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Preamble

This is an integrated account ofvthe theoretical
investigations described in the technical reports’Ml - M8
prepared during the year. While a little of the iess interesting
calculation has been omitted, the main purpose is to provide
a comprehensive, self-contained, account of the theoretical
development which must complement the experimental programme.

On the basis of existing qualitative knowledge of the response
of ice to load, we must ask what classes of constitutive model
(constitutive law) are compatible with this behaviour, and
analyse the response of such models in feasible test geometries
to correlate model functions with test data. An acceptable
model must describe the response to general (multi-axial) stress
in a three-dimensional world, and must satisfy the basic
invariance principles of physics. Subject to these requirements
we want to determine, at least as a preliminary objective, the
minimal complexity necessary in each model class to predict the
known shape of response, and then to formulate a minimal,
feasible, test programme necessary to determine the model functions.

While models so constructed exhibit identical response to
the test loads, distinct responses to other load configurations
can be expected, and further test data and field observations
will be necessary to distinguish the merits of different models,
and possibly indicate additional features which should be included.

Furthermore, different models may be better approximations in



different applications, and it is important to identify the
dominant response features in prescribed applications to make

the best choice of model. Distinct simpler models may offer
considerable advantage over a more general modeliwith wider
validity when numerical solutions of complex engineering

problems are required. The essential feature of ice response

on engineering time scales (excluding very short time dynamic
effects) is its non-linear transient creep, which requires a
non-linear viscoelastic model. Even though strains may remain
small in many applications, the superposition property of linear
viscoelastic models does not hold to any acceptable approximation,
and this very attractive tractable linear theory must be rejected.
A long-time scale non-linear viscous model conventional in
glaciology igndres the crucial transients. The first phase of
the Project has focussed on the recently developed non-linear
viscoelastic relations of differential type, distinct forms for
fluids and for solids. The latter allow strain jumps when stress
jumps are applied, allow anisotropic configurations, and exhibit
induced anisotropy in configurations reached by distortion of

an initially isotropic state. Many positive conclusions are
reached in regard to the questions raised above. There is a
final brief commentary on the merits and difficulties associated
with non-linear integral operator relatiohs, which should be

investigated in the next phase.



l. 1Introduction

Present knowledge of the transient response of ice to
applied load under controlled conditions is limited to results
of laboratory tests in uni-axial compressive stress, which
must therefore be the starting point of the construction of
constitutive models. While the quality, or shape, of the
responses to constant stress and to constant strain-~rate
loading has been established, many more detailed guantitative
results must be accurately determined to complete the uni-axial
stress description. Such experiments are a preliminary stage
of the present Project, and will also serve to test and assess
instrumentation and technique before embarking on the essential
two-dimensional test programmes discussed later. A heuristic
approach is to deduce minimal sets of physical variables
necessary in a constitutive relation (of a given class) to
exhibit the known shapes of these responses in uni-axial stress,
which was the basis of the recent development of viscoelastic
fluid and solid relation of differential type (Morland 1979,
Morland and Spring 1981, Spring and Morland 1981). Since this
account draws substantially from the theory described in these
papers, it is convenient to introduce the abbreviated reference
notations (M), (MS), (SM), respectively.

The rational procedure, followed in these papers, is to
constrﬁct relations between frame—inqﬁﬁfferent tensors which
are three-dimensional measures of the physical vafiables

required in the minimal sets. 1In the above models, stress,
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stress-rate andpstrain or strain-acceleration are used. Thus
the fundamental physics invariance principles - coordinate
invariance and material frame indifference (objectivity) - are
immediately satisfied. Such tensor measures afe not unique,

and a general algebraic relation between the tensors is far

too arbitrary to correlate with constant stress and constant
strain-rate responses. So simplified forms and restricted
dependence of the response coefficients, scalar coefficients

of the different tensors, are proposed, retaining only the
flexibility needed to describe the known response shapes. There
are clearly a variety of alternative relations of a given class
which could be correlated with the same uni-axial data, but
which will predict distinct responses under different loading
geometries and different load histories. A successful

programme of multi-axial load testing is required before such
distinctions can be constructively evaluated. Restricting the
above differential tensor relations to uni-axial stress gives
single relations between the uni-axial stress and stress-rate,
and axial strain-rate and strain-acceleration or strain.
However, tensor terms combine into single uni-axial terms,

and so cannot be distinguished by uni-axial response, and response€
coefficients which are functions of various tensor invariants
appear only as functions of the axial variables. In consequence
a model can only be completed by determining the responses in
suitable multi-axial load geometries. A particular

two-dimensional test geometry has been analysed under the



the Project (M2), and shown to yield the required number of
independent relations. There is also a consideration of
domains of dependence in the space of stress tensor invariants,
which can be covered by tests involving compres;ive stresses
alone.

While the restriction of valid tensor relation to uni-axial
stress is the natural order, to highlight the physical
description and heuristic process of model construction we
will concentrate first on the uni-axial response and the
uni-axial relations which are derived from valid tensor relations
(MS, SM). The correlation of constant stress and constant
strain-rate responses with coefficients in the uni-axial
relations is described, and the distinction between fluid and
solid model correlation noted. 1In particular it is seen that
the two separate test responses cannot be independent if described
by this fluid model, but are not sufficient to determine the
uni-axial coefficients of the solid model. A general analysis
of the solid model response under the Project (M6, M7) has shown
that no uni-axial load test can yield a third indépendent
relation necessary to determine the complete set of uni-axial
coefficients. Reduced forms which allow determination have
been investigated (M8), together with their implication for,
and recognition by, different response features. A particular
form has been chosen for correlation with uni-axial data
obtained in the preliminary phase of the experimental programme.

Next there is a brief description of the fluid and solid
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model tensor relations, to show the increased number of response
coefficients which arise, and their dependence on various tensor
invariants. The response to general tri-axial (principal) stress
is analysed, and two-independent stress geometries4are investigated
(M2) to learn how two independent relations in addition to the
incompressibility constraint can be obtained to complete the
three-dimensional description. Explicit terminology is introduced
to define and distinguish different two-stress geometries, to
eliminate previous ambiguous (at least to the writer) descriptions.
A bi-axial stress geometry is shown to yield the required independent
relations. In addition, the domains of stress tensor invariants
space covered by compressive stfesses alone in different loading
geometries are determined. Dependence on shear stress invariants
or on one shear invariant and pressure (M5) present different
pictures. The implications of relaxing the conventional
incompressibility approximation and introducing compressibility

or dilatancy relations are discussed (M3).

A preliminary report (Ml) outlined various objectives and
plans for the Project. The major element is the experimental
programme. In this first period we have focussed on a theory for
constant temperature conditions and (initially) isotropic material,
and disregarded effects of salinity. While anisotropy and salinity
effects are known to be significant, existing data is inadequate
to formulate a satisfactory theory. It is possible that plausible
idealised models may have to be devised in advance of experiments,

in order to assess likely effects and design optimal experiments.



The marked dependence of creep-rate on temperature is well
established. Test data must be obtained at a sufficient number

of constant temperatures in the range 230K - 273K of practical
interest to infer and correlate the role of temperature. At
present, the most attractive theory is that of the “thermorheologic-
ally simple material”™ in which temperature influences only rates
of éhange, which implies that a universal (temperature-independent)
mechanical relation holds on a pseudo or reduced time scale
(Morland and Lee 1960). Applied originally to linear viscoelastic
materials, it is readily extended to non-linear viscoelastic
differential relations (M), and involves only the introduction of
a single scalar "time-shift function" of temperature. 1In the
conventional viscous fluid relations adopted in glaciology, this
shift function is the usual temperature dependent coefficient. It
has yet to be confirmed that this single rate factor applies over
the complete transient response, coincident with the minimum

strain-rate factor of the viscous relation.

2. Uni-axial stress response

The basis of our constitutive model construction is the
qualitatively established constant stress and constant strain-rate
responses in uni-axial compressive stress. A wide account of the
mechanical properties of ice, including these features, is given
in a recent review article (Mellor 1980). 1If L, is the initial
specimen length at time t = O, and £ its length at time t,

then the longitudinal engineering stress e measured as contraction



per unit initial length (positive in compression) is

e = ————— , < 1. (2.1)
The engineering strain-rate é R and natural strain- rate r
measured as rate of decrease of length per unit current length,

are given and related by

e==-4i/n ., T=-1in, e = (l-e)r. (2.2)
The ratg e with its reference to the initial length L, 1is
natural in a solid description, and the rate r with respect to
current length is natural to a fluid description. They are
approximately the same for the small strains arising in experimental
data and many applications, but differ significantly in the long-time
creep behaviour assumed to complete the viscoelastic continuum
description. The present models contain no criteria for rupture.
Also Mellor remarks that reported constant strain-rate experiments
may mean constant r or constant e ; the latter is better
described as constant (end) displacement rate.

Let o0 denote the compressive axial Cauchy stress, inward
force per unit current cross-section, and o the nominal stress,
inward force per unit initial cross-section. Constant stress could
refer to either constant o or constant o ., but here the precise
description, constant load, will be used to denote constant T .

The present theory is developed with the incompressibility

approximation, and then

o = o(l-e) . (2.3)
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Interpreting the responses described by Mellor as constant
load (constant o©) and constant displacement-rate (constant e)
results gives the typical curves shown in Figs 1 and 2 respectively.
At constant o there is an initial elastic strain jump ee(E)

given by

ee(o) = o/Eo, (2.4)

where Eo is the Young's modulus at zero stress. It is supposed
that the stress jump o© from zero stress is applied
instantaneously at t = O, and that the creep curve as t ~» O+
is a smooth backward extrapolation of the response after wave
effects have decayed. Now E_ is of order 10'%m™2 (sinha
1978, Michel 1978, Mellor 1980), so that a moderate stress of
order 10°Mm™2 induces an elastic strain of order 1074, to be

2 in many applications.

compared with creep strains of order 10
Thus elastic strain jumps are commonly neglected in comparison
with the total creep. There is a primary decelerating creep

(¢ < 0), a secondary or approximately steady creep around the
stationary point e =0 at tm(g), em(E), then an accelerating
tertiary creep (¢ > 0), shown in Fig. la. The dashed line
represents a possible long-time asymptotic behaviour in which

e » 1 (specimen length squeezed to zero), which corresponds to

o - 0 and hence a long-time steady viscous response rE(o) + 0
if maintained zero stress o implies zero strain-rate r. The
viscous fluid response normally assumed in glaciology adopts the
minimum strain-rate rm(c) which occurs at time tm(g), though
strictly requires the long-time response rE(o). Mellor remarks
that rE(c) ’ rm(c) , may not be too different at low stress,

though laboratory time scales are too short to reach any firm
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conclusion. The asymptotic result (2.5) is not crucial to the
model correlation over time scales of interest, and it is the
shape of response shown by the solid lines which is relevant.
Figure lb shows the associated strain-rate e s with minimum
en(9) at time t_(o) . ‘

The typical stress response at constant displacement-rate
(constant é) is shown as a stress-strain curve in Fig. 2, where
e = et . The maximum stress EM(é) + which also has the unfortunate
description failure stress even though no failure of the material
occurs, occurs at strain eM(é) and time tM(é) . Again the dashed
line represents a possible asymptotic behaviour. Mellor suggests

that both en and e are approximately 0°0l over a wide range of

M
stress and strain-rate respectively, and that there are indications

that the maximum stress EM(é) is the constant stress o required

to produce a minimum strain-rate ém(g) = e . That is
oM[em(c)] =0 and em[cM(e)] = e. (2.5)

These features are not crucial.to the model construction.

