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FOREWORD

The Technology Assessment and Research Branch of the
Minerals Management Service (MMS), United States Department of
the Interior, is engaged in a program of research and development
to provide information on the performance of offshore systems. As
part of this program, the MMS is sponsoring the project
"Assessment of Uncertainties and Risks Associated with the
Dynamic Responsé of Compliant Structures" under contract with the
National Bureau of Standards (NBS).

Among these uncertainties are those related to the effects
of the fluid-structure interaction on the structural response.
The purpose of this report is to present information and
procedures that allow these effects to be estimated readil; in
the case of simple offshore structure models. An approximation is
proposed for the hydrodynamic modal damping facters of multi-
degree-of freedom systems, which is particularly useful for
preliminary design purposes.

It is shown in the report that, in certain cases, the
equivalent 1linearization technique can 1lead to substantial
errors. (A similar conclusion was reached in a previous study
sponsored by MMS, entitled 5Response of Compliant Offshore
Structures to Waves", NBS-GCR-85-501, September 1985.) The report
also evaluates Penzien's decoupling technique, and notes its
advantages over the equivalent linearization procedure. It then

proposes a modification to this technique, which further improves



its accuracy.

Emil Simiu

Structures Division

Center for Building Technology
National Bureau of Standards
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DISCLAIMER

The statements and conclusions contained in this report are those
of the contractor and do not necessarily reflect the view of the
U.8. Goverament and, in particular, the Natiomal Bureau of
Standards or the bepartment of the Interior. Neither NBS or the
contractors make aﬂy warranty, express or implied, or assume ;ny
legal liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or process
disclosed or represent that its use would not inftinge privately
owned rights. They aécept no responsibility for any damage that
may result from the use of any information contained herein. The
mentioning of manufacturers, professional firms, names, products,
and the publication of performance data do not constitute any
evaluation or endorsement by the U.S. Gove:nment, its ageuncies,
or the contractor. It is dome in a generic semse to illustrate

particular points.
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FLUID-STRUCTURE INTERACTION EFFECTS FOR OFFSHORE STRUCTURES

by

1 A. M. Prasad,

2 3

A. S. Veletsos, and G. Hahn

-ABSTRACT: Comprehensive ana]ysés are made of the differ-

ences in the responses of simple models of offshore struc-
tures computed by the standard and extended versions of
Morison's equation for the hydrodynamic forces, and of the
effects and relative importance of the numerous parameters
involved. The responses also are evaluated by the equiva-
lent Tinearization technique and Penzien's decoupling tech-
nique, and the interrelationship and accuracy of these
approaches are elucidated. The results are displayed
graphically in the form of response spectra for absolute
maximum displacement employing dimensionless parameters
that are easy to interpret and use. In addition, the
decoupling technique is generalized to include considera-
tion of a current of constant velocity, and a simple modi-

fication is proposed which improves the accuracy of this

approach. A particularly simple approximation is included

for the hydrodynamic modal damping values of multi-degree-

of-freedom, stick-l1ike systems.

1Brown & Root Prof., Dept. of Civ. Engrg., Rice Univ., Houston, TX 77251
Zraduate Student, Dept. of Civ. Engrg., Rice Univ., Houston, TX 77251

3Former1y Graduate Student, Dept. of Civ. Engrg., Rice Univ., Houston,
TX 77251



INTRODUCTION

Wave forces on an offshore structure are normally computed by one
of the following variants of Morison's equation: (1) the standard version,
in which the structure is effectively presumed to be rigid and the drag
components of the wave forces are taken proportionalb to the square of
the fluid particle velocities; and (2) the generalized or extended version,
in which the drag force components are considered to be proportional
to the square of the relative velocities of the fluid and structure.
The difference in the responses of a structure computed by these two
representations of the forcing function will be referred to herein as
the fluid-structure interaction effect.

In a direct, numerical evaluation of the response of the structure
as a function of time, there is no fundamental difficulty in providing
for these effects. This approach, however, is generally too tedious
and costly for preliminary design purposes, and simpler techniques are
needed to define the conditions under which the effects are of sufficient
importance to warrant their consideration in design and to evaluate them
reliably and cost-effectively. Two such techniques have already appeared
in the literature. They are: (1) the Malhotra-Penzien extension [4,8]F
of Borgman's linearization technique for the drag component of the exciting
force [2]; and (2) Penzien's decoupling technique [11,12].

Notwithstanding these and several other contributions [3,4,9,14,15],
there is a need for a reexamination of the problem from a unified point
of view, and for a critical assessment of the effects of the numerous

factors involved. This report is intended to be responsive to this need.

*Numbers in brackets refer to the corresponding items in the list of refer-
ences in Appendix II.
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Its objectives are: (1) To elucidate the nature of the fluid-structure
intgraction phenomenon; (2) to assess the interrelationship, accuracy
and ranges of applicability of the previously proposed simple procedures
for evaluating its effects; and (3) where necessary, to recommend appropri-
ate improvements,

Comprehensive parametric studies aré made of the exact maximum respon-
ses induced in simple mass-spring-dashpot systems by several different
combinations of a simulated wave train and a constant-velocity current,
and the results are compared with those obtained by the previously proposed
approximate procedures or appropriate extensions of them. The problem
parameters examined include the natural frequency and percentage of criti-
cal damping of the system, the relative magnitudes of the drag and inertia
components of the exciting force, the ratio of the Current velocity to
the peak value of the wave-induced fluid parti¢1e velotﬁty,‘and‘a’&ihen—
sionless measure of the importance of fluid-structure interaction. The
results are displayed in the form of response spectra for the absofute
maximum displacement of the system. It is shown that the accuracy of
the abproximate techniques depends importantly on the relative magnitudes
of the drag and inertia components of wave loading, and that these proce-
dures may Tead to substantial errors under certain conditions. ‘Thé reasons
for these discrépanciesv are’ identified,. and‘ §imp1e modffications are
proposed which improve the reliability of these techniques.

