
crack case. Because'of'the'nonsymmetﬁic‘brientation'of the crack in
the thickness direction, the plate will be under bending a5 well as
membrane 1eadingjand some loecal bulging will take place. It will be
assumed that the material behavior; the load level, and the crack
dimensions are such that the yﬁe]ding\spreads:through the entire plate
wall in some neighborhood of the crack. Llet 2a and d be the dimensions
of an 1inner planar crack, c¢ be the distance from the centerline of the
crack to the surface {c=d/2 for a_sdrface crack, c=h/2 for a symmetri-
cally located crack}, and p be the plastic zone size. ‘Using a plastic
strip model to account for yielding effects, it will be assumed that
in the net ligament Ix]l < a the membrane stress 955 is constant and
s equal to the flow stress o 0f the material, and in the yield zones
a2 < |xy| < a + p the membrane and bending resultants are N and M,
respectively. p, N, and M are unknown. The flow stress gp represents
the yield behavior of the material and is 'generally selected between
yield and ultimate strengths. _

Under the stated assumptions, referring to Figure 2 the membrane
problem has the following boundary conditions:

'0'0 + O’F(h‘d)/h » IX-'] <ada,

022(x1.+0) = { g+ N/h L2 < xg] < - (31)
uz(x],o) = 0 ,-Ix}] >, ,3,=a 4 ﬁ _(32)
:'§]2(x];0) =0, - <:x1 <@, - ' o (33)

. Defining
B0 mebg) . (34)

the membrane problem may be formulated as

67




a S |
P -g,. + ac(h-d}/h, |xq] <2,

E I o(t) 44 = o °F 1 (35)

)t -6 +0,a<[x]| <a, o= N

-3, o » 2 1 p> ¢ "R
subject to

| p S
J s(t)dt = 0 . O 36)
-a, .

The genera1'formu1ation of the bending problem is given by (18}
and (21). Again, referring to the assumptions stated above regarding
the crack geometry and the plastic strip model, these equations must
be solved under

*

a* = = a+p, L = {0,1), x = xilap, g(x} = MZZ(X]'+0)’ '

%
“F e e - (eeieDL Il <2,

Moo (%q,+0) = {
221 M, a«< {x]l <a, . (37)

. [

The three additional unknown constants‘p; N {(or o = N/h}, and M which
appear in the_formu1ation of the probiem are obtained from the condi-
tions of finiteness of stresses at x] = + a_ and the yield condition

» which may be expressed as

| P
ina<|x] <a

P
Ky = 0 | C (38)
kip 70 » | | (39)
(5;)2 . %,;LT‘JZ' = 1 (40)

where subscripts m and b refer to the membrane and bending components

of the mode I stress intensity factor at x = a: -

_ Following, for example, [7] the solution of the membrane problem
satisfying (38) may be obtained as |
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#0g) = 75 O opma) (eosh™ 1—-1-+n| - cost™! - e nl),  (an)

up(x7,0) = & (24 aF-c)[(xr.a)cosh’]la_";( *n |
' . «] i : o .
- (x1+a) cosh IE;E; +n|], . (42)
wl(h=d)op-ha,] |
a+p ®= C0s zt(h"d)UF“hC] T Cos @ , (43) )
where | S
= 22 e 2 = @ = . .
m 12y - a )/ap, n=a/ n’ ap a f p (44)

Equat1on (42) corresponds to one haIf of the crack opening dis-
placement contributed by the membrane load1ng For example, at x=0
and x=a we have

: dop 0. .o d ]+Sin0

6(0) = 2 U2(0 0) = ?T E; -1+ 'E') log (~—=—= <056 ——) (45)
a '

G(a) = 2 uz(a,OJ = -'%-~EE (—;-- 1 + —0 Tog (coss) . (46)

After solvxng the 1ntegral equat1on for bending wh1ch is given by
(18) under the conditions (37), the crack cpening displacement due to
bending may be obtained as | | |

. ‘x]/ap _ ‘

Gb(x1,x3) = X5 52(x1,0) = Xy f f(x)dx, { (47)

. | -1 s

where Bz(x1,0) =‘B (x,0) is the crack surface fotat1on - The total B
crack opening. d1sp1acement at any point on the crack surface is then
given by
: _ x1/a
5(x1,x3) 8 (x]) + db(xI,x3) 2 uz(x],o) + Xq f f(x)dx.
‘ -1 (48)
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Assﬁming again that the solution of the bending problem is given as in
- {22), the three unknown constants of the problem, p, o, and M are
determined from (40), (43) and

