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FOREWORD

The Techhology Assessment and Research Branch of the Minerals
Management Service (MMS), United States Department of the Interior,
is engaged in a program of research and development to provide in-
formation on the performance of offshore systems. As part of this
program, MMS is sponsoring the project "Assessment of Uncertainties
and Risks AssociatedAwith the Dynamic Behavior of Compliant Struc-
tures" under contract with the National Bureau of Standards (NBS) .

Among these uncertainties and risks are those related to the

effects of currents and waves. The purpose of this report is to
apply recent developments in the theory of extremes of random pro-
cesses to the estimation of peak wave forces that may be described
by the Morison equation. Descriptors of wave forces -- which are
non-Gaussian -- are proVided that are useful in reliability calcu~
lationmns, e.g., mean crossing rates and extreme value distributions.
An approximate procedure for estimating peak wave forces is pre-
sented that is simple and convenient for practical use, and that
is applicable regardless of the magnitude of the current and of
the ratio between the inertia and the drag component of the wave

force.

Emil Simiu ‘
Structures Division

Center for Building Technology
National Bureau of Standards
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ABSTRACT

According to Morison's equation, wave forces acting on
cylindrical members have two components: drag forces, which
depend nonlinearly on wave particle velocity, and inertia forces,
which are proportional to wave particle acceleration. Wave forces
are then non-Gaussian processes although fluid ve%oci;iesvére
assumed to follow Gaussian distributions. This report develops
arproximations 2f the mean of the peak of wave forces during
design storms. It shows that the square root of the sum of the
squares (SRS3) rule can be applied to approximate the mean of the
peak wave force from the average peaks cf inertia and drag forces.
The approximation is satisfactory for any ratio.of drag to in-
ertia forces and frequency content of the wave particle velocity
process. The report also provides various descriptors of drag,
inertia, and wave forces, including marginal distributions, mean

crossing rates, and extreme value distributions.

iv



DISCLAIMER

The statements and conclusion contained in this report are those of
the contractor and do not necessarily reflect the view of the U.S. Govern-
ment and, in particular, the National Bureau of Standards or the Department
of the Interior. Neither NBS or the contractors make any warranty, express
or implied, or assume any legal liability or responsibility for the accur-
acy, completeness or usefulness of any information, apparatus, product or
process disclosed or represent that its use would not infringe privately
owned rights. They accept no responsibility for any damage that may result
from the use of any information contained herein. The mentioning of manu-
facturers, professional firms, names, products, and the publication of
performance data do not constitute any evaluation or endorsement by the
U.S. Government, its agencies, or the contractor. It is done in a generic
sense to illustrate particular points. -






PRACTICAL APPROXIMATIONS OF PEAK WAVE FORCES

By Mircea Grigoriu and Bunu Alibe

INTRODUCTION
According to Morison's equation, wave forces acting on cylindrical mem-

bers have two components: drag forces, which depend nonlinearly on wave par-
ticle velocity, and inertia forces, which are proportional to wave particle
acceleration (1). Wave forces are then non-Guassian processes although fluid
velocities are assumed to follow Gaussian distributions.

~ This report develops approximations of the mean of the peak of wave forces
during design storms. It shows that the sguare root of the sum of the squares
{SRSS) rule can be applied to approximate the mean of the peak wave force from
the average peaks of inertia and drag forces. The approximation is satisfac-
tory for any ratio of drag to inertia forces and frequency content of the wave
particle velocity process. As shown in Appendix A, previous studies have
rarely considered the joint action of inertia and drag forces and have gener-
ally examined characteristics of drag forces with small or zero current,
Appendix A provides also additional descriptors of drag, inertia, and wave
forces, e.g., marginal distributions, mean crossing rates, and extreme value
distributions. These descriptors were used in the report to test various

approximations., However, the report and Appendix A can be read independently.

WAVE FORCES

Let Y*(t) be the wave particle velocity at any time t. It is assumed
that Y*(t) is a twice-differentiable, stationary Gaussian process with positive
mean y,, variance 03, and autocovariance function BY(T) = c%;y(*d. The pro-
cess will be viewed in the analysis as the sum of two components, the current,

Yoe and the zero-mean fluctuating component, Y(t),

*

Yy (t) = Yo Y(t) ' (1)



The variances of Y(t) = dY(t)/dt and Y(t) = dZY(t)/dtZ, which are needed to

characterize inertia forces, can be determined from the following expressions

(2)
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According to Morison's equation (1), wave forces are proportional to
R(E) = X, (t) + X, (t) (3)
in which the process
X () = (g + V()] | 5 + (1) | (4)

denotes drag forces and

Xp(t) = a ¥(t) (5)

characterizes inertia forces. The coefficient a is a measure of the relative
importance of inertia forces with respect to drag forces, e.g., inertia forces
are negligible for small values of a.