In addition to the response of single-degree-of-freedom systems,
the response of multi-degree-of-freedom cantilever systems is examined,
and a simple approximation is proposed for the effective modal damping
of such systems. ,

~ Although the reliability of both the standard and extended versions
-3-



of Morison's equation has been questioned [7,13], their use in practice

is so widespread that it is considered important that the interrelationship
of the responses corresponding to the two forms of this equation be clari-

fied.

STATEMENT OF PROBLEM

Consideration is first given to the response of single-degree-of-free-
dom, mass-spring-dashpot systems submerged in an oscillating fluid for
which the particle velocity is u(t) = u and the associated acceleration
is u(t) = u. Let m be the effective mass of the system, including the
contribution of added fluid mass, and let k and ¢ be its stiffness and
coefficient of damping, respectively.

With the hydrodynamic force defined by the generalized version of
Morison's equation, the equation of motion for the system may conveniently
be expréssed in the form

MK+ ek +kx = P, L+ p ‘utk! (W - x)

i d ¥y
Yo Yy Yo

(1)

in which x denotes the displacement of the system; a dot superscript
denotes differentiation with respect to time; Ho and ﬁo are the absolute
maximum values of U and u; and P1 and Pd are the corresponding values
of the inertia and drag components of the exciting force computed without

regard for interaction. The latter values are given by

P, = CoVu . (2a)
_1 . '
and Pd =5 CdpAu0 (2b)

in which Cm and Cd are the inertia and drag force coefficients; p = the
mass density of the fluid; and V and A are the volume and projected area

-4-
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of the 'system, respective]y.” The coefficienfs Cm and Cd are présumed
to be constants.

Of concern here is the difference in the responses of the system
computed on the following basés:’(i) thsiderfng P(t) to be deffned’by
the right-hand member of Eq. 1; and (2) using the following simpler expres-

sion for it

P(t)=P1.7‘f- +Pdl—§'—l-i.‘—- (3)
Uo Uo UO

Of particular interest is the difference in the absolute maximum values

of the resulting displacements, These displacements will be

‘XmaxI'
normalized -with respect to Xogs the static displacement induced by the
peak value of the wave loading. The interaction effects for more com-

plex, multi-degree-of-freedom systems are examined at the end of the

paper.

PROBLEM PARAMETERS

The normalized response of the system to a prescribed sea state

“depends on the following parameters: (1) The relative magnitudes of the

drag and inertia components of the exciting force, expréssed conveniently

by the factor

we 4 (4)

'(2) the dynamic properties of‘the system, including ifs natural frequency,

f, and the percentage of critical damping, z; and (3) the dimensionless

interaction parameter defined by

wix_,)
5 =‘__§§E_Q (5)
0



in which w =2rf = the circular natural frequency of the system;and (Xst)d
= Pd/k = the static displacement induced by the peak value of the drag
component of the wave loading. The parameter § is deduced readily from
Eq. 1 by expressing the latter in terms‘ of the dimensionless time, =<
=wt, and by normalizing x in terms of (xst)d' A value of ¢ = 0 refers
to a noninteracting system. One of the distinguishing features of the

present study, the use of the dimensionless factors o« and & greatly simp-

lifies the interpretation and use of the data presented herein.

SEA STATE CONSIDERED

A simulated sea state, generated from a one-dimensional Pierson-
Moskowitz wave spectrum in combination with linear wave theory, is consid-
ered. The total depth of water is presumed to be 800 ft; the significant
height and mean period of the waves are taken as 40 ft. and 12.4 sec.,
respectively; the ordinatés of the wave spectrum for frequencies in excess
‘of 0.4 cps are assumed to be zero; and the phase angles for the component
harmonics were taken as random numbers uniformly distributed between
zero and 2r. The wave spectrum was sampled at increments of 0.004883
cps for a total of 2048 points. This leads to wave trains that are defined
at time increments of 0.1 sec and repeat at intervals of 204.8 sec.
A1l wave forces were computed from the fluid kinematics of this sea state
at a depth of 40 ft. beneath the mean water level. The relevant histories
of the horizontal components of the fluid particle velocity and accelera-

tion are shown in‘Fig. 1 normalized to a unit peak value.

PRINCIPAL EFFECTS OF INTERACTION

The natural and most direct means of assessing the consequences

of fluid-structure interaction would be to compare the histories of the

-6-
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exciting forces and of the corresponding responses computed from Egs.

1 and 3.

Such comparisons ‘are presented in Figs. 2 and 3 for systems with
f=0.1 cps and f = 0.2 cps subjected to a purely drag component of wave
loading (a =‘1). The damping factor of the systems in these solutions
was taken as ¢ = 0.02. The solid lines in the top two diagrams in each
of these figures represent the solutions obtained without regard for
interaction, and thé dashed lines represent the corresponding solutions
obtained with due provision for interaction assuming that § = 0.10.
Also shown in expanded scales are the histories of the differences in
the two sets of results.‘ The force histories are normalized with respect
to P, the peak value of the total exciting force for no interaction,
and the displacement histories are normalized with respect to the corres-
ponding static displacement, Xt - A1l system responses were evaluated
by numerical integration of the governing equation of motion>for a single
cycle of the forcing functioﬁ, using an integration step of 0.1 sec.
and considering the structure to be initially at rest.

It can be seen that fluid-structure interaction modifies both the
exciting force and the resulting response, generally reducing the absolute
maximum values of these quantities. The changé in the exciting force,
AP(t), is generally quite small, particularly when the natural frequency
of the system 1is substantially different from the dominant frequehcy
of the excitation, as is the case in Fig. 3. By contrast; the change
in response, ax(t), is generally significant. This is due to the fact
that aP(t) 1is an oscillatory, nearly periodic force component with a
dominant frequency equal to the natural frequency of the system under
consideration and it induces a resonant-likekcomponent of response.