With the alternative constant stress (constant o) and constant
strain-rate (constant r) interéétations, the typical strain-rate
and stress responses in time are shown in Figs 3 and 4 respectively.
The long-time response is shown as an asymptotic strain-rate rE(o)
and asymptotic stress UE(r), with the case re(c) < ro(o), where
ro(o) is the initial strain-rate, illustrated. Model construction
for the case _ro(o) > re(o) would be similar. For either
interpretation, the families of curves for different constant I3

or different constant o are non-linear in o, o respectively,
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as illustrated by the conventional glaciology viscous law rm(o)
represented by a power law or polynomial. Similarly the families
for different constant € or r are non-linear in e and r
respectively. Accurate details of these families of respohses

have not yet been established, but their accepted shapes diégte
minimal forms for compatible differential relations. In particular,
the non-monotonic response, decelerating creep followed by acceler-

ating creep at constant O , has implications, and has not, to

my knowledoe, arisen in other branches of rheology.

3. Viscoelastic fluid relation for uni~-axial response

A fluid relation is independent of the strain from a fixed
reference configuration, and depends only on straiﬁjﬁéﬁative to
the current configuration. In particular a viscous fluid expresses
o as a function of r, and a viscoelastic fluid of differential
type relates o,r , and their material time derivatives. The
conventional definition does not include stress time derivatives,
but it is shown that such terms are essential to reproduce the
response in Fig. 4. First note that a viscous fluid relation in
which o¢ is a function of r, or vice-versa, gives the responses
constant r to constant o and constant o© to constant r,
in conflict with Figs 3 and 4. Examination of the constant O
response alone, Fig. 3 (M) showed that a term in r (at least) is
needed so that the constant o© response is described by a

differential equation for r with non-constant solution. Similarly,
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non-constant o for constant r requires a term in o (at
least) (MS). Construction of a frame-indifferent tensor relation
between stress, stress-rate, strain-rate, strain-acceleration,

shown later, leads to0 a uni-axial stress relation :

”~ ~ ”~

%wlo + %$3 (6 - ro) = ¢, - %¢2r2 + ;35, (3.1)
where the tensor response coefficients ;1. $3, ;1, ;2, $3 are
here functions of o0, r, and their derivatives.

Now consider the response shape Fig. 3 for constant o¢ . 1In
the strain-rate range rm(o) < r < re(o) there are two values of
r at each r, so the differential equation for r(t) must yield

a two-branch solution:

f_(t) =R (ryo0) <0, r o2rzr_,
(3.2)
r (t) = R+(r,o) 20, r, ST <I, .
where
R_(r ,0) = R (r ,0) =0, R +0 as r +r_ . (3.3)
The family of data curves gives the functions R_(r,c) and
R+(r,o). It is convenient to make the definition
R+(r,o) 0, re < r < ro . (3.4)

so that both R_(r,0) and R (r,0) are defined in a common domain
r, 2 r 2r, , though the branch f+(t) does not exist in the
extension. The appropriate differential equation for r(t) therefor
has the form

£ + £(r,0)f= F(r,0), r(0) = r_(0), (3.5)
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¥ . y
21 = = f + (f? + 4F) (3.6)
r
+
with
Fz0, £20 =>r_<0, r_20. : (3.7)
Thus
f=-(R_+R), (£2 + tlF);5 =R, -R_ , r, s<rsrg (3.8)
which determine f(r,0), ¥(r,o), with
F =0, Y <sr <sr . (3.8a)

e o
Analogous relations hold for the case r, < re- The functions
f(r,0), F(r,c), are related to the response coefficients in
(3.1).

A similar analysis of the response shape Fig. 4 for constant

r shows that the differential equation for o(t) must yield

a two-branch solution

o, (t) = I (x,0) 20, 0s50soy,
(3.9)
6_(t) = I _(r,0) =0, Oy 2 0 > Op»
where
I (ryoy) =L (r, oy) =0, Z_~+0 as o =+ 0p. (3.10)
The functions 2+(r,o), I_(r,o0), with the extension
I_(r,0) =0, Op 2 0 2 o, (3.11)

are given by the data curves. The appropriate differential
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Afor c(t) has the form

62 - g(r,0)0 = G(r,0), ©(0) = O (3.12)
where
2 cj* =g+ (g% + 4G) " ‘; (3.13)
0-
with
G20, gz20%o0, 20, o_<0. (3.14)
Thus
g=3, +I_, (g°+ 4G)!5 =I,-I_, O0<0 =0y, (3.15)
which determine g(r,o0), G(r,c), with
G =0, 0 <0 < Op - (3.16)

The functions g(r,0), G(r,c), are related to the response
coefficients in (3.1).

Now there are four relations in (3.8) and (3.15) to determine
the four functions £, F, g, G, in terms of the data functions

R, R,, £, I_. However, the differential equation (3.5) must

+I +l

follow from (3.1) when 6 =0, and (3.12) must follow from
(3.1) when r = O, for the same set of response coefficients
bye Y30 G50 05, ¢q. The forms (3.5), (3.12) can be derived from
(3.1) by a variety of response coefficient assumptions, but for

a series of constructions (not exhaustive) (MS), in each case

F =G. (3.17)

Thus, for these models, only three of the data functions R_,

R z I_, can be independent, so Mellor's conjecture that

+! +

constant strain-rate response is determined by constant stress
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response (or vice-versa) is partially, but not fully, realised.
For example, the three independent functions £, F, g can be
determined from the full constant stress response R_ and R,

together with the primary constant strain-rate stage I leaving

47
the stress relaxation I_ predicted. If the four data functions
are not compatible with the identity (3.17), then an alternative
construction and possibly a more general relation than (3.1) are
required. Note that the identity (3.17) and various F and G

relations also imply the inverse relation analogous to (2.5) and

the inverse relation for the long-time response:

rm[cm(r)] =r, re[oE(r)] =r. (3.18)

Given the three independent data functions, only three
response coefficients in (3.1) can be determined of the four
required after normalising (dividing throughout by il or
$3 for example, if not zero). However, in uni-axial response,
the ;l and ;2 terms form a single composite term which can
be separated only by multi-axial response. But the different
normalisationsand constructions lead to different models for the
same data, so the data does not determine a unique model of the
form (3.1). Again it is multi-axial response which will

distinguish the merits of the different models.

4, Viscoelastic solid relation for uni-axial response

A solid material relation is obtained by including dependence
on the strain e from the reference configuration, and it is

convenient to describe the response in terms of the nominal stress
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0. The non-uniform o(e) shown in Fig. 2 for constant e
again implies that a stress-rate term o is required in a
differential relation. At constant o, the non-uniform e (t)
and e(t) shown in Fig. 1 imply that a differential equation

is required for e(t), and this is achieved by terms in strain
e and strain-rate e. Thus the strain term replaces the
strain-acceleration term necessary in a fluid relation where
strain dependence is excluded. The uni-axial relation therefore
involves terms in 0, 0, e, € (SM). Construction of a
frame-indifferent tensor relation between stress, stress-rate,

strain, and strain~rate, shown later, leads to a uni-axial

stress relation

(1-e) 30 + @(1-e)2[(1-e)3 - 2e0] = %c;(l—e)é + we , (4.1)

~ A

where the three response coefficients @, ¢, w, are functions

of 0 and e. That is, the tensor response coefficients have
been limited to dependence on stress and strain invariants, and
not on their rates, since this leaves more than enough flexibility
‘to match the responses shown in Figs 1 and 2. Further, it has
been assumed that the stress and stress-rate tensors enter only

in a linear combination, and that the strain and strain-rate
tensors enter as separate terms. The form (4.1) is derived from an
isotropic law for the reference configuration, and the ;, ;

terms are each composites of the uni-axial restrictions of two
tensor terms. There are five response coefficients in the tensor
relation, and the normalisation shown in (4.1) implies that the

stress tensor must be present.

Since the differential fluid relation has explicit dependence
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on the strain-acceleration f, the non-monotonic r(t), Fig. 3,
at constant o gives two functions R_ and R_ for r(o,r).
Here there is no explicit dependence on e so we can expect
only one independent data function from the constant ¢ response.
Also, for the response to constant displacement—réte, constant
é, the non-monotonic 0 (e) response, Fig. 2, does not imply
that do/de is a double-valued function of (0,e), since at
each repeated value of o, e 1is distinct. Since the uni-axial
relation involves three reponse coefficients &, 5, ;, two
other basic tests have been analysed to see whether their response
data, if obtained, could provide further indpendent relations
between the response coefficients. It is found that they provide
no independent relations, though one or both may be useful
alternative experimental tests. It is then shown that no
uni~axial stress loading can provide a third independent relation,
so that the complete uni-axial model requires multi-axial tests.
Reduced models which can be determined by two uni-axial tests are
examined, along with their main features so that a trial model
may be adopted in advance of multi-axial data.

It is convenient to introduce the following explicit test
terminology and abbreviations:-

CL: Constant load (constant nominal stress),

CLR: Constant load rate (constant nominal stress-rate)},

CD: Constant end displacement (constant engineering strain),

CDR: Constant end displacement rate (constant engineering
strain-rate).

Corresponding constant stress and constant strain-rate tests then



- 19 -

refer to current configuration measures.

At constant o (CL), (4.1) gives
03 6(1-€) + 205 (1-e)?] = (1-€)°G - ve . (4.2)

Now it is assumed that the strain-response e(t) , Fig. 1la,
is monotonic, so that t can be expressed as a single-valued

function of e for each 0 :

t = T(0,e) . (4.3)

Then the strain-rate response é(t) , Fig. lb, can be expressed

as a function of e for each 0, thus
CL: o0 =0, e = F(o,e) , e(0) = ee(E) , (4.4)

where the data function F(o,e) is related to the response

coefficients through (4.2) which gives

(1-e)’o ’A‘:’e ) (4.5)

F(o,e) = ==
%d)(l-e) + 290 (1-e) 2

This function F is not related to that used in the previous
fluid model analysis.