The relative magnitude of the components of wave forcés can be evaluated

in terms of the parameters



For example,

o* a

g
YYo

there is no current when o becomes infinity. The parameter B

guantifies the importance of inertia forces with respect to drag forces (e.g.,

small values
which, as 8,
gives values
V = 20 knots
Ref. 6, that

of B indicate dominant drag forces). & is a derived parameter
depends on the power spectral density function of Y(t). Table 1
of 8 and § for a Pierson-Moskowitz spectrum with wind velocity of
and a cutoff frequency of 3.5 rad/sec. It is assumed, as in

the current Yo takes on values in the interval (1/50, 1/20) v.

Resultant range of values for o is 1 < < 20.

AVERAGE PEAK OF RANDOM PROCESSES

Consider a differentiable random process, X(t), with mean m and variance

2

imations for

function

m

o. Let # be the variance of X(t) = dX(t)/dt. This section provides approx-

the average of the peak of X(t) during any period t, i.e., the

.= E [max {x(£)}] (7)

T

Gaussian Processes

It can be shown that m_ can be approximated by



-4-

mT=m+0[v/2m VOT‘F—_...I_...]" : (8)
Y2 in Y% T

when X(t) is a Gaussian process (3). In this approximation v = 0.577216 = the

Euler's constant and

alae
—_
¥
g

vo%
is the mean zero-crossing rate.

The approximation in Eq. 8 is satisfactory in many cases but fails when
applied to narrow-band processes. For example, assume that X(t) is a mono-
chromatic process, i.e., a sinusoidal wave with random phase and amplitude.
The peak of any sample X(t) is equal to the corresponding realization of the
amplitude and does not dépend on the observation period 1, provided that =
exceeds the period of the wave. Thus, m_ is the average of the amplitude of
the wave for any 1. On the other hand, 61 in Eq. 8 is an increasing function
of this parameter,

Figure 1 shows the dependence of m_ and éT on vyt for a zero-mean, unit-

variance Gaussian process X(t) with various bandwidth parameters, g. The

bandwidth parameter q is (5)

(10)

in which



A, = @ 6(w) dw (11)

and G(w) denotes the power spectral density of X(t). It is zero for monochro-
matic processes and approaches unity as the bandwidth of X(t) increases. Note
that there are significant differences between m_ and 61, particularly for
small values of q (i.e., when X(t) is a narrow-band process). However, £r
constitutes a satisfactory approximation of m_ for g > 0.1. The exact va1ue m_
was obtained by numerical integration from the ]argeét value distribution of
the process X(t) in t, which is available in the literature (2).

The approximation in Eq. 8 can be improved if % s decreased to'account

for the dependence between the peaks of X(t), which can be strong for narrow-

band processes (5). Figure 2 shows the variation of m. and the approximation

m: =m+ o (V220 vo*r bl ) (12)
PN |
2 N vy T

with Vo T and gq. This new approximation is similar to the one in Eq. 8 but

uses the reduced value of the mean zero-crossing rate

* -3.5q)

Vo = %o 1-e (13)

which was obtained empirically from results in Fig. 1. The approximations

éT and &t in Eqs. 8 and 12 are nearly equal for gq > 0.1, but differ sighifi-
cantly for smaller values of g. While the approximation in Eq. 8 is ‘inaccurate
for narrow-band processes, the latter approximation is satisfactory for any

spectral characteristics of X(t).



Non-Gaussian Processes

Let

X(t) = g(¥(t)) (14)

*
in which Y (t) is the Gaussian process in Eq. 1 and g denotes a monotonically
increasing function. If the function g is nonlinear, X(t) is a non-Gaussian
process. The drag force is such a non-Gaussian process. In this case

a(v () = Y () ’ Y¥(t) ,. Note that max {X(t)} and g(max {¥"(t)]) are
T T
equal for any sample of Y*(t). However, m_ = E[max {X(t)}] is generally dif-

ferent from g (E [max {Y*(t)}]). '

It can be shown that m_ can be approximated by

*
~ * YUY g'(y)
meg - gly ) + : (15)
i 28 v. o1
0,Y
in which
* + Y2
Yy =Ygt oy Ve vy T
(16)
1%
0,Y T 37 ;;

The derivation of Eq. 15 is not given in this report because it involves ele-

mentary but lengthy calculations which are similar to those leading to Eq. 8.