F(1) =0 . (49)

4, Resylts and Discussion

.The elastic problem for the symmetric bending of a cracked plate
has been considered before in [8-10]. In this paper some additional
results are given. As in the previous studies, it is assumed that the
plate is under membrane as well as bending loads so that there is no
interference of the crack surfaces on the compressive side of the
- plate., Because of the nature of the plate theory used in the analysis
the stress intensity factors are 11near functions of the thickness
coordinate x, (see (27) and (30)). Table 1 and Figure 3 show the |
effect of the thickness ratio a/h and Poisson's ratio v on the stress
intensity factor. The figure also shows (1+v})/(3+v) which is stated
to be the asymptotic value of the stress intensity factor for “"thin" .
plates [8,10]. The results calculated up to a/h = 100 are accurate.
Since the bending theory of plates breaks down for h»Q, as may be
cbserved from Figure 3, the "thin plate asymptotic" does not seem to
have any validity. ' ' o

Table 2 and Figure 4 show some results obtained for two collinear
cracks in & plate under bending. Aside from the expected results

~ Table 1. The effect of the Poisson's ratio v and the thick-
ness ratio a/h on the stress intensity factors in a
cracked plate under uniform bending. oy = 6M°/h2.

&y (0/2)/op/a
afh vw=0’ v=(0.25 v=0,3 v=0.5
‘0.5 |0.7804 | 0.8138 | 0.8193 | 0.8383
1. {0.7020 | 0.7409 '|.0.7475 | 0.7707
z2: 10.6518 | 0.6927 |.0.6997 | 0.7247
5 0.6140 | 0.6560 | 0.6633 | 0.6894
10 0.5984 | 0.6407 | 0.6481 | 0.6746
100 [0.5803 | 0.6231 | 0.6305 | 0.6575
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to the effect that for a+0 single crack results are recovered, for b0
the stress intensity factor at the inner-tiplkhb(b) becomes unbounded,
and kbb(b) is always greater than kbb(c), it may be observed that for
b+0 (or for 2a+{btc)) the slope of kbb(c) becomes quite steep. As in
all limiting cases of collinear crack problems, the smaoth extrapola-
tion of the results would correspond to the stress intensity factor

in a plate containing a crack of length 2¢ "pinched" in the middle
where the displacement Uy is forced to vanish. Because of the abrupt
change in the crack geometry, thus, going from two cracks (b>0) to a
single crack (b=0}, steep changes in stress intensity factors at the
crack tips ¢ should not be unexpected. Some sample results giving
the crack cpening displacement at various Tocations in .a plate contain-
ing a part-through crack and subjected to uniform tension away from
the crack fegion are shown 1in Figures 5-8. The figures E]earTy show

Table 2. Stress intensity factors in a plate containing two
identical collinear cracks along x,=0, b<|x;]<c
and subjected to uniform bending moment Mp,=M,.

- a=(c-b}/2, op=EM/h2, kub(b)=kyp(h/2)/ap/as
khb(c)=k-’c(h92)cb/5-, v=0.,3 .

2a {a/h)=1 {a/h)=2
bc  1kpy (D1 kpple) 1 kg 1B Tk Tc)
0.1 lo.7491 | 0:7489 | 0.7000 | 0.7008
0.2 l0.754¢ | 0.7530 | 0.7052 | 0.7041
0.3 |0.7644 | 0.7595 | 0.7133 | 0.7094
0.4  10.7805 | 0.7683 | 0.7267 | 0.7167
0i5  10.8046 | 0.7795 | 0.7477 | 0.7262
0.6 10.8390 | 0.7933 | 0.7805 | 0.7385
0i7 |o.8874 | 0.8702 | 0.8328 | 0.7545
0.8 10.9594 | 0.8308 | 0.9199 | 0.7760
0.3 |1.0981 | 0.8583 | 1.0867 | 0.8076
0.95 |1.2785 | 0.8783 | 1.2758 | 0.8316
0.96 |1.3495° | 0.8836 | 1.3452 | 0.8379
0.97 |1.4520 | 0.8898 | 1.4433 | 0.8451
0.98 |1.6208 | 0.8975 | 1.6020 | 0.8541
0.99 |1.9879 | 0.9085 | 1.9439 | 0.8664
1.0 | o 0.9895 | -« | 0.9457
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El

the effect of the behding dye to the nonsymmetric orientation of
the crack in thickness direction. The crack opening displacement
8{x1,x3) is calculated from (48) and (49). The values given in the
figures and in Table 3 are normalized with respect to 4hop/E. Also
note that § becomes unbounded at all Tocations for ogop.