Critical analysis of these data further reveals that there is approxi-
-7-



mately a 90° phase difference between AP(t) and ax(t). This suggests
that the mechanism of fluid-structure interaction is similar in its effect
to that of linear viscous damping, and that it tends to reduce the absolute

maximum displacement of the system, |x It further suggests that

maxl'
the reduction in response would be particularly significant at natural
frequencies close to the dominant frequency of the exciting fdrce. |
Although comparative studies of the type presented in Figs. 2 and
3 provide valuable insight into the mechanism of fluid-structure inter-
action, théy are not particularly convenient for quantifying the effect
of this action on the maximum response of the system, and the alternative
approaches examined in the following sections are preferable. Clearly,
there is no simple correlation between the change in the exciting force
and the corresponding change in response. In particular, the change
in the peak value of the exciting force is generally a p;oor indicator
of the corresponding change in peak response. This 1is clearly shown
for

in Table 1, in which dimensionless measures of |P and |x

maxl max‘

several different values of f and o« are listed for both non-interacting
systems (§ =0) and for interacting systems with § =0.10. Note that the
effect of interaction on both |P

and |x is highly sensitive to

max‘ maxl

the values of f and « involved.

EQUIVALENT LINEARIZATION TECHNIQUE
The velocity squared term in the expression for the drag component

of the exciting force in this approach is approximated by a linear term

[8] as
[(a - )| (u=-%x) = 2bi (u-x) (6)

in which bo is a dimensionless factor determined so as to minimize the

-8-
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temporal average of the square of the resulting error. The latter factor

is given by

1 <‘l:|-).(|3>
bo B < i 2
2uy <(u-x)°>

(7a)

in which <-> denotes the temporal average of the enclosed quantity. The
coefficient 2 on the right-hand member of Eq. 6 is included for convenience
in relating the results of this approximation to those of the decoupling
technique presented later. For a normal random wave (one for which the
fluid kinematics is represented by a Gaussian random process), Eg. 7a
reduces to |

[Z %i-x o
bo = —Tr- ‘:‘ (7b)

0

in which c&-k is the standard deviation of the relative velocity of the
fluid and structure. |

On intfoducing the approximation defined by Eq. 6 into Eq. 1, and
transposing to the left-hand member of the equation the term involving

the structural velocity, one obtains

u

- . - u_ Q_ 8
mx + (c + co)x + kx Pi = + ZbOPd : (8)
0 )
in which
2b_P
¢, = ——3—9 (9)
Yo

Fluid-structure interaction according to this approximation has a two-fold
effect: (1) It modifies the dfag component of the exciting force to
a Tlinear function of the fluid particle velocity; and (2) it increases

the damping of the system.



When expressed in percent of the critical damping coefficient, Cop =

2mw, the effective damping of the system, z = (c + co)/ccr’ is given by
g = gtg, = ¢ tbs (10)

in which use has been made of Eq. 5. The quantities g and Zo represent
the contributions of the structural damping and of the added hydrodynamic
damping, respectively.

The dimensionless factor bo in Egqs. 8, 9 and 10 is a function of
the response of the system, and must thefefore be computed by iteration.
The process is typically started with the value of bd corresponding to
x = 0. The response of the system is then computed and a new value of
b0 is determined. These steps are repéated until the difference between
the starting and derived values is less than a prescribed tolerance.

Results for Noninteracting Systems. — Valuable insight into the
accuracy of the linearization technique may be gained from an analysis
of the response of non-interacting systems, for which the procedure reduces
to that originally proposed by Borgman [2]. In this case, the structural
velocity in Eq. 6 and hence the term involving the damping coefficient

c_ in Eq. 8 vanish, and Eqs. 7a and /b reduce to

)
-3
<tul 7o
by = —— !_'2 (11a)
2u_ <(u)™
0
g-
and b = 2 (11b)
0 ™ u
)
respectively.

The exact and approximate values of |x induced in systems with

max‘
z = 0.02 by several different combinations of the drag and inertia compo-

nents of the simulated wave loading are compared in Fig. 4. The results

-10-

,)



-y

£

71

08 |

&

i )

I |

|

1

4 i

oo

£
%

IS R |

v ?”}

M

i |

(5

=y

1

e
L.

D

Y

1

are displayed in the form of response spectra. Not to be confused with
a wave spectrum which characterizes the excitation, a response spectrum
defines the maximum response to a specified excitation of a family of
single-degree-of-freedom systems having different natural frequencies.
A rather broad range of natural fregencies and values of & in the range
between 0.25 and unity are considered. The normalizing displacement,
Xt in these plots, as fn Figs. 2 and 3, represents the static displace-
ment induced by the peak value of the actual wave force, not of its linear-
ized approximation.

The exact responses were computed by direct integration of Eq. 1
considering the system to be inftia]]y at rest, and the approxihate re-
sponses were obtained by the 11nearizatjon technique using the vaTue
of bo = 0.266 determined from Eq. 1la. For comparison, the value computed
from Eq. 1lb for a normal random wave is the same, whereas the value
obtained for a single harmonic wave is bO = 0.424.

As would be expected, the accuracy of the approximate solution depends
importantly on the value of the load factor, «. The larger this factor,
the greater is the part of the response contributed by the drag component
of the exciting force, and hence the greater is the consequence of the
approximations involved in the 1inearization technique.‘ For a specified
value of o, the agreement between the approximate and exact solutions
can be seen to be excellent in the central region of the response spectrum
which is associated with a resonant-like response and large amplification
factors. The agreement also is good in the low-frequency spectral region
for which the response is generally not sensitive to the amount of damping
involved. By contrast, there are significant and consistent differences

in the practically important, right-hand region of the spectrum which
-11-



covers the typical range of natural frequencies for fixed-base offshore
platforms.

The latter differences stem from the inability of the linearization
technique to represent adequately the high frequency force components
to which high-frequency systems are sensitive. This fact is also reflected
in the high-frequency limits of the response spectra. vConsidering that
very stiff systems respond as if they were statically loaded, the right
hand 1imits of the spectra must be proportional to the absolute maximum
value of the exciting force under consideration, |P . 1.