~

The approxiﬁation m_ g can be refined based on considerations as in Eq. 12.

b



PEAK DRAG FORCE

The mean of the peak drag force during storms of duration t

m s E [max {Xl(t)}] (17)

T

is approximated by two methods.

First Method of Approximation

It has been suggested in practice to approximate m oo by the value of the
?
drag force corresponding to the average peak of the fluctuating component
*
Y(t), i.e., g(E [max {Y (t)}]) in which g(2) = ¢ | 4 l. The approximation

T
can be given in the form

. ' 2 _
m§11 = yg 1+a (2 M YT —_—)] (18)
i : V2 in % T

for positive currents.

Table 2 gives exact and approximate average peaks of the drag force for
selected values of Vot and @, In all cases considered in the table, the
approximation in Eq. 18 is slightly conservative. The approximation $§fl

lin the next section (Eq. 19) is also accurate but unconservative. The exact
average peak of Xl(t) was obtained by numerical integration based on

developments in Appendix A.

Second Method of Approximation

According to Eg. 15, the mean of peak drag force can also be approximated

by

-

™

21 = y% [(1 + « V2 an vor) + i+ e m vot]] (19)
’ Y2 in vor



when the current is positive,
Table 3 gives ratios between the approximations in Eqs. 18 and 19 for

selected values of v T and ao. Note that the differences between these

approximations are generally minor and m£21 is smaller than m§11 in all cases
9

considered. The largest difference between 6§fl and &%?1 occurs at a = « (the
case of no current). The approximations coincide when a = 0 (the case of a
deterministic current and no fluctuating component).

It 1s of interest to examine characteristics of the average peaks of drag

forces and wave particle velocities. Table 4 gives the averages of max {Y*(t)}
T

and max {xl(t)} expressed as numbers of standard deviations of Y*(t) and Xl(t),
- .

*
respectively, above the corresponding means. These numbers are ky for Y (t)
and kil)'and kﬁz) for Xl(t). They are based on the approximations in Egs. 8,

18, and 19. Note that kil) and kiz) are generally much larger than ky. These .
differences are caused by the skewness in the distribution of Xl(t). They de-

crease with y, because X;(t) has a less skewed distribution for large currents.

PEAK WAVE FORCES

Approximations are developed for the expectation

m, _=E [max {R(t)}] ~ (20)

R, T
T

of the peak of the wave force R(t) in a storm of duration =.” From Eg. 3, R(t)
is the sum of two random processes, Xl(t) and X2(t), which are independent at

any time t. Since characteristics of R(t), such as mean zero-crossing. rate,



mean, and variance, generally involve lengthy calculations, Mo cannot be

2

estimated simply from the approximations in the previous section. Other

methods are then needed to find mR <

It is proposed to approximate Me < from the average peaks of the drag and

?
the inertia forces, m . and My oo based on rules used in structural dynamics
: : [} ’
for combinations of modal responses (4). According to these rules, Mo . Can be

s

approximated by

Mags = M, x * M (21)

or

Mspss = v M, ct M, (22)
These approximations are the so-ca]led the absb1ute sum rule (ABS) and the
square root of the sum of the squares rule (SRSS). It can be shown that the
SRSS rule is superior for uncorrelated modal responses (4). Since Xl(t) and
Xz(t) are independent at any t, it is expected that the SRSS be an accurate
approximation of mR’T. Note also that the averages ml,T and mz’T in Egs. 21
and 22 can be replaced in practice by any of the approximations considered in
the previous sections.

Figures 3, 4, and 5 show the variation of mR,T, Magse and Merss with % T
for wave particle velocity processes with narrow-band (g = 0.1), wide-band, and
Pierson-Moskowitz spectra (v = 20 knots). The peak averages, m and My o of
the drag and inertia forces are approximated from Eq. 18 or 19 and Egq. 8 while