At constant e = w (CDR), it is assumed that the family
of response curves o(e) for different w, Fig. 2, do not
intersect; that is, at each e, o increases with w, which
is consistent with an increasing peak stress OM(W) at constant

e (independent of w) . Then there is a monotonic o (w)

M
relation at each e so that w can be expressed as a single-valued
function of o for each e:

W = W(E,e). (4'6)
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From the family o(e) for different w, a generalised Young's
modulus can be defined and expressed as a function E(0,e) by

eliminating w through (4.6), thus

CDR: e =w, O =G(we), E(5,e) = %g w (4.7)

That is, E(o,e) is the stress-strain gradient on the constant
strain-rate response. The function pair W(o,e), E(c,e) of
the CDR response family are related to the response coefficients

by setting e =w in (4.1), and using (4.¢%) and (4.6) gives

E(o,e) = E(E,e)<{l - Elg¥51-} ' (4.8)
W(o,e)
where
E(G,e) = —32 . +28 (4.9)

2(1-e) 2y l-e

Thus the CL and CDR tests yield two independent relations (4.5)
and (4.9) to determine three response coefficients @(E,e),
$(E,e), w(5,e). The factor E(E,e)has a natural rZe in the
jump relation derived later.

Now consider the alternative CLR and CD tests for which there
are no established typical response curves. At constant load-rate
é = g (CLR), assume that there are a family of monotonic
non-intersecting strain responses e(t) for different g, as
illustrated in Fig. 5a. It is supposed (in accord with general
observation) that the time to reach a given strain e increases
as the stress;rate g increases, then the corresponding curves

for e as a function of © = gt fan out, as shown in Fig. 5b.
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Thus, at each 0, there is a monotonic decreasing e(g) relation

which can be inverted,

=g, e=e*0o0, 9, q=0Q(,e), (4.10)

aj.

CLR:

with the derivative signs

* *
de* , o Bet o 30,

<0 . 4,11
30 q 30 ( )

&1

L ]
In turn, the strain-rate on 0 = g can be expressed in terms

of o0,e, by eliminating gq through (4.10), thus

&=qg2* =pE,e), >0 (4.12)
90

by (4.11). The function pair Q(o,e), D(c,e) are related to

the response coefficients by setting o = q in (4.1), thus

(1“;135 - we +A-(l—e)3 @Q(E,e) . (4.13)
S0 (1-e) + 200 (1-e)?

D(c,e) =
Since strain increases monotonically at constant stress,
it is reasonable to suppose that stress decreases monotonically
from the initial elastic stress jump at constant engineering
strain (CD). Thus, at each e, t can be expressed as a

single-valued function of 0,

t = T*(5,e) , T < e;l(e) , (4.14)

and the stress-rate expressed as a function of o ,e :

-1

e (e). (4.15)

Ch: e=0, o0=-L(o,e) <0, 0o se



e P , o o PR ok *’“‘*‘Fﬂh"«iﬂwr‘dnii b 5%
- 22 -

By (4.1)1

- e =
L(G,e) = 1=€) 0 - we (4.16)

(1-e)®y

Table 1 summarises the data functions, and their relation
to response coefficients, determined by the four tests discussed

above. Note that the relations (4.8), (4.9) in CDR are a single

Table 1 Test functions

Test Data functions Relation
cL F(o,e) (4.5)
CDR W(c,e), E(o,e) (4.8),(4.9)
CLR Q(c,e), D(c,e) (4.13)

cD L(c,e) (4.16)

relation for the response coefficients in terms of the
data-functions W and E when F is eliminated by (4.5). Thus
the four tests give four relations for the three reéponse
coeffiéients. However, only two relations can be independent
because (4.1) can be expgessed in a form involving only two

combinations of the coefficients, namely
T = E(o,e)e - L(o,e) , (4.17)

where the definitions (4.9), (4.16), are used. That is, the
responses described by any of the four tests in Table 1, or in fact
by any prescribed loading history, can only give relations involving
the combinations E(3,e) and L(5,e). Results of more than two

tests therefore provide only consistency checks for the adopted

model.
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le 2 shows the uni-axial relation (4.1) expressed in
measured functions from each of the six possible pairs

described above. Note that E is a combination of

Table 2 Uni-axial relation expressions

Test pair | Relation

CL and CDR s = E (e-F)

CL and CLR (D-F)?;' = Q(e-F)

CDR and CLR (W-D)(é-Q) = (EW-Q) (e-D)
CL and CD F5 = L(&-F)

CDR and CD W(?;'+L) = (EW+L)e
CLR and CD , D(é+L) = (L+Q)e

F, W, E
and the
the sets
directly
The most
are each
Also the
and F

three te

(4.8) given by CL and CDR. The implication of (4.17)
Table 2 expressions is a sequence of identities between

of data functions from different pairs of tests, given

by the definitions (4.5), (4.8), (4.9), (4.13), (4.16).
simple direct expression is that from CL and CD which
described by a single function, F and L respectively.
CL and CDR expression using the combination function E

is convenient. The form (4.17) requires functions from

sts, but with the identity L = EF is simply the CL and

CDR expression.

It

is possible to obtain the simple form (4.17) involving

only two coefficients E(o,e), L(c,e) because the scalar uni-axial
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relation (4.1) allows division by a function of (g,e). In the
tensor form constructed later, such division is not possible,
so the extra cofficient, and separation of the composite
coefficients ; and ; , results in five independent
coefficients. These are necessary to represent the distinct
directional features of the different tensor terms, and in
principle must be determinate by an appropriate set of
multi-axial tests.

Now consider how the strain response to an applied stress
jump - a jump relation - can be inferred from the differential
relation.(4.1) or its equivalent form (4.17). A reasonable
proposition is that the jump relation is the limit of solutions
of the differential relation in which the stress change takes
place over a decreasing sequence of time intervals. Consider

a continuous stress change %% to O in the time interval

ty to t, + 8t, with corresponding strain change eg to e,

then integrating (4.17)

t ot | t+ot t +ot
odt = J E(G',e')e'dt - j L(c'e')dt . (4.18)

%% % %

Assuming that o', e' remain bounded, and L is a bounded
function, the last term of (4.18) is of order &t as &t - O.
Thus,

e
c - Eo = J E(c',e')de' + O(S8t) , (4.19)
- e
(o]

where the argument o' of E runs through the values o_ to
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0. Assume that in the limit &t + O

E=J(e,e 'Eo)' -60=J(e°, e

O

0’ Uo) ’ '.:' (4.20)

which is the jump relation for arbitrary stress juﬁp c_+o0 ,

o
then for bounded E, (4.19) gives
33 _ do _ E[J(e, e, G.),e] = E(3,e) (4.21)
ae de (4 OI le) [ 14 ’ -

showing that E(c,e) is the stress-strain gradient at a point
(c,e) during a jump. The complete jump is given by integrating

(4.21) with the initial condition (4.20)2 at e = e. which is

o'
the integral (4.19) in the limit 6t - O. An analogous tensor
relation jump can also be constructed, and bounded integrals

have implications for the response coefficients ¢l’ ¢2 arising
in the composite coefficient ; . Note that jump relation

data can only provide information about the coefficient
combination ﬁ . ‘

There remains the question of what stress-strain domains
are covered by the different tests when only compressive stress
(6 > 0) is applied. Since the response coefficients are, in
general, functions of (c,e), the relation (4.1) can describe
uni-axial response only for stress-strain histories within their
common domain of definition. 1In constant load tests over a load
range O < 0 < EL , taken ﬁo a strain limit e, , F(o,e) is

defined only between the initial elastic strain ee(E) and the

upper limit, thus

CL: F(o,e), O <0 < 0©

L+ €. (0) sese, FlOe) 0. (4.22)
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For constant displacement tests over a strain range 0O < e < e,
at each constant e the stress is bounded above by the initial

elastic stress jump egl(e) , (4.15), so

o, : (4.23)

CD: L(o,e), ee(E) <es e, L(5,0)

which has the same domain (4.22) as the CL test. 1In the constant
displacement-rate test there is a limit stress—stréin curve,
of the form shown in Fig. 2, which depends on the constaﬁt
strain-rate e = w value. The initial slope for any w is

do

CDR: e - E(0,0) = E(0,0) = Eo ' (4.24)

independent of w (a restriction of the model). By (4.21), the

initial slope of the elastic jump relation o = eel(e) is also

E and hence the limit curve of the CL (and CD) domain is

o
tangent to that of the CDR test at (0,0). Since ee(E) is
monotonic, and the limit stress-strain curve of CDR, Fig. 2,

has a turning point, the CDR domain is more restricted than the
CL domain as O increases. In the constant load-rate test, the
limit stress-strain curve, Fig. 5b, depends on the maximum
load-rate g. Its initial slope is |

. do _ 9(0,0) _ g _ F(0,0) ) _

using the identities implied by Table 2, independent of g, which
is the initial slope of CL, CD, and CDR limit curves. For
G >0, Q0/D<E since F and D are positive, so the CLR limit

curve, though monotonic, bounds a more restricted domain than the
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jump relation ee(g). The CDR limit curve is the most
restrictive.

At best, using the CL and CD tests for G > O, there
is an excluded domain O < e < ee(g) not entered £y the loading
histories of the four above tests. However, a state c >0,
0O < e <’ee(3) , can be reached by unloading histories which
involve some previous arbitrarily small tension (0 < 0); an

illustration is presented in Report (M7).

5. Reduced viscoelastic solid relation

While multi-axial tests can, in principle, determine all
the response coefficients of the tensor relation shown later,
and hence describe the uni-axial response fully, in the absence
of such extensive multi-axial data it is useful to construct
a reduced model which is determined by uni-axial data. That is,
a model which requires only two independent response coefficient
combinations. This cannot, of course, determine the directional
features of a tensor relation, but can be extrapolateé in various
ways to construct trial tensor relations.

First consider the removal of one term in the uni-axial
relation (4.1) by setting ;, @, 8, zero in turn; thgi is,

eliminating the strain-rate tensor, stress-rate tefppbr, and

strain tensor respectively. If ¢ = O, by (4.9)

PT

£ =0@®, E(©,0 =o0. (5.1)

E(5,e) =
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A

Now E 1is a modulus, in particular defining the jump stress-strain
gradient (4.21), so that E >> 0 for e << 1 which contradicts
(5.1). Hence removal of the strain-rate tensor term_is not
physically acceptable. If @ = 0, then g is infinite and
there is no strain jump for an applied stress jump.éwhich is an
acceptable approximation since strain-jumps are small compared
with the usual creep strains. Bounded E then implies W = F.