The exact and approximate values of this force are listed in Columns
2 and 3 of Table 2 for several different values of the load factor, a.
The results are normalized with respect to Pi + Pd’ the numerical sum
of the peak values of the component forces, with Pd taken as the peak
value of the exact drag force. Note that the difference between the

exact and approximate values of |P increases with increasing a.

max‘

It is of interest to note further that |P is substantially less than

max‘

Pi + Pd' This 1is, of course, due to the fact that the peak values of

the inertia and drag force components occur at different times.

Results for Interacting Systems. — The results for the noninteracting
systems presented in Fig. 4 suggest that the 1linearization technique
should lead to similar errors for interacting systems as well. That
this is iﬁdeed the case is demonstrated by the spectra in Figs. 5 which
refer to systems with £ =0.02 and three different values of the load
factor, o. The interaction parameter 1in these so]utioﬁs is taken as
§ = 0.10; in reality, low-frequency systems are likely to be associated

with larger values of & than high frequency systems.

-12-
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Simiiar data:are presehted in Fig. 6 for systemgrwhich in addition

to the wave loading are acted upon by a current of constant velocity,

kk= 0.5&0. The normalizing displacement, Xogs in these plots represents,

as in Fig. 4, the static displacement induced by the peak value of the

wave component of loading, not of the combination of,wave and current.

Similarly, the value of § is expressed in terms of the (Xst)d corresponding
to the wave loading on]y |

The solutions by the linearization technique were obtained in the

‘manner indicated in Ref. 15 by: (D) Rep]acfhg the wévé-induted fluid

velocity, u, in Eq. 8 by the total velocity

Vs )
(2) determining the factor bo in Eqs. 8 and 9 from the fof]owing general-
ized version of Eq. 7a

1 <] v=x] (v=x) (U-x)>

b = — — ; (13)
° 2 <(U-x)%>

and (3) interpreting x to be the displacement measured from the mean

value of the resulting total displacement. Denoted by x_, the mean dis-

0
placement is given by
<Jv=x] (v-x)>
Xo = -2 (xg¢)q - ‘ - (1)
Ug .

With x computed in this manner, the total displacement is obtained by

superimposing the value Xge The exact solutions were computed from Eq.

1 by replacing uby v; and to avoid the spurious oscillations in the

response due to the 1n1t1a1 d1scont1nu1ty of the current 1oad1ng, the
equat1on was rewr1t»en in terms of X=X in which xC = the static dis-

placement due to the current-induced loading.

-13- -



Note that even for &C/OO = 0.5, for which only a relatively small
fraction of the total 1loading gets approximated in the Tlinearization
technique, the errors in response may be significant in the high-frequency
region of the response spectra. The maximum values of the exact and
linearized versions of the exciting forces are listed in Columns 4 and
5 of Table 2 along with those corresponding to &C/ﬁo = 1. The high-
frequency limits of the response spéctra in Fig. 6 are, of course, propor-

tional to these force values.

Convergence of Procedure. — The iterative process required to compute
the factor bo in Eqs. 8 and 9 generally converges rapidly. In Table
3 are listed the values of bO obtained for several different combinations
of the parameters involved, along with the number of cycles, N, required
to compute the associated values of Zo within a tolerance of 0.001.

Note that convergence in all cases is achieved in one to three cycles.

ADJUSTED PROCEDURE

The data presented in the preceding section reveal that the accuracy
of the linearization technique stems from the term representing the modi-
fied drag component of 1loading rather than the term representing the
additional viscous damping. It would be reasonable, therefore, to expect
that the reliability of this technique could be improved by retaining
the added damping term in the form that has been presented but replacing
the linearized drag force by the corresponding force for a non-interacting
system (extreme right-hand member of Eq. 3). .

When adjusted in this manner, the equivalent ]ineariiation technique
is intimately related to, and under certain conditions reduces to,

Penzien's decoupling technique examined in the next section.

-14-
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DECOUPLING TECHNIQUE GENERALIZED

Formulated originally for systems subjected to a wave loading only,
the decoupling techniqué is generalized in this section for a wave acting
in combination with a current of constant velocity, GC.

The equation of motion of the system in this case is given by

mor ok + ke = p, A 4 p LVXLG-X) (15)

i d -2
Uy 0

in which x = the total displacement measured from the position of rest;
and v, Pi and Pd are as previously defined. Recall that Pd represents
the peak value of the drag component of the force due to the wave only,
not the combination of w;ve and current.

On expanding the expression for the drag force, neglecting the term
involving the square of x, taking sgn(v-x) = sgn(v), and transferring to
the left member of the equation the term involving the product of v and

X, one obtains

. . ; MNE
mx + (¢ + ¢ )X +kx = P, +— *t Pd <D (16)
o) LA U
0
in which cé, the viscous damping coefficient for the added damping approxi-

mating the effect of fluid-structure interaction, is a time~dependent

quantity given by

< O
(a8

c, = [2sgn(v) L] (17)
Y u

0o o
In his treatment of the effect of wave loading, Penzien [11] replaced
the time-dependent product usgn(u) by the temporal mean of the absolute
value of the fluid velocity, <|u|>. The use of the same approximation

for the generalized fluid kinematics considered here leads to

-15-
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c. = 2 <dvl> d (18)
0 u U :
o o

When expressed in percent of the critical coefficient of damping,

C.p» the resulting hydrodynamic damping factor, ¢ is given by
C!
0 3
C = v— =b 6 (19)
0 Cop O
in which
S Avl> (20)
Us

and § is defined by Eq. 5. The factor b; is the counterpart of the factor

b0 in the linearization technique.

For a normal random wave acting in combination with a current of

constant velocity, it is a simple matter to show [10] that bé is given by

.2 ' .
o -u u u .
b, =‘f—2- = exp(-—-—%) oS erf(/_c ) (21)
™ U, 20{1 Uy 20!:|

in which erf stands for the error function. For &c =0, Egq. 21 reduces

to the following expression presented in Ref. 11:

' =42 U (22)
0 T U
)

Equations 21 and the corresponding expression for z, are identical to
those obtained by the equivalent linearization technique (Eq. 15 in Ref.