Mo . Was determined "exactly" by simulation. From Fig. 3 (a, b, c), the SRSS
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rule is conservative for narrow-band wave particle velocities with g=20.1, B8 =
10, and values of « corresponding to large, intermediate, and low currents
(Table 1) when based on Eq. 18. Superior approximations result when the anal-
ysis is based on Eq. 19 which accounts specifically for the bandwidth of the
process, see Fig. 3(d,e,f). The SRSS rule is also satisfactory when wave par-
ticle ve]ocitfes are characterized by wide-band and Pierson-Moskowitz spectra
(Figs. 4 and 5). The use of Eq. 19, instead of Eq. 18, does not improve the
approximation in these cases because the bandwidth parameter, g, is relatively
large. Figures 3 to 5 were developed for B = 10 because drag and inertia
forces have similar magnitudes for this value of B. When these forces differ
significantly, the ABS and SRSS rules practically coincide and the péak wave
force can be approximated from either the drag or the inertia force and Eq. 8,

9, 18, or 19,

CONCLUSIONS

Simple approximations were proposed for the average peak of drag forces,
inertia for;es, and wave forces. The approximations involve elementary calcu-
lations and can account for the bandwidth of the wave particle velocity pro-
cess. It was found that the SRSS rule can be applied to approximate the aver-

age peak of wave forces from the average peaks of inertia and drag forces.
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TABLE 1 Wave Force Parameter §

&
o = 20 (small current) [a = 2 (intermediate |a =1 (large current)
current)

.l .0069 .0687 1374

.5 .0344 .3436 .6871

1.0 .0687 .687 1.3782

" 10. 0.6879 6.8700 13.7620

100. 0.8700 68.7000 137.4200
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TABLE 2 Comparisons Between Approximate and Exact Means of Peak Deag Forces

= a = 20. (small current) |a =2, (intermediate a= 1.0 (large current)
' current)
me | ootk | e | my | ok | e e | omk | i
SN I I N B I T A A A B
100} 4270. 4290. 4041 . 556.3 55.5 56.7 17.8 17.9 17.1
1000| 6143. 6153. 5910. | 76.3 76.5 73.8 23.7 23.7 23.0

5000 7466. 7455, 7213. 90.8 90.9 88.2 27.7 27.7 27.0

10000{ 8007. 8015. 7775. 97.0 97.1 94.4 29.4 29.5 28.7
50000{ 9309. 9316. 9075. 111.2 111.3 108.7 | 33.3 33.4 32.6
100000| 9870. 9875. 9636 . 117 .4 117.5 114.9 35.0 35.0 34.3
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- (1) “(2)
TABLE 3 Ratios of ml,T and ml,r

T o= lja= S5ja=1,0ja=2.0la=4.0la= 20.

100 1.0146 1.037811.0471 {1.0538 [1.0579 |1.0617
1000{1.0113}1.0272]1.0329 |1.0368 |1.0391 |1.0412
5000/1.0099{1.0228{1.0273 |1.0302 |1.0320 |1.0335

10000(1.0094{1.0214{1.0254 |1.0281 {1.0296 |1.0310
50000{1.008411.0187]1.0220 [1.0241 |1.0253 [1.0264
100000{1.0089|1.0172(1.0207 1.0227> 1.0238 |1.0248
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TABLE 4 Averages of Peak Wave Particle Velocities and Peak Drag Forces

o ==E0. (small current)|a = 2.0 (intermediatefa = 1.0 (large current?
current)

R T S B S A I B S
100 3.23 8.69 8.16 3.23 7.42 | 7.01 3.23 6.42 6.09
1000| 3.87 | 12.66 | 12.14 3.87 | 10.44 |10.05 3.87 8.79 6.48
5000{ 4.27 | 15.44 | 14.92 4,27 | 12.53 |12.14 4.27 | 10.40 10.11
10000| 4.43 | 16.63 | 16.12 4,43 { 13.42 |13.04 4,43 | 11,09 | 10.79
50000| 4.78 | 19.40 | 18.89 4,78 | 15.48 |15.10 4,78 | 12.67 | 12.38
100000| 4.92 | 20.60 | 20.09 4,92 | 16.36 |15.99 4,92 | 13.34 | 13.05
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EXTREMES OF WAVE FORCES

By Mircea Grigoriu

INTRODUCTION

According to Morison's equation, wave forces acting on cylindrical members
have two components: drag forces, which depend nonlinearly on wave particle
velocity, and inertia forces, which are proportional to wave particle accelera-
tion (1, 7, 8, 9, 11, 12). Wave forces are then non-Gaussian processes
although fluid velocities are assumed to follow Gaussian distributions. Yet,
they are modeled by Gaussian processes when the analysis is based on statis-
tical linearization because in this approach drag forces are approximated by
linear functions of wave particle velocities (1, 7, 8, 9, 11).