F and D are pounded, and identical, (4.5) and (4.13), and

Q is bounded and non-zero by definition. so from the CL and

CLR expression in Table 2, e = F(0,e) for all G(t), not

just T = constant. However, in a constant displacement test,

setting e = 0 in (4.1),

cpD: e =0, (1-e)* 0 = w(T,ele, (5.2)

which implies that T = constant (a solution of the implicit
equation for o at constant e€). incompatible with non-zero L
in (4.15). Hence removal of the stress-rate tensor is not
physically acceptable.

If ; = 0, there is no dependence on the strain tensor,
but dependence on strain invariants remains in the arguments
of ; and & , and induced anisotropy still occurs (SM). Now

by (4.5).,

F(O,e) = O, (5.3)

so that on complete unloading from any stress-strain state there

is the elastic strain decrease but no subsequent creep relaxation
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(e

O). A linear viscoelastic solid which exhibits decreasing
strain-rate in time at constant stress, because of the
superposition property always relaxes (e < O) on full or
partial unloading. On partial unloading, O maintained at

a reduced positive level, e = F(o,e) > O when 0 = 0, so
creep continues at a reduced rate. A non-vanishing w is
essential to describe creep relaxation on full or partial
unloading. If a non-relaxing model ; = 0 is an acceptable

approximation, then the remaining coefficients ¢ , ¥ are

determined by any pair of tests in Table 2. For example, from

CL and CDR
v =2, ¢=-2-9-—(—-1;§—)-{(1-e)E—23}. (5.4)
FE 3FE
When w # O, relaxation on complete unloading from a state

in which e = F(g,e) > O requires e = F(O, e—ej) < 0, where
ej is the small elastic strain decrease, trivially satisfied
if w > 0. Relaxation after a small stress decrease, analogous

~

to the linear model, would require significant increase in
for the small stress, small strain decrease. Unloading data can
determine the importance of the strain tensor term with
coefficient 8 .

An alternative reduction of the model is obtained by

restricting dependence of the response coefficients VY, ¢, w,

on o and e . The uni-axial relation (4.1) is the restriction
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of a tensor relation with unit stress tensor coefficient. 1If
the response coefficients have general dependence on the

stress and strain invariants, then the tensor reléﬁion may be
expreséed with unit stress-rate tensor coefficienﬁAwithout loss
of generality. However, making analogous restrictions on the
dependence of the two sets of coefficients leads to different
models, so both will be analysed. The uni-axial relation for

the second normalisation is

(1-e)* 0 - 2(1-e)* 0 e + (l-e) @*E = %—c;*(l-e)é + J»*e (5.5)

~

where the three response coefficients ;*, ;*, w*, are functions
of 0 and e in general, and the ;*, w* terms are each
composites of two tensor terms. Both (4.1) and (5.5) can be
written in the common form associated with CL and CDR responses,

Table 2,

S = E(e-F) , (5.6)

~

with F, E defined by (4.5), (4.9) for (4.1), and for (5.5),

~ ~ oy ~ ~
S (LI - AR ._.{";*g . ure }/E : (5.7)
2(1-e)? l-e (1-e)®

Consider a requirement that creep relaxation takes place

on complete unloading from a state (31, e;) at time t,. Thus

t>t :5=20, é&=F(Oe) =-£f(e) <0, e(t]) =ey ,  (5.8)
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where e, - eI is the elastic strain decrease. While the
strain-rate -f (e) is a function only of current strain, the

initial value eI depends on the loading historyito reach the
+

state (31'-61) and the elastic jump from e, 'tQ; e, . For
(4.5), (4.9),and (5.7) respectively,
fle) = yolugle . w(o.ele , (5.9)
5(1-e)¢ (O,e) (1-e)* E(0,e)¥ (O,e)
fle) = o 2202)e . _wilOele (5.10)
5(1-e)¢*(0,e) (1~e)® E(O,e)

Thus the relaxation function f(e) determines the ratios
;(O,e)/;(o,e) and a*(o,e)/;*(o,e) or ;*(O,e)/é(o,e)
evaluated at zero stress only. 1In practice the function F(O,e)
cannot be determined by an initial zero load test, so a relaxation

test completes the determination of F(o,e) if and the

+
€1
final strain encompass the required range.

Suppose now that w/ is independent of o , hence equal
to w(0,e)/$(0,e) determined by £(e), which therefore provides
a third relation on the response coefficients. Then by (5.9), (4.5)
(4.9), 3

~ ~ ~ —g
we = %¢(1—e)f, Y = A2 -
(1-e E - 2(l-e)o

14

(5.11)

_ _(1-eP5{(1-e)E - 25}
26F + (F+f){(1-e)E - 20}

ojw
© >
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Similarly, w*/¢* is then independent of o, and direct from

(5.10) and (5.7), or by the transformations

yr =z, or =% w*t =% , (5.12)
1% v v
used to obtain (5.5) from (4.1),
36% = (1-e){(l-e)E - 20} , w*e = (1-e¥ {(1-e)E - 25}f,
(l-e)o ‘
Since elastic strains associated with a stress jump o are
infinitesimal,
g <<1 , (5.14)
E

then neglecting O/E compared to unity gives the approximations

of (4.9) and (5.7)4,

P3¢ . _30* (5.15)
2(1l-eyP ¥ 2(1-e)

which imply

6 >> 0V , o* >> 0 , (5.16)

and in turn-the approximate expressions of (4.5) and (5.7)2,
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A

e T ~ PRY — _
(%we) o we _ (1 e;Aow* w*e (5.17)
§¢(l—e) §¢*(l-e)

F =

The corresponding approximations of (5.11) and (5113) are

35 - (-efo D= 9 _ e = {1-e)® of
2= “F+g 0 VT (F+£) E o We= F+f ! (5.18)
36% = (1-ePE, v ={EDE | Yue = (1-ep BE . (5.19)

While total strain e may be small, it is not necessarily
negligible compared to unity, and in any case there is no further
simplification of the forms (5.18), (5.19), by neglecting e
compared to unity. Note that (F+f) must approach zero like
0 or faster as o0 + O for bounded @*.

The three response coefficients in both relations (4.1)
and (5.5) are determined by the two types of loading response
(CL and CDR) and the response on complete unloading, provided
that ;/$ (and ;*/$*) are independent of 0 . Until this
is shown to be incompatible with multi-axial load data it is a
useful trial model, with the forms (4.1) and (5.5) still
equivalent. Now consider the further simplifications (Report M8)
of separable dependence in ;, ; « and @*, ;*, respectively,

compatible with the ratios independent of o . Thus
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8 :
I

4, @0 _(e), we = 30, (5o (e) (1-e)E(e) , (5.20)

-

¢*

$2(E)0_*(e), wre = 3 62(@0k(e) (1-e)E(e) . - (5.21)

~

The corresponding jump gradients E from the approximate

expressions (5.15) are

~ 3¢_(0)d_(e) 30*(0)d*(e)
E= —>>5 = g € , (5.22)
2(1-e)? ¢y (0,e) 2(1-e)?

~

of which the first expression is not separable when V¥ is
unrestricted, while the second expression is separable. That is,
the two models (4.1) and (5.5) are distinct, and this feature

of % may decide which provides the more plausible approximation.
It has been shown by model examples (SM) that variation of é

with e has little effect on the CDR response, and so a simplified
separable form é = ﬁ(g) may be an adequate approximation,

supporting the expression (5.22)2 and relation (5.5). From

(5.17),
2 '— -2 py
P4f(e) =qlel 8. (eeloyiloie) (5.23)
St (€) ¢, (o) 5 oo le)o (o)

requiring F + f(e) to be separable for the relation (4.1), but
not restricted for the relation (5.5) when &* is unrestricted.
Hence the relation (4.1) with separable coefficients (5.20)
requires that F(o,e) + f(e) is separable, while the relation

(5.5) with separable coefficients (5.21) requires that E(o,e)
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is separable.
Further simplifications are given by the special cases of

(5.20) and (5.21) when all o dependence is eliminated:

~

s (e),  we = 3¢ (e) (1-e)f(e) , (5.24)

¢

¢*

s2(e), wre = 3pi(e) (l-e)f(e) . (5.25)

~

With (5.24), E is unrestricted, (5.22)1, but F + f(e) is
linear in 0, (5.23)1, while with (5.25), E = E(e) , (5.22)2,

but F is unrestricted. 1In particular, if the approximation

E = constant = E_ is adopted, then

3~ R - EO[F(E,e)+f(e)3
So* = Ec(l—e)z , Wwke = Eo(l—e)sf(e), Yy = — + (5.2
o

which, with the relation (5.5), may be a useful simple model in
view of the small influence of ﬁ(e) variation in CDR response
illustrations (SM).

Finally, let us examine the properties of the strain-rate
- f (e) on complete unloading, defined by (5.8). It is
necessarily independent of the stress 31 before unloading
in this model, though the initial strain eI depends on previous
loading history. If appreciable dependence of the strain-rate
on previous stress is observed in experimental programmes, then
this differential model with response coefficients depending on
current stréés and strain only is not satisfactory. Suppose that

the unloading responses determine a consistent f(e). Let
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e + e as t -+ o where

0O < e < eI, (5.27)

[}

so that the final strain is less than that at time %I ¢« Since
f(e) < 0, and is still a compression; that is, assume that a
compressive stress history followed by stress removal does not

produce a stretch. Now

et et
_ 1 de’ 1l de' _ .
t-t = Je T J e st (5.28)
so £ l(e) is integrable at eI to obtain finite t for a

strain e such that e < e < eI . The non-relaxing case

- _+

e e . £f =0, is excluded. Further, the unbounded integral

necessary for the finite limit e_ requires f'l(e) to

be non-integrable at e , and since (5.28) applies for all
+ -1

€1

at e = 0, but integrable at all eI > 0. Thus e_= O, soO

>0, and hence all e_ > O, f “(e) is non-integrable

this model requires complete relaxation given sufficient time,
if non-relaxation is excluded, which is also a feature of linear

viscoelastic solids; partial relaxation is not possible. Hence

o, f(e) >0 fore >0, fle) mfoen (n 21) as e » 0. (5.29)

o
n

~ ~ ~

The case n =1 is givenby w, ¢, or w*, ¢* bounded and

non-zero as e + O. A simple example is

fle) =f e, e-= eI exp[-fo(t—tl)] for t > t; ., (5.30)
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which couples with the constant E approximation (5.26)

to give
*
3o = (1222 , w* = Ef (1-e)® , ¥ = ——2, (5.31

(¢}

where the stress coefficient ;* in the relation (5.5)

depends on the constant load response F(o,e). If E, and

fo can be estimated from limited stress jump data and
unlocading data, then a comprehensive CL programme will determine

F(o,e) to complete the uni-axial relation (5.5).