15) considering the structural velocity, x, to be zero.

INTERRELATIONSHIP AND ACCURACY OF PROCEDURES

The interrelationship of the decoupling and linearization techniques
may now be summarized as follows:

1. The drag component of loading in both the decoupling technique

-16-
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and the adjusted version of the linearization technique is identical
to that for a noninteracting system. By contrast, in the original linear-
ization technique, it is a linear function of the fluid velocity.

2. "F1uid-structure interaction increases the effective daﬁping
of the system and reduces the response. In the decoupling technique,
the added damping is independent of the structural response and may be
computed direct1y from the history of f]uid particle velocity, whereas
in the ]inearization techniques, it is also a function of the structural
velocity and must be evaluated by iteration.

3. Provided that the added damping of the system in the linearization

technique is determined assuming X = 0, the adjusted version of this

technique for a random normal wave acting in combination with a constant-

velocity current is identical to the decoupling technique.
[

Representative response spectra computed by the decoupling technique
are compared in Figs. 7 and 8 with the corresponding exact spectra.
Fig. 7 refers to systems excited by the simulated wave loading only,
whereas Fig. 8 also incorporates the effect of a current with &C = 0.5&0.
Three different values of o in the range between 0.5 and unity, and single
values of ¢ and § are considered. No data are presented for values of
a less than 0.5 as the accuracy of the decoupling technique is quite
high in this case.

Comparison of these data with the correspondingk data présented in

Figs. 5 and 6 reveals the .following:

1. For systems with natural frequencies substantially higher than
those for which the response spectra attain their absolute maximum values,
the decoupling technique, and hence the adjusted linearization technique,

are superior to the original version of the latter procedure. In the
-17-



spectral regions associated with the absolute maximum responses, the
decoupling technique is inferior to the linearization technique but the
differences are generally small in this case.

2. The decoupling technique generally underestimates the added damping
and‘overestimates the maximum response. The errors increase with increas-

ing a, i.e., increasing contribution of the drag component of loading.

PROPOSED MODIFICATION OF DECOUPLING TECHNIQUE

Effect of Load Factor, a. — It is desirable to examine at this
stage the influence that this factor has on the characteristics of the
exciting forces computed without regard for interaction. Representative
histories for these forces are shown in Fig. 9 for several different
values of o in the range between zero and unity. The following trends

should be observed:

1. Whereas the inertia force (o =0) is characterized by oscillations
of nearly equal peak values which are more or less uniformly distributed
along the entire record, the major oscillations in the drag force (a
=1) are significantly fewer in number and generally widely separated.
A consequence of the squaring of the velocity trace which tends to supress
the contributions of the smaller amplitude oscillations, the reduced
repetitiveness of the drag force leads to a less severe resonanﬁ—]ike
response and to reduced amplification factors for systems with natural
frequencies close to the dominant frequency of the excitation than does
the inertia force. This can clearly be seen from the response spectra
for o = 0 and o« = 1 compared in Fig. 10.

2. Because of the differences noted under item 1 and the fact that

the peak ordinates of the inertia force component correspond to zero

-18-



«'“’*")
[EEC

pw*j

o= ”"}

Y

o
ke

I

™

Ficas. .o

gy

& I3
& dEsh

71

o

ey

[

[N

HI

"y

r
[

T
&

1

"y

ordinates of the drag force, thevinerfia force history generally dbminates
the characteristics of the total force and of the corresponding response
spectra. For example, for o =0.5 for which the peak values of the compo-
nent forces are the same, the history of the combined force and the asso-

ciated response spectrum are much closer to those of the inertia force

than those of the drag force.

These obéervations suggest that, Qhereas for small values of o the
response of the system is influenced more or less uniformly by all pulses
of the forcing function, for values of « close to unity, it is dominated
by the .small number of pulses with the large amplitudes. It follows
that the replacement of Eq. 17 by Eq. 18 would not be a good approximation
for the larger values of a, and that this approach would tend to under-
estimate the value of b; and the associated value of Zo )

Based on these VCOnsiderafiohé, ft bfsk'recbmﬁeﬁdéa %thé%w'fornﬂéygfems
subjected to a purely drag component of loading, only those pulses in
the fluid velocity history whose amplitudes exceed the 70 percent level
of the absolute maximum velocity be considered in the averaging process.
It is further recommended that the proposed threshold limit be considered
to decrease linearly from the indicated value for « = 1 to zero for o = 0.
If z represents the appropriate limit in percent of the maximum f]uid
velocity, then z =0.7.

This modification of the decoupling technique is tantamount to replac-
ing the quantity <|v|> in Eq. 20 by <[GZ|>, the temporal .mean of the
absolute value of those pulses in the fluid velocity trace whose amplitudes

exceed the specified threshold limit, z.

Random Wave. — For a normal random wave without any current, the

-19-



proposed approximation leads to the following expression (see Appendix

1) for the factor b; in Eq. 19:

5
b - L-F [27u (23)
0 1-zNT 0

in which F = the chi-square probability distribution function of three

degrees of freedom, given by

S

o1 /n exp(-4) d | (28)
F/zr({“ 2’

and s = 21n[1/(1-2)]. The values of F corresponding to different values

of z = 0.70 were computed by use of a standard IMSL subroutine [6], and

the results led to the following linear approximation for b;:

3 O‘
be = [1+0.6la]y2 (25)
0 T

Note that for o« =1, the values of b; and of the associated damping factor,

', are approximately 61 percent larger than those obtained from Penzien's

%o

original proposal. The difference in the two approaches naturally de-

creases with decreasing a«.

Wave Combined with Current. — For a sea state represented by a
random wave in combination with a current, the exact expressions for bé
are derived in Appendix I. Inasmuch as the evaluation of these expressions
is tedious, the use of the following simpler approximation, obtained

by modifying the first term of Eq. 21, is recommended instead:

.2 . .