The Gaussian hypothesis was examined extensively in the past and proba-
abilistic characteristics were developed for individual peaks of wave forces
and the largest value of fhese forces during storms (1, 7, 9, 10, 12, 13, 14).
The analysis of extreme wave forces was often based on the assumption that
individual peaks are independent (1, 12, 13, 14). Mean crossing rates of the
wave force process (9, 10) and simulation (7) were also applied to determine
maxima of wave forces. Developments generally consider the case of small or
inexistent currents and assume that Morison's equation is valid.

This paper develops probabilistic descriptors for wave force processes
characterized by Morison's equation, e.g., marginal distributions, mean cros-
sing rates, and extreme value distributions, and evaluates further the Gaussian
hypothesis. The descriptors are general and simple. They have closed-forms
for drag forces with or without current and involve a single numerical integra-

tion when drag and inertia forces are considered simultaneously. Results can
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be applied directly to the analysis of the quasi-static response of offshore

platforms when Morison's equation is valid.

WAVE FORCES

Let Y*(t) be the wave particle velocity at any time t. It is assumed that
Y*(t) is a twice-differentiable, stationary Gaussian process with positive mean
Yo variance 05, and autocovariance function BY(T) = c% ‘V('ﬂ' The process
will be viewed in the analysis as the sum of two components, the current, o>

and the zero-mean fluctuating component, Y(t),

Y (t) = yy + Y(t) (1)

The variances of Y(t) = dY(t)/dt and Y(t) = d2Y(t)/dt2, which are needed to

characterize inertia forces, can be determined from the following expressions (8)

(2)

i _p2d
% ° 05 i py( ) 'r=0
dr

According to Morison's equation (1, 7, 12, 13), wave forces are proportional
to

R(t) = X, (1) + X,(t) o ®

in which the process

X (£) = [y + ¥(1)) | yp + ¥(t) | (4)



denotes drag forces and

0=att) D )

characterizes inertia forces. The coefficient a is a measure of the relative

importance of inertia forces with respect to drag forces, e.g., inertia forces

are negligible for small values of a.

DRAG FORCES

From Eq. 4, the drég force is a stationary non-Gaussian process whose
characteristics can be determined from the probability law of the fluctuating
component of flow velocity and the current.

Marginal Probabilistic Characteristics

The instantaneous density, fl’ of Xi(t) is independent of time since the
drag force process is stationary. It can be obtained from Eq. 4 and char-
acteristics of Y(t) by elementary transformations which are discussed in most

texts of probability theory (8). According to these transformations

2

-1
(
) ] (6)

1 g “(x) - ¥y

f1(x) =
fox ay|at (a7 ()]

exp [- -;— (
%

in which x = g(y) = (y0 +y) 'yo + yl. The marginal density of Xl(t) can also

be given in the form

sgn{x)v|x| - ¥ 2 |
exp - 5 | (il o1 o

20y 2| oy

in which sgn (x) = -1; 0; or 1 when x takes on negative, zero, or positive

fl(x) =
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values. This density is symmetric about x = 0 only when Yo © 0. The mean, my

and the variance, o%, of the response can be determined from the first and

second moments of the density in Eq. 7, i.e., the integrals

2

m == [_Ja(haz)z exp (-22/2) dz - l;fa(l- qz)? exp(-z2/2)dz]  (8)

4 -

o% +ml = Zg: [ (1+az)4 exp (-22/2) dz + | (l-az)4 exp (-22/2) dz] (9)
21 -1/a 1/

in which
a = °Y/y0 (10)

Note that a is nearly zero when the current is dominant but approaches
infinity as Yo * 0 for finite values of Oy+ In the latter case, my = 0

2 4

2 .2 2 +o$z,yo(1:oz

- - 4 2 2 4 4 4
and op +m = o = 30Y because Yo (1 £ oz) )+ Az, and
1/a + 0 when the current vanishes.
The mean and variance of the response can be calculated simply from Egs.

8 and 9 the following closed-form integrals

T (14 ) €(a/2) +

z (1:az)2 exp (-22/2) dz

(aa2+ 2a) exp (-a2/2) (11)

+

Z (12az)? exp (-22/2) dz = /27 (1+62+3a}) &(a/v2) +

+[act(a343) + 403(a%42) + 6ad +4a] exp (-a°/2) (12)



where ¢ = the complementary cumulative distribution function of the standard
Gaussian variable. Table 1 gives values of the mean and standard deviation of

the drag force scaled by yg, i.e., the dimensionless coefficients

2
ml/yo

3]
1}

) (13)
g = ol/y0

for selected values of o. They are obtained from Egs. 8 to 12 and are defined
when the current 1s not zero.