6. Viscoelastic tensor relations of differential type

A brief summary of the frame-indifferent differential
tensor relations of fluid and solid type developed by (MS, SM)
is now presented. These are the three-dimensional models
from which the relation (3.1) and (4.1) in uni-axial stress
are derived. The limit to which a complete uni-axial
description determines the three-dimensional response is
shown, and in turn the requirements of a multi-axial load test
programme sufficient to determine the three-dimensional model
are indicated.

In both fluid and solid models the ice is assumed to be
incompressible, which is a restriction on the possible
deformation, and so the mean pressure is not determined by
the deformation. The differential relations therefore connect

the deviatoric stress and appropriate time derivatives to
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strain-rate and strain-acceleration or strain and strain-rate
respectively. Let ¢ denote the Cauchy stress tensor (with
diagonal components positive in tension to follow the usual

convention, so a uni-axial compressive stress o = = 0;,

for example) with rectangular components °ij (1,3 = 1,2,3),
and S the deviatoric stress defined by
S=o-3(tro)l, trs=0. (6.1)
If v(x,t) is the spatial velocity field with components v,
in rectangular coordintes Oxi, the rate of strain tensor
D is defined by
1 avi avj
Dij =3 3;; + axi ’ Il = tr 9 = divv = O, (6.2)

where the latter constraint imposes incompressibility. o, S.
and D are frame indifferent tensors (Truesdell 1966). The
frame-indifferent strain-acceleration is given by the

Rivlin-~Ericksen tensor

al?) = 2D + 40P+ 2(DW - WD) , (6.3)

~

where the rotation tensor W is defined by

3 oV, V.
W, = =|—= - =—3{ . (6.4)
ij 2|ox. Bxi

Similarly, a frame-indifferent deviatoric stress-rate is
given by
s =5 +sm+w + (D-WS . (6.5)

The first principal invariants of A(z) (1) are given

~

and S



- 39 -

by

tr 5(2) = 4tr 92 . tr §(1) = 2tr (SD) , (6.6)

while the non-zero second and third principal invariants

-

of D and S are

-~

1
Iz=-§-tr92, I, =detD ,
(6.7)
J. =1 ¢r s? J. = det S
2 32 S 3 S .

The frame-indifferent fluid relation, necessarily
sy
isotropic,which reduces to the uni-axial relation (3.1)

incorporates only linear dependence on the tensors S, S(l),

-~

and A(Z) , but includes the general isotropic tensor function

of D. Thus

-~

(1 _ 2
¥S + Uyls 5 tr(sp)ll

= ¢19 + ¢2[92 —-%Izgq + ¢3[§ + DW - WDl , (6.8)
where the D’ term of §(2) is included in the ¢, term,
and the response coefficients wl' w3, ¢l’ ¢2, ¢3, depend
only on invariants of the various tensors. To obtain the
necessary uni-axial forms (3.5) and (3.12), some dependence
on the rate invariants iz and 32 is required, as well as
on 12, 13, J2, Jj. In general, the response coefficients
depend on the two independent strain-rate invariants and the

two indepéndent stress invariants, in contrast to the dependence

of wl. w3, ¢1. ¢2. ¢3 on one strain-rate r and one stress O
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in the uni-axial relation (3.1). That is, uni-axial response
cannot separate dependence on the two strain-ratg invariants
and the two stress invariants. Furthermore, thei ;l and &2
terms of (3.1) appear only as a composite term, whereas the
¢y and ¢, terms of (6.8) represent the distinct dependence
on D and on 92 , which are non-proportional tensors in
general. By construction, the trace of each tensor term in
(6.8) is zero, and each tensor is symmetric, so expressed in
principal axes in the absence of rotation there are only t&o
independent relations. The third relation is the incompressi-
bility constraint eliminated by using deviatoric (traceless)
tensors in (6.8). The uni-axial reduction (3.1) is a special
case of the tri-axial stress relations constructed later.

The frame-indifferent solid relation which reduces to the

uni-axial relation (4.1) incorporates only linear dependence
S(l)

~

on the tensors S, , but includes a general isotropic

tensor function of D and a general isotropic tensor function
of the Cauchy-Green strain tensor B3 that is, the solid is

isotropic in the reference configuration. If xi and X,

denote reference and current coordinates of a particle, then

the deformation gradient tensor ¥ is given by
Bxi
F,. === (6.9)

9X.,
ij 5

and
B = FF . (6.10)
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The principal invariants of B are

K, = tr B, K

L ; 5 = %{(tr B)2 - tr B2}, Ky = J? =det B =1, (6.11)

£

where the latter is the incompressibility constraint, so only

Kl and K2 are variables. The tensor relation is

L]

(1) _ - 2 _ 2
s+ s - 2 er(sDIL) = 0yp + 6,007 - 5 T,1)

-1 2 _ log2 _ o
+ w [B - 5 K17 + w,[B S(x2 - 28,11, (6.12)

where the response coefficients V¢, ¢l’ ¢2, Wy o and Wor

are assumed to depend only on the stress and strain invariants
Jz, J3, Kl' and Kz. The form leading to (5.5) is obtained by
dividing throughout by ¥ , which supposes that the §(1)

term is present. Note that any éonfiguration which is a
distortion of the isotropic reference configuration is
anisotropic (SM). Again the trace of each tensor term is

zero and only two independent relations are obtained. 1In the
uni-axial reduction (4.1), a special case of the later tri-axial

relations, the ¢ and w terms are composites of the ¢l' ¢2

terms, and terms respectively, so (4.1) cannot

“ir @2
separate the D and D? dependence, and B and B2
dependence. Dependence on four invariants is also reduced
to dependence on the single stress © and single strain e,

so dependences on two stress invariants and on two strain

invariants are not separated. To derive the tensor jump
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relation analogous to (4.2) as a continuocus limit of the
differential relation (6.12) with ¢2 independent of

invariant rates, it was shown (SM) that

¢2 =0. * (6.13)

A

Then ; is the reduction of ¢l' and only the w term is
a composite of the Wy and W, terms.

Since both (6.8) and (6.12) involve two independent
scalar relations, the test response required to describe the
dependence of the response coefficients on two stress and two
strain (rate) invariants, and to separate terms in the |
non-proportional D and 92 and B and §2, must incorporate
two indpendent deviatoric stress components and corresponding
strain (rate) components. A conventional tri-axial stress
test does not provide two independent deviatoric relations (M),
but a true bi-axial stress test does (M2, M5). Both will
be obtained from the tri-axial stress analysis, and also the
invariants domains covered by compressive stress tests. Shear
tests yield direct properties of the deviatoric relations,

but appear to be less practical.

7. Multi-axial loading geometries

Both the fluid relation (6.8), necessarily isotropic,
and the isotropic solid relation (6.12), have common principle
axes for all the terms in the absence of rotation, and can be

represented by three scalar principal components. Only two
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of the component equations are independent since both
equations have zero trace; that is, the sum of the three

principal components is zero. In principle axes

-

94 o) ) Sl o) O
) o 03 0O o) S3

1 = e
- 3(01+02), Sy = (Sl+Sz), (7.2)

= - 31 = i 2 2 _
p = 3(c;1+o‘.2-i—c:3), J, = [01+022+c3 (0203+o301+0102)],
(7.3)

=1 — - —r - —— -
= 37[(201 oy 03)(202 o4 03)(203 04 02)].

This loading geometry is described as tri-axial stress,
abbreviated to TS, when 0,005,045 are independent. Only two
principal stress deviatoric components are independent however,
and for practical purposes we would like to obtain two independent
deviatoric components with only two principal stresses
independent, both for control and measurement. p is the mean
pressure, and J2, J3 are independent shear stress measures.

Supposing the test is performed with zero rotation,

2
d; © o) Xy o2
w=0, D=1]0 d o} , B = o A (o} ' (7.4)
O 0 =(d;+d,) 0 0 A%
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where dl' d2 are principal strain-rates, and Al,xz , are

principal stretches. The corresponding invariants are

= a? + a2 - - :
I2 dl + d2 + dldz ’ 13 dldz(dl + dZ)f
i (7.5)
= )2 2 -2 ,-2 - 1212 -2 -2
Kl = Al + Az + Al Az . K2 = xlkz + Al + 12 .

The fluid relation (6.8) yields the two independent differential
relations

: 2
wlsl + w3[Sl + E(Sldl - S,d, - s,d

2d; = 54, = 25,d5)]

_ 1 2 _ 2 _ 3
= ¢ldl + 3¢2[dl 262 2d1d2] + ¢3d1 ’

(7.6)
2 2
wlsz + w3[82 + 3(8262 - szd1 - 8162 - Zsldl)]
_ 1 2 _ 2 _ 3
= ¢ld2 + 3d>2[d2 261 Zdldzl + ¢3d2 '
where the response coefficients depend on 12. 13, Jz, J3,
and their time derivatives in general. The solid relation
{(6.12) with restriction (6.13) yields
. 5 -5, da
Sl-rw[Sl + §(Sld1 - SzdlA- zszdz)]
_ 1 2 _ y2 _ y72,-2 1 4 _ .4 _ ,-4,-4
= ¢ldl + §wl[2xl Az xl AZ 1+ §w2[2A1 Az Al Az 1,
(7.7)
> 2
S, + VIS, + 3(5,4, - S,d; - §;8, - 28,4,)1
= 1 2 _ y2 _ 3=2,-2 1 4 _ .4 _ ,-4,-4
= ¢ld2 + §wl[2A2 Al kl Az ] + §w2[2A2 Al Al Az 3,

where the response coefficients depend on K., Kz, Jor and J,.
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~axial stress refers to the case o

3

that is, to a transversely isotropic stress geometry (in the

plane transverse to the axial stress o,), which has two

independent stresses

o, and o,, and so designated bi-axial

stress in (M). Here the precise description, abbreviated to
TIS, is introduced. Now
=25 - = = -1
‘ (7.8)
3
p= - %(ol+202), J, = §(ol-ozf, Jy = g%(ol—oz)s = % 2(J2/3)§

so there is only one
dependent deviatoric

only one independent

independent deviatoric stress and one in-

stress invariant. Similarly, there is

strain-rate d and one independent stretch

1
Al' with
- 2 = - _ 1
d3 = -(dl+d2) d2 => d3 = d2 = 2dl .
_ 4=1,-1 _ _ _ 1"k
A3 = Al Az = Az‘— A3 = AZ = Al ‘
— 332 = 1a3 _ 5
Izi- 743, I3 =34] = :2(12/5)2 ,
K. =22 + 2278, k., = 2x, + 272
1 1 ) 2 1 1 '
s0 K1 determines Al and hence determines Kz. With the

identities each term

of (7.6), is a multiple (-3) of the

corresponding term of (7.6)1, and similarly for (7.7), so only

one independent relation is obtained.