, o -u u u

by = (1+0.61a) \/—f- -.—”,exp(-—%) + L erf( < ) (26)
Yo 20, Yo 2,

The values of bé determined from this approximation are plotted as a
function of Qc/ﬁo in Fig. 11, where they are also compared with those

-20-
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obtained from the corresponding exact expression,

Accuracy of Procedure. %— The exact response spectra for the simniated
sea state without any current considered previously are compared in Fig.
12 with those computed by the proposed modification of the decoupling
technique. As before, the structural damping factor in these solutions
is taken as ¢ = 0.02, and two d1fferent values of the Ioad1ng factor,
a; and severa] values of the 1nteract1on parameter, §, are considered.
The agreement between the two sets of results, excluding those correspond-
ing to « =1 and & = 0.5, is cons1dered to be quite good Comparabie
agreements have been obtained for several other sea states.

The results for o =1 and 6 = 0.5 correspond.to an unrealistic combi-
nation of the parameters and should be viewed as an extreme test of the
accuracy of the proposed approx1mat1on Even in th1s case, however,
this approx1mat1on is superior within the h1gh frequency region of the

response spectrum to those presented previously (see Fig. 13).

APPLICATION TO MORE COMPLEX SYSTEMS

The application of both the linearization and decoupling techniques
to the analysis of multi-degree-of-freedom.systems has already been des-
cribed in the literature [4,8,11,12,14]. The proposed modification of
the decoupling technique can be implemented in a similar manner, except
that it is necessary to use for the damping coefficients, b;, the values
corresponding to the fluid kinematics at the particular water depth under

consideration.

The steps involved in the application of these techniques may be

summarized as follows:

1. The wave and current forces exerted at various nodes of the struc-

-21-



ture are first computed from the fluid kinematics and the relevant tribu-
tary volumes and areas of the structure.

2. The drag components of these forces are then approximated in
the manner indicated for single-degree-of-freedom systems, and two subsets
of forces are obtained. The first, which is a function of the fluid
particle velocities only, is retained on the right-hand member of the
equations as modified drag forces, and the second, which is proportional
to the }structural velocities, 1is transferred to the left-hand member
and interpreted as added damping forces.

3. The matrix for the overall damping of the system obtained in
this manner has no relationship to either the mass or stiffness matrix
of the system, and system damping is of the nonclassical type. To obviate
the need for using complex-valued natural modes of vibration, the trans-
formed modal damping matrix of the system is replaced by a diagonal matrix,
the elements of which are determined by minimizing the square of the
error between the damping forces associated with the original and the
approximating matrices. Being functions of the response of the system,
the elements of the diagonalized damping matrix must be computed by itera-
tion.

4. With the overall damping of the system approximated in this manner,
the analysis is implemented by use of the classical modal superﬁosition

method.

In the decoupling techniques, steps 1 through 4 are carried out
only once, whereas in the linearization technique, they are repeated
until the modal damping values corresponding to the starting and the

derived sets of structural velocities agree within a prescribed tolerance.

-22-
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Préposed Simplification. —; While straightforWard in principle,
these procedures are generally time consuming and tedious. A simpler
approximation for the modal damping values of the system may be obtained
by deleting the off-diagonal terms of the transformed damping matrix
referred to in item 4 of the preceding section. This approximation is
presented in the following paragraphs for discrete, stick-like systems
having a total of n submeréed noaes.

Let de be the maximum value of the drag component of the wave force
acting on the jth node of the system, and &oj be the corresponding value
of the wave-induced fluid particle velocity. Further, let <[sz|> be the

relevant temporal mean of the absolute value of the total fluid velocity

- at that depth. (In the proposed modification of the decoupling technique,

only those pu]ses with amp11tudes in excess of the spec1f1ed thresho]d

limit, z = 0.7¢, are cons1dered ) Finally, let

v .|> .
b;. = _l_ElL_ (27)
J .

uoj

W Pd.

ki uoj
in which wy = the ith c1rcu1ar natural frequency of vibration of the
system; k? =(u$m? = the genera11zed or effective stiffness of the ith
natural mode; and m? = the corresponding effective mass. For a normal

random wave, the factors b;j may be determined from Fig. 11 or Eq. 26
using the va]Ués of a, Gc/ﬁo and 9 that are appropriate to the particular
node under consideration. _

With these parametéfs ahd the approximétion féférred to, it %s a

simp1e4 matter to show that the percentage of the hydrodynamic damping

-23-



for the ith mode of vibration, Loi® is given by

- ' 2
toi T L Pojdisei; (29)
j=1
in which ¢ij = the ordinate at node j of the ith mode of vibration.

If Z; represents the corresponding percentage of structural damping,

then the total damping factor for the ith mode of vibration, Ei’ is given
by

C'i = ;1 + cO'i (30)

Eqs. 29 and 30 are generalized versions of Egs. 19 and 10, respectively.
The computat{on of the factors b;j and of the quantities de and
u . in Eq. 28 still entails considerable effort, and an even simpler

0]

approximation for Zoi is desirable. Considering that the response of
the structure is dominated by the forces acting on its upper parts, it
is recommended that the quantities de and &oj in Eq. 28 be reinterpreted
to be those corresponding to the instant, to, for which the drag component
of the wave force at the uppermost, fully submerged node of the structure
attains its maximum value. This node is typicaily located at a depth
below mean water level approximately equal to the maximum surface wave
height. It is further proposed that the factors b;j in Eq. 28 be replaced
by a constant value, b;, determined from the fluid kinematics at  the
depth of the resultant of the drag forces at time to. This apbroximation
has been tested for a number of structural systems and has been found
to yield results of high accuracy.

As an indication of the differences in the values of L1 that may

result from the use of the different approximations, in Table 4 are listed

the results obtained for the first three modes of vibration of an offshore

-24-
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guyed tower model 1in 1,600 ft. of water. The characteristics of the
structure are given in Ref. 5. 1Its first three natural periods are 29.1
sec, 4.88 sec, and 2.33 sec, respectively. The results refer to a simu-
lated sea state with the same surface wave characterisfics as those con-
sidered previously and no current. Also listed in the table are the
approximafe and exact values of selected maximum responses.