The mean and the variance of Xl(t) can be obtained approximately from
linearized expressions of the drag force. For positive values of Ygs One such
éxpression 1s yg + 2y0 Y(t). It approximates the méan and the variance of the
drag force by yg and 4c§y0 = 4u?yg. The corresponding dimensionless coeffici-
ents in Eg. 13 can then be approximated by €‘= 1.0 and ¢ = 2o, From Table 1,
the approach provides satisfactory second-moment descriptors for Xl(t) when o
< 0.5.

Mean Crossing Rates

The mean upcrossing rate of level x of Xl(t), \ﬁ(x), can be obtained
simply from developments in Ref. 5 related to nonlinear transformation of
Gaussian processes. From this reference and the observation that there 1s a

one-to-one correspondence between drag forces and flow velocities, one finds.

_ 2
O sgn(x)vIx| -y
v (x) = 5= L exp - TT 013 (14)
Y Y

or
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2

~ sw(&+c;%’€+c; -1
1
) < g e 2 | ) } (15)
v = A (16)
2mn OY 2T

The standardized threshold, x, gives the number of standard deviation, 9

from m1 to x and can be determined from

_ C 2 -
x =m + o x =y (¢ + z x) (17)

Let v? (x) be the mean upcrossing rate of level x of the drag force under

the Gaussian hypothesis. According to this hypothesis, Xl(t) is a Gaussian

process. The corresponding mean upcrossing rate function has the expression

(8, 11)

vG(x) =

1 %1 172
i exp (- 5x ) | (18)

in which 51 = the standard deviation of )Zl(t) = dX, (t)/dt. From Eq. 4, the

time-derivative of the drag force process is
X (t) = 2|y + Y(1)| ¥(t) (19)

for all values of ¥g and Y(t). Since Y(t) and ?(t) are independent, the pro-

cess il(t) has the mean zero and variance



. 2 2 2
c§ = 4 d§ ¥y (1+a") (20)

 The mean upcrossing rate in Eq. 18 can also be given in the form (Egs. 13 and

20)

G/l 2 a/1+ 2

= O §
vl(x) =V exp ( 5 X (21)

The ratio between the exact and the approximate mean upcrossing rates, V.

1
and v? in Egs. 15 and 21, has the expression
v () ¢ 1 Jerrx-12 "F
= exp {- = [& ) +x]} (22)

2 o

—
vi($) 2a1ed

for positive values of ;. Figure 1 shows the variation of the ratio vl/Q? in
Eq. 22 with the standardized threshold, ;, for several values of o, Note that
the Gaussian hypothesis results in unconservative approximations of the mean
upcrossing rate. The degree of unconservatism increases with the threshold and

the value of « (larger values of «a correspond to smaller currents). For exam-
ple, vl/vg is approximately 6.4 and 100 at x = 4.0 when a= 0.1 and 0.5,

respectively. Note also that the ratio vl/\g is nearly independent of a and
approximately equal to its value for o = « (zero current) when o exceeds 0.5.
Values of « in excess of 0.5 are common in design.

Largest Value Distribution

It is generally convenient to develop for design purposes other descrip-
tors of the peak wave forces, in addition to the mean upcrossing rate. Let

X1 < be the maximum drag force during a storm of duration = and denote by

’



- X, _-m
X1,1=-—-————————1’T !
1

(23)

The cumulative distribution function of Xl,r at x can be determined from the
probability that the drag force is smaller than x at t = 0, i.e., Xl(O) < X,
and the number of upcrossings of threshold x of Xl(t) during [0, 1], NT(x), is
zero. This probability can be determined simply if ithis assumed that the
variables Xl(O) and NT(x) are independent and the upcrossings of level x of
Xl(t) follow a Poisson procesé. The assumptions are satisfactory for rela-

tively high thresholds (8, 15) and provide the following expression for the

distribution Fl,r 1,1

~

L0 = F () exp [ (37) &) (24)