Uni-~axial stress, abbreviated to US, is given by setting
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3

<

and the strain-rate and strain expressions are unchanged. The
one independent relation of (7.6) and that of (7.7) have common

forms for TIS and US, namely
V)Sy + ¥3l8; + 51931 = 6,8 + 505d7 *+ 03, (7.11)

-2

1) . (7.12)

b - 2 2. -1 _2_ 4_
sl + w[sl + Sldlj = ¢ldl + iwl(xl Al ) + 3w2(kl A
where Sl is given by (7.8)l and (7.10)l respectively. The
US relations (3.1) and (4.1) are recovered by using the

transformations

6 =-0, s r=-d), ue=ull-(-e)ll-e) + w,[1-(1-e)®. (7.13)

together with thé relations (2.2)3 and (2.3). The paths in the
invariants domains, Jy = 2 2(J2/5)3/2 and Iy = 2 2(1213)3/2,
are also common to TIS and US, so no extra freedom is obtained
from the two independent stresses 0,., O, of TIS. 1In fact,
with both o, and o, negative (compressive), the ranges
of Joe J3 for given o, are maximum when o, = 0; that is,
for US.
Finally, bi-axial stress, abbreviated to BS, will refer

to the case of independent axial stress dl and one lateral

stress 02 , with the second lateral direction stress free,
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(7.14)

= -1 = 1i52452- = L - -
p= 3(01+02), J, = 3(01+02 0102), Jy = 27(ol+02)(01 202)(20l 9,

so that Sl and s, are independent, and I,y and J3 are
independent. Also the two strain-rates dl and d2 are
independent, and the two stretches Al and Az are independent.
Hence (7.6) and (7.7) each yield two independent differential
relations between ol,cz,él,éz,dl,dz, and él,éz. or Al,xz,
respectively. In (7.6) the ¢l and ¢2 terms are independent,
and in (7.7) the wy and wy terms are independent, not lost
in BS, so dependence on D and on 92 is distinguished, and
dependence on B and on §2 is distinguished. Thus BS
provides two geometrically independent components of the tensor
relation, and with incompressibility completes the
three~-dimensional description of an isotropic material. If
anisotropic solid models are required, then BS with respect to
sufficient different reference axes will be necessary to provide
a full description.

The analysis of constant stress and constant strain-rate
responses in BS for the fluid relations (7.6) may, or may not,
be a generalisation of the uni-axial analysis detailed in
section 3..- There the non-monotonicicy of strain-rate and stress

respectively gave rise to two-branch solutions of the
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differential equations with implications for the response
coefficients. We have no knowledge of the response shapes
in BS at present, so cannot proceed along the same _lines.
In principle, this truly two dimensional response must
distinguish the D and D> terms, but it cannot be stated
whether the response overdetermines the model as in US, or
underdetermines‘the model. If the latter, then further types
of test in BS, independent of constant stress and constant
strain-rate responses, would be required, or, alternatively,
a reduced fluid model constructed. However, the US response
suggests that the model is not underdetermined by these tests.
A BS analysis of the solid relations (7.7) has not yet
been performed, but may be a more direct extension of the US
analysis since two-branch solutions are not involved. However,
replacement of time by strain in the functional descriptions is
not unique, since there are now two independent strain components,
but axial strain would be the first choice.
It is possible that constant lateral strain rate (62 or
iz) may not be practical, and a mixed loading of constant dl
with d2 = O, or constant Xl with 12 = 1, representing a
lateral constraint, may be prefered. The associated analyses

of the BS relations will be more complex.

8. Dependence domains in stress invariants space

The response coefficients in the tensor relations (6.8)

and (6.12) depend on the shear stress invariants J2 and J3,
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and in (6.8) on their rates and on strain-rate invariants

I, and I3 and their rates, and in (6.12) on the strain
invariants Kl and KZ’ In practice, tests wiliibe restricted
largely (or entirely) to compressive stresses, 01 < 0,

o., s O, o4 < 0. This limits, in general, the domain of the

2
(J2,J3) plane covered by each of the configurations US, TIS,
and BS, and in turn the domain in the (12,13) plane or

(Kl'Kz) plane, so that response coefficients may not be
determined over a range of their arguments sufficient to cover
all practical load histories. The corresponding situation for
dependence on mean pressure and on shear stress invariant is

also discussed and compared.

Consider the compressive stress restriction
o,(t) £ 0, o,(t) =n(t)o,(t) <0, nit) 20, (8.1)

together with

gsSt: n=0, 0,0 =0, TIS:

3 02 I3 BS: 03 =0 . (8-2)

°3
It is convenient to express the invariants as functions of o4
and 1 with each constant n denoting a ray in the (01,02)
plane (fourth quadrant). In US only a single ray o, = O (n=0)

is covered, and J2' J3 are given by (7.10) with o, < O ,

1

. _ 1 2 - 3/2
Us: J2 = 30; 2 o ., J3 = 2(J2/3) £ 0, | (8.3)

so only one branch of the curve in the (J5,34) plane given

by (7.10)4 is realised, shown in Fig. 6. From (7.8), for TIS,



- 50 -
3

1 2 >
TIS: J., = -§oi(1-—n)2 20, Jy= oi(l-n)" =12(J2I3) as n<l, (8.4

5 =
so both branches of the curve are realised by cé > 0y and

o, < 0y respectively, and the upper branch defiﬁes the
uni-axial tension configuration. It is, though, only one

curve in the (J2,J3) plane, Fig. 6. In contrast, for BS (7.14)
yields

03
02(n2-n+l) 2 0, J, = 5%(2n3—3n2-3n+2). (8.5)

Wi

BS: J2 =

with independent oy < 0O and n 2 0. Define

= _ - 2_3 -1} 2
J, = = =7+ (n-%)° ,
1
_ 27J3 9
3, = = - (=512 - (n-%)21, (8.6)
3 203 4
[»]
1
J 9J
k(n) = —= = —3 , k(0 =1,
J2 2J20l

then (8.6), ; imply a relation 33 = h(32) obtained by
’
eliminating n , not necessarily single-valued. This

corresponds to

J = h V4 f (8.7)
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so that J3 depends on both Jz and ol in general. 2
single curve in the (JZ'J3) plane is obtained if, and only
if, (3J3/3ol)lJ2 = 0; that is, at fixed J, tﬁere is one
value J3 though both Jz and J3 vary as of varies.

Then h satisfies the diferential equation

= = 3, =
th (J,) 2}1(J2) ’ (8.8)

with solution
J, =K J (8.9)

trivially satisfied by the TIS relations (8.4), but clearly not

a property of the BS relations (8.6)l 9t for which, in
'

particular, at n = %, 32 = % ' 33 = 0 . Hence (8.5) determines
a finite (J2,J3) domain for a given range of o4 €0, n=z=0.

Both 32(n) and 33(n) are symmetric about n

and so also k(n). 32(n) has a single minimum % at n = %
)

i
[
-
N
-
w

and is strictly positive. 33(n) has zeros at ny (i

and a maximum at nM and minimum at nm, given by

(n1.n2,n3) = (=1,0°5,2), ny = %(1+3%), Np = 4%(3%—1), (8.10)
with
Ty = 3@ Ty = 3@, (8.11)
and k(n) has a maximum k, at n, and minimum k= at ng
given by
ng= - O-1, ky = 1-02 , n_2~ 11, k= -1-02. (8.12)
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Also

o) ~ n? , 33(n) vn®, k(n) vn, as n e, (8.13)

Figure 7 shows sketches of 32(n). 33(n). and k{n). Specifying
n determines 32, 33, k, then specifying % determines
J

and J so values of the test parameters GyeN determine

2 37
a point in the (J2,J3) plane. If J, and J3 are specified,
then a 6-tuple equation for n (with probably more than

one real root) must be solved numerically, then oy determined,
but this does not arise in data correlation.

It remains to determine the domain of the (J2,J3) plane,

Fig. 6, covered by compressive BS tests oy < o, 2 0.

3

n
While J., takes all values greater than 33(2)" - %(3!5 - 1)
as n is varied, and 32 all values greater than %

, with
J3 = k(n)Jz, J2 and J3

between the expressions (8.5) shows that

depend also on ;- Eliminating oy

= - 3/2
Jy = Zk(n)(Jz/B) ' (8.14)

so that at fixed stress ratio n , hence fixed k, as ol

and © are increased accordingly from zero a curve in the

2
(J2,J2) plane similar to one of the TIS branches is obtained,
the choice depending on the sign of k. Negative J3
corresponds to k > O, and approach to the limit line
J

+ 0, J., < 0 requires large k , hence large n = 02/01,

2 3
while o, . and oy approach zero. 1In practice a limit

curve of the form (8.14) may not apply as J2, J3 + O since
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the large 1n may not be maintained, so Fig. 6 shows only an
estimate of the limit curve for negative J,. It is clearly
much closer to the limit J2 + O than the TIS, QS compression
curve. £

Positive J3 Corresponds to k < O, and here there is

a precise limit kmcs - 102, with limit curve

- - 3/2 ) 2y 3/2
Jy = - 2k, (J2/3) /e 2:04(J,/3) ' (8.15)

which extends the domain only slightly beyond the TIS, uni-axial
tension, branch, Fig. 6. Since values of k in the range

kn < k £ 1 occur for two values of n , the same curve (8.14)

is repeated, and consistency of the corresponding data is necessary
to justify the assumed model. 1In applications which have
approximately a compressive plane stress configuration, the

domain covered by BS data is all that is needed, and if there

is a principal stress in the third direction which is compressive,
the corresponding (Jz,J3) domain will not extend to the tension
limit of BS.

While the.incompressibility approximation used in the model
relations will be good in many applications, ductility may be
influenced by mean pressure. For example, the constant
strain-rate response in uni-axial coﬁpressive stress may exhibit
an increased peak stress Oy if conducted under a superposed
isotropic pressure. That is, deviatoric (shear) response, may be
influenced by mean pressure, even though the pressure is not

determined by the deformation history. To determine dependence

on the three stress invariants p, J2, J3. will require general
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tri~axial stress data, the response to three independent
stresses. Alternatively, if response only to two independent
stresses is practical, this can be interpreted by dependence
of response coefficients on pressure and one shear stress
invariant in place of two shear stress invariants. The

additional dependence on 12' I3, or Kl, Kz, can be retained,

since I, = tr D=0 and Ky =det F=1 by incompressibility.
Consider dependence on (p. Jz), and the domains of the.(p, JZ)
plane covered by US, TIS, BS, for compressive stresses which
imply p 2z O.