Extensive caiculated results for a part-through surface crack of
depth d and length 2a are given in Table 3. The table shows the
crack opening ‘displacements calculated at various locations for fixed
values of ap/h (apma+p) and d/h. The notation used in the table is
(see also Figure 5) - ‘

. AP/H = ap/h, D/H = d/h, MH = a/h, SO/SY = op/op
2 BETA = 28,(0)/(4op/E}, CODO = 6(0;0)/(4haF/E)=,

CODT = §(0,h/2)/{8hap/E), COD2 = §(0,5-d)/(dhar/E),
c003 = 8(0,-3)/(4hop/E), CODA = §(a,0)/(4hop/E),
COD4 = 5(a,h/2)/(3hog/E), COD = 8(a,5-d)/(Shop/E),
COD6 = 8(a,-K/2)/ (4hog/E). |

For d/h = 0.7, 0.8, 0.9 the calculations have been carried out for
ap/h = 1,2,3,4,6,8,10,12,14,16, for d/h = 0.6, ap/h = 2,3,4,6,...,16,
~and for d/h = 0.5, ap/h = 4,6,...,16. Table 3 shows some sample re-
sults only. It may be noted that for certain crack dimensions and
generally for low stress ratios colaF the crack opening displacement
at some locations is negative. For such cases the procedure outlined
in this paper is not valid.
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APPENDIX G-1

The normalized quantities:

*
Xpfa¥, z = x3/a"

..
|11

xﬁla*, Y

| =
it

Uj/a*s vV sza*,;"‘«f = us/a* .s

Fyx = INYE 5 Oyy = 0pp/E 5 = oyp/E

Noy = NIIIhE’ Nyy = szlhE,‘ny = NlZ/hE s
= 2 = 2 =

V. = V]/hB, Vy = VzlhB >

A% = 12(1-v2)a*?/h2, « = E/BA%, B = 5E/12(1+) .
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APPENDIX H
THE CALCULATED COD vs. oy/op FOR
SOME STANDARD PIPES

The géhera] probiem of calculating the crack opening displacement
in a pipe_containing a éifcumferentiai'part-through‘crack'is discussed
in Section 6.3 of this report. In this Appendix the results are pre-
sented for certain standard pipe dimensions and for various crack
sizes. 1In Figures H-1 to H-16, OD is the outer pipe diameter, h is
the pipe wall thickness, 2a is the crack length (on the pipe surface),
and L is the depth of the crack at its maximum penetration point (or
at fts mid-section). Also 9 is the flow stress, E is the Young's
" modulus, and the COD is the crack mouth opening displaéement calculated
on the surface of the pipe.and at the mid-section qf the-érack. _It
s assumed that in the crack region the pipe is under uniform axial
tensile stress g, and the crack islon the outer surface.

Figures H-1 Fo H-4 §how the results for é 24 in., H-5 to H-8
for a 30 in., H-9 to H-12 for a 36 in., and H-13 to H-16 for a 48 in.

diameter pipe.

H-1




COD/a o /E

(o] ol
- OD=24" Lcl/h=l.0
h=0438"
-~ a/h=l5 _ 0.9
07
0.5
5 e
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1 L } 1 I L ] i 1 l
0 05 1.0

Figure H-1 COD vs. o /o for a 24 in. diameter pipe.
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Figure H-2

COD vs. co/oF for a 24 in. diameter pipe.
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oD = 24" -
h =0.438"  Lo/h =10
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Figure H-3 COD vs. gy/op for a 24 in. diameter pipe.
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Figure H-4 COD vs. co/cF_for a 24 in. diameter pipe.
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Figure H-5 CoD vs. g for for a 30 in. diameter pipe.
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Figure H-6

COD vs, co/oF for a 30 in. diameter pipe.

H-7




COD/aop/E
[o] S

Lo/h =10=
- 0D=30" |
- h=05" 0.9
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Figure H-7 COD vs. co/cF for a 30 in. diameter pipe.
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Figure H-8  COD vs. o /op for a 30 in. diameter pipe.
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Lo/h=10

Figure H-9

COD vs. o,/or for a 36 in. diameter pipe.
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Figure H-10  COD vs. o /o, for a 36 in. diameter pipe.
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Figure H-12 COD vs. crO/ch for a 36 in. diameter pipe.
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Figure H-14  COD vs. °o/°F for a 48 in. diameter pipe.
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| Figure H-15 COD vs. Uohz/cF for a 48 in. diameter pipe.
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