This function depends on 8(x) = \ﬁ(x)/\b with \i(x) in Eq. 15 and the marginal
distribution of Xl(t) = (Xl(t) - ml)/o1 which has the form

n (050 fivar] -1,
a { i

FLx) = o (25)

in which ¢ = the cumulative distribution function of the standard Gaussian

variable. The density of X1 . f1 o> can be obtained by differentiating Eq.24

~ ~

fl,T(x) = 6(x) exp [- (vy1) &(x)] z N

0 ' -
2aV2n|€+ T XI

+ (vy1) 2590 (g + c;) Vg + cgl -1F(x“)}
0 — 1
20° ’€+Cxl
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Similar considerations can be applied when Gaussian drag forces are postu-

lated. In this case, the density f? o of X1 T has the expression

) L. ~2 T2
8 (%) = [+ (vgr) x o(x)] exp {- 2 - (vg) e /2) (27)
y2n

Figure 2 shows the densities f and fG
1l,t 1,1

Vot = 200, 4000, and 40000. They are referred to as exact and Gaussian

with solid and dotted lines for

results. Note that the Gaussian hypothesis underestimates in the average the
peak response even when the current is large (o = 0.5).

The densities in Eqs. 26 and 27 were used to determine by numerical inte-
gration the mean, the standard deviation; the coefficient of skewness, and the
coefficient of kurtosis of the peak drag force. Figure 3 shows the variation
of these moments with Vot for o = 0.5. Similar results were found for other

values of a. The means and the standard deviations plotted in this figure are

divided yg. Note that the Guassian hypothesis yields approximations which
underestimates significantly the mean and the standard deviation of the peak
wave force. For example, the exact values of the mean, the standard deviation,

the coefficient of skewness, and the coefficient of kurtosis are 10.4 yg, 0.86

yg, 1.06, and 5.05 for o = 0.5 and Vot = 10,000. These moments are approxi-

mated by 6.0 yg, 0.26 yg, 0.88, and 4.38 when the Gaussian hypothesis is

applied. The use of this hypothesis in analysis is likely to result in
unconservative designs.

Asymptotic approximations (as Vot * ») can be developed for the mean and
variance of the peak drag force process when this process is assumed to be

Gaussian. - They are (2)



S =5 [+ o (Vam(yyn) + 1217216y (28)
’ /22,n(vor)

3
—
]

G 2 n 4
L%V Tmlen 29

The approximate means and variances in these equations coincide practically
with corresponding parameters in Fig. 3, which were obtained by numerical

integration.

DRAG AND INTERIA FORCES
The general wave force in Egs. 3 to 5 is examined in this section. Note

that the drag and the inertia forces, Xl(t) and X2(t), are independent at any

time t because Y{t) and ?(t) are uncorrelated Gaussian processes. From Egs.

3, 13, and 20, the mean and the variance of R(t) are

N 2 .
mp = & Yo (30)

G (E+ &)y | (31)

while the variance of the time-derivative of the wave force has the expression

FZE = {4(14-0.2) + (52] C%‘YCZ) (32)

(o}
These equations are valid when the current is not zero. When there is no cur-

rent, mp = 0, °§ = 303 + aé, and oé = 40?203 + a2 oQZ. The parameter 8 in Eq.

31 quantifies the importance of inertia forces with respect to drag forces

associated with the current and is equal to



) aoe J.e .
s='_‘_21=§.l (33)
Yo Yo %

& is a derived parameter which has the following expression

g, a

g0,
st 2 1] (38)
OYyO o UY'

From Egs. 33 and 34, B8 and § depend on the correlation structure or,
equivalently, the power spectral density of Y(t). This dependence is examined

in Table 2 for monochromatic, narrow-band, and wide-band wave particle velo-

cities, Y(t), for the case in which 02 = 1.0. Results show that the ratio

Y
oY/o?Z depends weakly on the shape of the power spectral density of Y(t).
Thus, & is primarily a function of the relative importance of inértia-and drag
forces, i.e., the ratio a/yo. The parameters «, B, and § can be determined
simply from the ratio, a, between the inertia and drag coefficients, the cur-
rent Yg» and the spectral characteristics of flow velocity.

Mean Crossing Rates

The mean upcrossing rate of level r of R(t), v(r), can be determined
exactly from the mean rate at which the vector process {Xl(t), Xz(t)} leaves
the two-dimensiqna] domain {(xl, x2) Pxy X, <r} (3, 16). For simplicity,
v is approximated in this section from the point-crossing formula. According

to this formula, v can be approximated by (6, 17)

vk(r) = [ fz(xz) \ﬁ(r-xz) dx, + f fl(xl) x?(r-xl) dxy (35)



A-12

in which fi and v; denote the marginal density and the mean upcrossing rate
functions of Xi(t). The point-crossing formula has been applied successfully
to the analysis of the combined effect of structural loads.