Thus, with ol < 0, 02 = nol <0, from (7.8) and (7.14),

UsS: p= - %01 2 0, Jz = ']3—.012_ = 3p2 ’ (8.16)
TIS: p = - %—ol(l+2n) 20, J,= %Oi(l-n)z = u(m)p? ,
(8.17)
. _ l-n,2
BS: p = ~- %—ol(un) 20, J,= %ci(l-nmz) = v(n)p? ,
(8.18)

- 2
\)(n):é..(..:.x:__rl".‘_?__)-go.

(1+n)

Again US covers only a single curve in the (p, J2) plane, but
both TIS and BS cover finite domains as the ratio n 1is varied.
However, neither TIS nor BS can realise a uni-axial tension

configuration J, = 3p?, p= - %ol < 0, since p 2 0 for all

n=20, 0, <O in (8.17) and (8.18). In contrast, both TIS and

1
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BS cover uni-axial tension in the (J2, J3) plane.

For TIS, from (8.17), as (-ol, -02) are increased from

2

zero at fixed ratio n , a parabola J2 = up is covered in

the (p. Jz) plane, Fig. 8. Now

O0<n <1
dy <
3-%20 as n>1 '
(8.19)
_ - = 3 o
u(0) = 3, Upin = (1) =0, w=>7 a n->=,

so the range O < py = 3 4is covered by O < n<1 , and the
range O <uc< % is repeated by n > 1. Consistency of the

corresponding data is required to justify the (p, J2)
dependence in the assumed model. Thus TIS covers a domain in
the (p. J2) plane bounded by the positive p axes and limit
parabola Jz = 3p?, shown in Fig. 8. The limit parabola is
the uni-axial compression configuration.

2

For BS, from (8.18), the parabola Jy, = VP is covered

at constant n . Now

%3 § 0 as O = <1 '
n n>1

M (8.20)
Vo) =3, v, =v(l)=3, v=>3 as n>=

so0 the entire range % < v < 3 is duplicated by n <1 and
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n > 1, requiring consistency of corresponding data. Thus BS
covers a domain between the limit parabolas J2 = %pz and

J, = 3p2 , shown in Fig. 8, which is more restriéﬁed than that
covered by TIS, in strong contrast to their cove:?ge of domains
in the (J,, J3) plane. Of course, TIS still yields only one
independent deviatoric relation, while BS yields two, but the
excluded domains in BS, Jy > 3p? , J, < %pz . are of practical
significance. It has been‘shown (M5) that allowing axial tension
o, > 0 with lateral compression 0, < 0, n < 0, extends the
domains to J, = 3p?2 (p < 0) for TIS and BS, but still excludes
the important domain O < J2 < %pz for BS. Complete coverage

for BS requires both axial tension and lateral tension.

9. Compressibility and dilatancy

In applications where volume changes are significant, a
volume change model must be introduced, and the deviatoric
relations constructed for an incompressible material must be
modified appropriately. One approach is to adopt the same
shear description by replacing the strain-rate, strain-acceleration
or strain, in the differential relations (6.8) and (6.12) by

their deviatoric parts

1, ‘1;3‘ = J’2/3g . (9.1)

w]]
W
e

=p-30,1, B=D-3h

then add an independent volume-change law to relate I, or J

to stress. Now
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by mass balance, where ¢ is density with reference value Por
and J = det F measures the density decrease factor, and

Il = tr D measures the rate of increase of volumé per unit
current volume. In (6.8) and (6.12), the correspéhding

invariants for § and E are

= _ - _ _..__-]__ -a __1_2 - _ —
I1 = tr 9 =0, 12 = 2tr P = 12 611' I3 = det P ’
(9.3)
= _ = _ ~2/3 = _ 1 =v2_.v 21 1-4/3 % - T =
Kl = tr B -.J Kyv K2 = 2{(tr B)*~tr B 1= 3 Kyr Ky = det B = 1,

so that I, and il enter the deviatoric fluid relation (6.8)
explicitly, and Il and J enter the deviatoric solid relation
(6.12) explicitly.

Elastic compression relates density to the stress invariants,
mean pressure and the shear stress invariants, to satisfy frame

indifference. Thus

p=g(piJdyedy), I = —Klé + szz + K333 , 1= 9/0 (9.4)
where the compressibility Ky and shear-rate coefficients depend
on p,Jz,J3. If p depends on pressure alone, then Ky = Kg = 0
and Ky = Kl(p). An infinitesimal volume change approximation
then gives constant Kqe The density relation (9.4) is reversible,
and implies density jumps occur when jumps in the stress invariants
in the argument of g are applied. When (9.4) is added to

the Podified (6.8), stress~acceleration terms are

L d

introduced through il and D , but are zero for constant stress

and constant strain-rate relations. il does not occur in the
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modified (6.12).
A model for dilatancy, the opening of pores and cracks

under maintained shear stress, is given by
I, = h(Jz,Jg) 2 0, (9.5)

defining a constant rate of volume increase per unit volume
at constant deviatoric stress, and a simplified form excludes
dependence on J3. Similarly, if the ice has bulk viscosity

which depends on pressure

I, = -(p) <O, (9.6)

giving a constant compression-rate at constant pressure. (9.5)
and (9.6) may be combined additively, or Il expressed as
a function of J2,J3, and p. However, there must be bounds

on the maximum and minimum densities, and P independent

Py
of load duration but possibly depending on stress level.

Approximate generalisations of (9.5) and (9.6) are
Il = q(J)h(J2'J3), Il = -q(J)2(p) ., (9.7)

or some combination, where

M m (9.8)

¢ > O for JM < f < Jm

O for Es<J and E =24
q(g) =

controls the permitted density range and the rates of change

as the limits Jy = po/oM and J = po/pm are approached. The

relations (9.7) are differential equations for J when I1 is
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eliminated by (9.2)3. No density jumps occur when stress jumps
are applied in the models (9.5) - (9.7).

The response coefficients of the modified (6.8) and (6.12)
may also depend on I, (or J) and p, so that théee independent
stress loading data is regquired in general. We can though
investigate how the interpretation of US, TIS, and BS response
is affected by volume change. In US, p = -%ol = -% Sl so that

p and S1 cannot be distinguished, though dl and d are

2
independent, and hence 31 and I1 are independent. It is
therefore possible to relate I, to p oOr to J, if such
single dependence is assumed, but not to distinguish the possible

dependences. In TIS, p = -%(cl + 202) and Sl = %(cl - 0.,)

2
are independent, and 31 and I1 are independent, so that a
volume change relation can be separated from the single

deviatoric relation if dependence on only one shear stress
invariant in addition to pressure is assumed. In BS, J2 and

J3 are independent, dl' dz, and Il are independent, but only
two of Jz, J3, and p can be independent since only two stresses
oy and o, can be prescribed arbitrarily. Thus, for a

dilatancy model (9.5) or (9.7)lwith no dependence on p, and
with deviatoric response coefficients independent of p, the

BS responses can be usgd to determine the deviatoric response

over the appropriate (J2, J3) domain, then TIS used to

determine the dilatancy response. Here the BS and TIS

configurations provide complementary data.
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10. Viscoelastic integral relations

Constitutive relations of the differential types proposed
here incorporate histories of deformation and stress explicitly
only through rates of change at the current timei The current
stress for a given deformation history is obtained, though, as
the solution of a differential equation in time with the
integration starting from some initial instant, so there is
implicit dependence on history. This arises because stress-rate
is included in the differential relation, whereas conventional
laws of differential type express stress explicitly in terms
of deformation rates. Similarly, the current deformation is
obtained as the solution of a differential equation for a given
stress history. 1In order to describe the typical responses of
ice in uni-axial stress, it is necessary that the response
coefficients - coefficients of the various tensors = depend
on both stress and strain or strain-rate through tensor
jnvariants for a fluid relation and isotropic solid relation.
Even the most reduced solid model left one coefficient
depending on both stress and strain. Constructing practical
uni-axial test programmes to obtain data over the required
stress-strain or strain-rate domain is difficult, and this
difficulty is compounded in the multi-axial tests to determine
simultaneous dependence on two stresé and two strain or
strain—ratg invariants.

A more general description of viscoelastic history
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dependence is through integral relations which express current
stress explicitly as integrals of the strain history, or
current strain as integrals of the stress history. The integral
kernels therefore depend only on strain history%or stress
history respectively, and current time, and funétions of stress
and strain combined do not arise. Given an hereditary integral
of strain-history to determine the uni-axial stress, calculation
of the strain-history for a given stress history is by solving
a Volterra integral equation in time for which simple
numerical marching algorithms exist. Integral equation solution
in three dimensions should be numerically as easy, Or easier,
than corresponding differential equations. Similarly, an
integral expression for stress can be directly entered into
the equilibrium equations for boundary-value problem
formulation, yielding simultaneous integro-differential
equations in place of higher order partial differential
equations arising with differential operator relations.
Development of integral operator relations looks an attractive
programme, both to describe the viscoelastic response of ice
and to improve numerical solution of boundary-value problems.
There is a well established theory of linear viscoelasticity
in which the integrals are convolutions with kernels (weighting
of the past strain or stress) functions of time difference
only. Together with the linearity (superposition), this allows

direct inversion between the strain and stress history

formulations, so that either formulation uniquely determines
the other. Furthermore, one constant strain test determines

the stress formulation; that is, the creep function of time
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which is the kernel; and one constant stress test determines
the strain formulation; that is, the relaxation‘function of
time which is the kernel. The creep function ané relaxation
function, by the inversion, determine each other: sO constant
strain and constant stress responses are fully related and
represent the common viscoelastic property. Recall Mellor's
analogous conjecture for the constant stress and constant
strain-rate responses of ice, not satisfied by the fluid and
s0lid non-linear differential relations described earlier.
To describe non-linear response it is clear that families of
constant stress tests, or other families of tests, are required
since the superposition property of linear response is lost.
Also the convolution inversion theorem for stress and strain
formulations is lost, so will inversion still exist for particular
types of non-linear integral flow? If it does, then Mellor's
conjecture holds for the model, and in consequence the two types
of response cannot be used as independent data. The immediate
corollary is whether constant stress response can be used to
determine the kernel of a stress formulation, and whether
constant strain-rate response can be used to determine the
kernel of a strain formulation.

These questions in relation to the uni-axial regponse of
ice have been the basis of recent research (Morland and Spring)
which now Qas some results in preparation for publication.