As would be expected from the data presented in Fig. 5, the lineariza-
tion technique for this highly compliant structure gives excellent results.
However, this would not be the case for fixed-base structures which are
associated with higher natural frequencies.

The proposed modification of the decoupling technique 1is clearly
superior to the original version, and the simpler version of the proposed
modification provides excellent approximations to the modal damping values.
The latter va]ueg may be determined by this approach at a fraction of

the time required by the linearization technique.

CONCLUSION

With the information and concepts that have been presented, the
effects of fluid-structure interaction on the maximum response of simple
models Qf offshore structures can be estimated readily. The proposed
approximation for the hydrodynamic modal démping factors of multi-degree-
of-freedom systems should prove particularly useful in preliminary design
decisions requiring an estimate of these quantities.

The equivalent linearization technigue has been shown to lead to
substantial errors for structures for which the drag component of the
exciting force is dominant and for which the fundamental natural frequency

of vibration is substantially higher than the dominant frequency of the

-25-



wave loading. Penzien's decoupling technique is superior in this case

and the proposed modification further improves its accuracy.
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APPENDIX I. — DERIVATION OF EQUATIONS

Effects of Wave Only.—For the normal random sea state considered,
the probability density function of the wave amplitudes u velocity

trace of the fluid motion is a Ray]eigh distribution, given by

. .2 :
plu) = exn(lﬂg) (31)
- o. 2c.
u u
If z represents a specified percentage of the absolute maximum velocity

amplitude and t]z represents the amplitude corresponding to that per-

'centage, then the cumulative probabﬂ'ity of the amplitudes with va'lués

greater than &z is given by

P 210,) = fp(fj)dfx = 1-2 (32)
u
) Y4

On substituting Eq. 31 into Eq. 32, performing the indicated, integra-
tion, and taking the natural logarithms of the two members of the re-

sulting expression, one obtains

¥4

u, = 2 n[1/(1-2)]0, (33)

Denoted by <H|z|>, the temporal average of the velocity pulses with

amplitudes in excess of x]z is then given by

_.[wl]p(l:l) du

u -2 -2
. 2 "z 1 u -u .
Ju[>= = = 103 f 5 exp(——-z—)du (34)
® . . o 20"
f p(u) du Y u u
a z
z

which on integration yields

s . L-F [T 35
<|uZ]> 1-z V7 ¢ (35)

-27-



The quantity F in this expression is defined by Eq. 24, in which

n = 42/c%. The ratio of <|Gzl> and &o represents the factor b_ defined
u

Effects of Combinations of Wave and Current. — For a random sea
state that includes a current with a constant velocity ﬁc, the proba-
bility density function of the peaks of the total velocity trace,

v = ﬁc + U, is given by [10]

v i V2 i

p(v) = Io(_if) exp(—————i——) (36)
o. g 20%

u u u

Proceeding as in the preceding section, the following relationship is

obtained between the specified percentage of the absolute maximum value
of the total velocity trace, z, and the corresponding total velocity

amplitude, GZ:

Ty [ T |
1-2-= - Io(T) exp(—-——-—-—-—z———) du (37)
~ o. o 2" ,
v, u u u

which on introducing the parameter ¢ = 92/(20?) and properly adjusting
) u

the lower 1imit of integration can alsc be written as

-o R ¥
1 -2= exp(—-——z—) f Io( U.C @)exp(-e)de (38)

20 u
u

92/20?
z u
Unlike the corresponding expression in the preceding section from which

a closed-form expression could be obtained for v., by formal integra-

z
tion, in the present case this does not appear to be possible, and the

value of Qz corresponding to a specified z must be computed iteratively

-28-
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by numerical integration. A first approximation to Qz may be deter-

mined from

02 = 21n[1((1 -z)]cl] + &C (39)

Let <|Qz|> represent the temporal average of the velocity pulses
with amplitudes v in excess of GZ. When measured from the level of
the current velocity, &C, the amplitudes of the velocity pulses -have

a Rayleigh distribution. Accordingly, the value of <|Qz(> may be de-

“termined from the right hand member of Eq. 34 noting that &z =v_-u

z ¢’
and interpreting the quantity (2/7)u in this equation as the temporal -

average of the absolute value of a velocity pulse of amplitude U that
is superimposed on the current velocity, Gc. Denoted by w, the latter
quantﬁty is given by

1 2m

W= o (j) luc + Usinc| de (40)

in which v denotes time. Integration of Eq. 40 yields

. © < -
uc for ul uc
. . . 2
u u u
\/g-u [TE'STH-](TE) + 4/ 1 -(:E) J for u>u
U u u u ¢

On substituting Eq. 41 in the reinterpreted version of Eq. 34 and

evaluating the integrals involved, one obtains

v, |> = exp(j—s—) \/-2- o exp(-——{é> + U [1 +erf( U ) - U
z 26° T 20° ¢ /EU& ¢
u u

for v, s 2uC (42)
-29-



and

(‘.’5 {{2 iy - erf(—
+ exp ———) = o.exp(-——) - U1 -er ( )
25° Tou 26° /2—0&
u u
u
'z
2[ i - i By S
-5 — exp(;;§> du p for v, > 2u, (43)
u, u
The factor b is defined by the ratio of <|v,|> and u . For i, = 0,

Eq. 43 reduces as it should to Eq. 35.
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APPENDIX III.— NOTATION

The following symbols are used in this paper:

b0 = constant in expression for the hydrodynamic damping determined
by equivalent linearization technique;

bg = constant in expression for the hydrodynamic damping determined
by the decoupling techniques;

béj = value of b; at jth submerged node;

c = coefficient of viscous structural damping coefficient;

co,c; = coefficients of added damping due to effect of fluid-structure
interaction;

F = chi-square probability function with three degrees of freedom;

f = natural frequency of the structure, in cps;

k = structural stiffness;

k? = generalized structural stiffness for the ith natural mode of
vibration;

m = total mass of structure, including added mass due to hydrody-
namic inertia effect;

m? = generalized total mass for the ith natural mode of vibration;