The marginal density and the mean upcrossing rate functions of Xl(t), the
drag force, are given in Egs. 7 and 14. The corresponding functions of Xz(t),

the inertia force, can be determined simply because this process is Gaussian.

f(n = —2— exp (- 1 [P (36)
Y77 a oy ady
and
-
1 21l pnq2
"2(“) -2-1-;;}-— exp { 5 [‘&'5-:] } ' (37)

From Eq. 35, the mean upcrossing rate v(r) can be approximated by

(r) = =t () (38)
27 8

in which r = (r - mR)/aR with me and % 1n Egs. 30 and 31,

" . 2 ~ I v
oo -3 (7 cnte el o1 By

- 00

<
e~
-3
—
H

(39)

~
~

2 22
8 exp[-%— ((i;-}-) + (1“—'-5-9-%(-!)—‘1-) )1} du

+

+

andr=r/yS=E -+ B,



A-13
The mean upcrossing rate of the wave force, when assumed to be a Gaussian

process, can still be determined from Eq. 18, in which o, and o3 are given by

R R
Eqs. 31 and 32. It has the expression
- 2\, 2 ~ 2
v.(r) = v, a [4(1+a7)+S exp(-_l_r ) (40)
G 0 £2+82 2 ,
2

and involves only second-moment characteristics of the response and its time-

derivative.

*
From Eqs. 38 to 40, the ratio between the mean upcrossing rates v and 6

is

- [ 2.2 o

* £+B * ~ "2

v ). ! 2 v (r) exper ) (41)
-

V/4(l+a?)+62 2

) V2% o B

This result is applied to evaluate the Gaussian hypothesis although it
involves approximations. However, the experience with the point-crossing
formula (6, 17) shows that errors associated with this formula are much smal-
ler than those due to the Gaussian assumption (Fig. 1). Thus, it is consid-
ered that Eq. 41 provides a satisfactory base for the evaluation of the

Gaussian hypothesis when both drag and inertia forces act simultaneously.

N -
Figure 4 shows the variation of v /vG in Eq. 41 with r for o?/o?z = 1.0

(i.e., monochromatic excitation), a = 0.5 and selected values of 8. The ratio

' *

v /vG increases with the threshold but decreases with 8. For small values of

_ . .
8 drag forces are dominant and, as expected, v /\h and \i/\g in Fig. 1 are

nearly equal. When inertia forces are significant 8 is large and the response
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follows approximately a Gaussian distribution. In this case, the Gaussian

hypothesis is satisfactory (v7vG = 1.0). Similar results have been found for
other types of excitations, e.g., the narrow- and wide-band processes in Table
2.

The mean crossing rate functions developed in this section can be applied
as in Eqs. 26 and 27 to determine probabilistic characteristics of the peak
wave force during storms. However, such developments are not presented in

this paper.

CONCLUSIONS

Exact and apprdximate descriptors were determined for the Morison-type
wave forces and their peaks during design storms. The approximations were
based on the hypothesis that wave forces follow Gaussian distributions. It
was assumed that the wave particle velocity can be modeled by a Gaussian
process.

Results show that the Gaussian hypothesis, which is characteristic to the
statistical linearization method, yields unsatisfactory descriptors for the
peak wave force. Both the mean.and the variance of this variable are gener-
rally underestimated. The Gaussian hypothesis is acceptable only when inertia
forces are dominant because, in this special case, the wave force is approxi-

mately a Gaussian process.
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Table 1. Mean and Variance Coefficients of Drag Forces

Coefficient|{ a = 0.1 a= 0,3 a= 0.5 a=1.0 a=2.0

£ 1.01 | 1.07082 | 1.10741 | 1.5250 2.7902
4 0.200499( 0.625344] 1.1018 2.5035 6.5858
2a 0.20 0.60 1.00 2.00 4.00

Table 2. Spectral Characteristics of Wave Particle Velocity

One-sided Spectral 2 2 o2
Density of Y(t) % % GQ/CV
’1.0 s W T uy
i & § 1.0
0.0 , otherwise
| {1/ “ » O<ude, /3 /5 3 = 1.3a16
0 , W o, ' /5
1/{w, - o) , w< 2 4
b~ "al * =% |y 4 3 9
= | —3—13(p2+p+l) g}i(p4+p3+ KR +g et
0.0 , otherwise wplepe1) [B P el
P = wy/u, -
Note: 1.0<0y/ oy’<3/ 5
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