P = maximum value of total hydrodynamic force due to wave only;

Pd = maximum value of drag component of hydrodynamic force due to
wave only;

pdj = value of Pd for jth submerged node;

Pi = maximum value of inertia component of hydrodynamic force due
to wave only;

u = fluid particle velocity due to wave only;

&c = velocity of current;

&o = absolute maximum value of u;

ﬁoj = value of &o for jth submerged node;

u = threshold amplitude of fluid velocity used in computation of
bo’

v = G-FGC = total fluid particle velocity due to wave and current;

Qz = threshold amplitude of total fluid velocity used in computation
of b';

o
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value of Qz for jth submerged node;

structural displacement, measured from undeflected position
of structures;

temporal mean of the displacement of the structure due to com-
bination of the wave and current loadings;

static displacement of structure due to the peak value of the
total hydrodynamic force induced by the wave component of load-
ing;

static displacement due‘to'the peak value of the drag force
induced by the wave component of loading;

threshold percentage of velocity amplitudes considered in com-
putation of the temporal average of fluid particle velocity;

dimensionless load factor defining the relative magnitudes of
the drag and inertia components of the hydrodynamic forces due
to wave only;

dimensionless fluid-structure interaction parameter defined
by Eq. 5;

dimensionless fluid-structure interactionwwparamgterumfgrw,jth
submerged node of a system vibrating in ith natural mode: given
by Eq. 28;

difference in effective exciting forces for interacting and
non-interacting systems subjected to a wave Toading only;

difference, in displacements of interacting and non-interacting
systems subjected to wave loading only;

ith modal vector;

structural damping factor, in percent of critical damping;
r + Zo © total system, in percent of critical damping;
value of £ for ith mode of vibration;

added damping factor in percent of critical damping, approxi-
mating effects of fluid-structure interaction;

value of %o for ith mode of vibration;
standard deviation of fluid particle velocity due to wave only;

circular natural frequency of simple oscillator;

ith éircular natural frequency of system.
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TABLE 1. — Peak Values of Exciting Force and Resulting Response for Systems
without and with Interaction

f @=1,0 @ =0,75 @ =0.50 @ =0.25
cps.

§=0 §=0.10 §=0 §=0.10 ¢=0 6=0.10 §=0 §=0.10

Values of |P_ . |/P
0.04 1.000 0.943 1.000 0.913 1.000 0.912 1.000 0.979
0.08 0.720 0.694 0.775 0.929
0.10 0.783 0.816 0.815 0.954
0.20 0.941 1.008 1.068 0.978
0.333 0.960 0.939 1.004 1.006
0.50 1.012 1.012 0.984 1.004

Values of |x . |/Xc¢
0.04 0.809 0.691 0.851 0.712 0.%29 0.740 0.862 0.691
0.08 3.452 2.212 3.744 2.526 4.705 3.237 5.004 3.118
0.10 2.499 1.856 2.358 1.976 3.389 2.560 4.340 2.762
0.20 1.628 1.202 1.306 1.038 1.352 1.618 1.530 1.735
0.333 1.537 1.363 1.417 1.271  1.064 1.074 1.199 1.219
0.50 1.127 1.085 1.177 1.133 1.135 1.107 1.050 1.061

TABLE 2.— Comparison of Maximum Values of Forces for Systems without
Interaction Computed Exactly and by the Linearization Technique

Value Values of ‘Pmaxl/(Pi + Pd)
Of - - - - . . 3
a uc/uO =0 uc/u0 = 0.5 uc/uo = 1.0
Exact Linearized Exact Linearized Exact Linearized
1y (2 (3) (4) (5) (6) (7)

1 1.000 0.532 2.250 1.420 4.000 3.154
0.75 0.773 0.481 1.702 1.108 3.011 2.388
0.50 0.645 0.595 1.218 0.938 2.068 1.710
0.25 0.768 0.785 0.948 0.924 1.301 1.232

0 1 1 1 1 1 1
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TABLE 3.— Convergence df Values b

o in Equivalent Linearization

Technique
5 | uC/uO =0 uc/uo = 0.5‘ vut/y 1.0
cps
b0 N ‘bo N bo N
a =1
0.04 0.266 1 0.524 1 0.999 2
0.10 0.255 2 0.524 1 1.015 1
0.25 0.266 1 0.524 1 1.015 1
0.50 0.266 1 0.524 1 1.015 1
a = 0.75
0.04 0.254 2 0.512 2 0.999 2
0.10 0.266 1 0.524 1 1.004 2
0.20 0.266 1 0.524 1 1.015 1
0.50 0.266 1 0.524 1 1.015 1
a = 0.50
0.04 0.240 2 0.509 2 1.000 2
0.10 0.300 2 0.524 1 ~0.999 2
0.20 0.283 2 0.536 2 1.026 2
0.50 0.266 1 0.524 1 1.015 1
a = 0.25
0.04 0.204 2 0.502 2 1.015 1
0.10 0.408 3 0.575 2 0.995 2
0.20 0.323 2 0.562 2 1.040 2
0.50 0.266 1 0.524 1 1.015 1
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TABLE 4. — Comparison of Solutions for a Guyed-Tower Model in
1600 ft. of Water

Linearization Penzien's Modified Decoupling

Exact
Technique Decoupling Refined Simple
Hydrodynamic Modal Damping Factor, Coi°
for i = 1, 2, and 3, respectively '
-—— 0.133 0.174 0.242 0.235
- 0.022 0.007 0.015 0.014
- 0.012 0.003 0.006 0.005
Maximum Top Displacement, in ft.
14.38 14.62 17.25 15.70 15.85
Maximum Base Shear, in kips
3,840 3,726 4,481 3,879 3,890
Maximum Base Moment, in kip-ft. x 10°°
0.233 0.243 0.286 0.256 0.259
Maximum Moment at 520 ft. Depth, in kip-ft. x 1076

1.833 1.772 2.038 1.936 1.943
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