Various approximations of a general non-linear integral law
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describing fading memory have been proposed in the literature.
Truncated expansions in multiple integrals with kernels
depending only on the current strain represent tﬁe response
to strain histories which, in some sense, have départed little
from the current strain, and if the weighting factor decreases
rapidly into the past, then closeness is required only in the
recent past. While such models may apply even for widely
varying strain histories, the motivation is lost. Also, to
determine the multiple kernels, the truncation must be fixed
and an appropriate number of tests performed. If further terms
in the expansion are needed, the correlation procedure must be
repeated for the new truncation, and the previous lower order
kernels are not related to their new counterparts. Alternative
models with strain-history dependent kernels allow higher order
multiple integral corrections to be determined by multiple
strain-step tests, retaining the lower order kernels.

For practical purposes a single integral representation
is desirable, and we have now shown that the first term of the
latter type of expansion is in fact also more tractable than the
apparently simpler finite linear viscoelastic model given by the
first term of the former expansion. That is, the numerical
algorithm to calculate the stress response to constant strain-rate,

’ contras

given the strain formulation, is simple and fast, in
to a lengthy calculation for the corresponding finite linear
viscoelastib model. The kernels for both are determined by a

family of constant stress tests. Mellor's conjecture is
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therefore confirmed for this model. It is also shown that

the constant strain-rate response does not lead to any direct
determination of the kernel in the strain formulation, nor

does the constant stress response yield the kerhél in a

stress formulation. The next important question is how any
difference between observed and predicted constant strain-rate
response could be used to determine a correction multiple
integral to the strain formulation. That is, if Mellor's
conjecture is not satisfied by the single integral defined

by constant stress response, can an extra multiple integral
term which does not change the constant stress response be
determined directly from constant strain-rate response? We
have not, so far, devised a direct scheme, and some optimisation
procedure for approximate correlation may be the most useful
approach. Detailed constant stress and constant strain-rate
data is necessary before single integral models and predictions
can be assessed. Discussion of integral constructions by
correlation with such distinct types of response is completely

absent from the present literature.

11. Concluding remarks

The use of integral relations to describe the non-linear
viscoelastic response of ice is attractive for the simplicity
of structure and for the absence of higher order time

derivatives required in differential relations. As discussed
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in the previous section there is still a need for basic
theoretical research on correlation of integral representations
with typical types of data, and subsequently on ﬁhe formulation
of boundary-value problems as 1ntegro—differenti;1 equations
and the development of the necessary numerical algorithms for
solution construction.

Focussing on low order differential relations which are
known to describe qualitiatively the typical response, there is
now a need for accurate, detailed, test data in uni-axial and
bi-axial stress configurations to determine the actual response
coefficients. Since uni-axial data will appear first, an
accurate uni-axial description should be constructed. The
fluid relation is overdetermined by the anticipated constant
stress and constant strain-rate data, but it has been noted
how the key features can be used to determine a model. Since
the solid model can account for strain-jumps, allows anisotropic
extension, and<is attractive for small strain applications,
correlation with one or more of the'reduced models analysed in
section 5 should have priority. The general solid relation is
underdetermined by uni-axial tests. Given a successful
uni-axial relation, extrapolation to tensor relations to
describe three-dimensional response can be tried in a variety
of ways, to yield tentative models for preliminary solutions
of field applicatibns. Solutions may distinguish the merits of

the different approximations.
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The most simple model would adopt the least number of tensor
terms and minimum dependence on invariants compatible with
uni-axial response. As an example, extrapolating the second
normalised uni-axial relation (5.5) with the simﬁﬁifications
(5.13) and ¢§ = w5 = 0 , by assuming corresponding dependence
on one deviatoric stress invariant J, and one strain-invariant

Kl' yields a tensor relation

(1) _ 2 |
s FET(SDIL + ¥*(J5.Ky) 8

- -1
= ¢$(K;)D + w*(K)[B - 3K;11 , (11.1)

where y*, ¢*, and w* are determined by constant strain-rate
and constant stress responses, including response on unloading,

in uni-axial stress. Only ¢* depends on both stress and strain
invariants. Bi-axial tests, or applications, may éhow that the
directional simplifications leading to (11.1) are not acceptable,
but at least it provides a model with appropriate qgualitiative
response which can be used to develop analytical and numerical
techniques for boundary-value problems. Note that both constant
strain-rate response and constant stress response, and the response
to complete unloading from the range of stress levels considered,

are necessary to construct the simplified model (11.1).
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Terminology

al

CL
CLR
CD
CDR

¢, V,0

T1S
BS

us

engineering strain, decrease in length per unit
initial length “
strain-rate, rate of decrease of lengih per unit
current length

compressive traction per unit current area in
uni-axial stress

compressive traction per unit initial area in
uni-axial stress

constant load in uni-axial stress

constant load-rate in uni-axial stress

constant displacement in uni-axial stress
constant displacement-rate in uni-axial stress
response coefficients in differential relations
generalised Young's modulus

stress jump-strain jump ratio in uni-axial stress
Cauchy stress and deviatoric stress tensors
deformation gradient, Cauchy-Green strain, and
strain-rate tensors

pressure and deviatoric stress invariants
invariants of B

invariants of D

tri-axial stress

transversely isotropic stress

bi-axial stress

uni-axial stress
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Fig. 1 < Typical response for constant load test:

(a) creep curve,
(b) strain-rate v. time.
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Fig. 2 -""'.[‘ypical stress—-strain response for constant
displacement rate test on ice.
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Fig. 5 - Strain response at constant load-rate,

(a) as a function of time,
(b) as a function of stress.
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Attachment 1—15
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Summary of "Mechanical Properties of Sea Ice: Theoretical Phasej '~~~ '
Sept. 1980 Nov. 1981", by L. W. Morland

A principal objective of the project Mechanical Properties of Sea Ice is
to determine the constitutive (stress—strain) relations for sea ice.
These relations are needed to compute ice loads on off shore structures.
We believe that a better understanding of these relations will lead to a
better experimental program to measure them, and will help in inter-
preting the measurements. For this reason L. W. Morland was hired to
study potential constitutive relations from the viewpoint of applied
mechanics. Refereace 1 documents his efforts to date. Since it is =
fairly mathematical, we provide this note, which is intended to present
an overview of that report in relatively nontechnical language. We will
not make any attempt at completeness, nor try for mathematical rigor.
Anyone interested is referred to the original report, and to published
papers by Morland and Spring (2), and by Spring and Morland (3).

Morland considers both a fluid model and a solid model. Since the anal-

ysis is somewhat similar, we will only consider the solid model, which

we feel to be more appropriate for engineering applications. Our approach
will be slightly different from that of Ref. 1. -

Uniaxial Relation

We begin, as does Morland, by considering the uniaxial case. We have
the best data for this case. More importantly for our purposes, it is
the easiest to understand. Thus the motivation for the equations is

- clearer.

We are seeking the "simplest” constitutive relation for ice. By this,
we mean the mathematically simplest relation which does not violate any
known physical laws, and is not inconsistant with any known behavior of
ice. Since we are seeking a general relation, there will be special
cases where even simpler relations will give satisfactory results. For
example, in some problems linear elasticity will provide satisfactory
answers, but in other cases, it is clearly inadequate.

We will cheat a little bit by making two assumptions which are not
strictly correct. Our justification for these is that they greatly
simplify computations, and, we hope, will not cause exrrors that will be
significant in engineering applications. These assumptions are:

1. Ice is incompressable. This has two quite distinct implications.
First, the volume does not change during deformation. Thus, if we begin
with a cube of ice, and we know the change in length in two directions
as a result of loading, we can compute the change in length in the other
direction from the requirement of constant volume. “The other implication
is that noune of the parameters that enter any of the equations depends
in any way on pressure. This is open to some question, and below we
describe how the analysis here can be easily extended to account for
pressure effects, should it be necessary.




2. 1Ice is isotropic. While this is clearly not true for first
year sheet ice, it appears to be a plausible assumption for ice from
multi-year pressure ridges on a scale of interest in most engineering
problems,

We begin by observing that we expect that ice under load will behave as
a nonlinear viscoelastic solid. For the moment, suppos€ that the be-
havior Is that of a linear viscoeleatic solid, and consider the implica-
tions in view of the known behavior of ice under load. The constitutive
relation for a general linear viscoelastic solid is (see ref. 4).

U+ a, T +aq, :r.,.:.'..'.'—,: l:,é+ L|é+ bz‘é...... Q)

Here, O is stress, € i1s straim, and a; and b; are consants. The
dot denotes time derivitive. By definition, a viscoelastic solid is one
for which b, # 0 Next, recall that if a constant load is applied to ice
it will creep - that is, the strain will continue to change even though
the stress is constant. In this case, the only non-zero term on the
left of the equation 1l is the stress, which is constant. I1f equation 1
is to be. satisfied with a continually changing strain, then at lease one
other b;, in addition to b, , must be non-zero. We chose b,, and since
we are seeking the simplest relation, we assume all except t%e first two
b;s are zero. Similarly, the fact that stress will continue to decay if
we apply a strain then hold it constant implies that at lease one of the
a; s must be non-zero. We take a, to be non-zero, and all others to be
zero. Since the basic argument Is valid in the nonlinear case, we
conclude that our relation must have stress, stress rate, strain and

- strain rate. '

There are some other constraints on the constitutive relation. Under
some conditions ice undergoes large strains prior to rupture C507%), so
our relation must be valid for large strains. Ultimately the relation
must be three dimensional. To be physically reasonable, the three
dimensional relation must remain true under any coordinate transformation
and must satisfy the physical principal of objectivity, that is, it must
appear the same to any observer.

Taking all of the above into account, as well as including some considera-
tions not covered here, a three dimensional form of the comsiitutive
relations was developed. This will be given below. Here, we give the
one dimensional reductiont

z . - A € AN !
(E-e):"ﬁ +"’~’!}'Ck-€.) [{g..g)?f'wzea‘z = % db(l._,@)e +we (2')

where & and e are engineering stress and strain - that is, they, arg
referred to the undeformed reference state. The coefficients ¥, & .
and ﬁ} are the one dimensional restriction of the response coefficients.
These are material properties, ,and in general will depend on stress and
strain. The term multiplying‘{>is the form of the stiress rate term
appropriate for large deformations.



It is convenient to rewrite equation 2 as

7 = 27, e)e-F(z,0)] 6)

where

A f— 34 2T :
E(-O” ) 2(1-eVY Y- (q)

and 3'_ A :
( l"e) - w?© (S')

AL -
F(7,e)= 250-e)t2 v 7li-e)

Physically, £ may be thought of as a Young's modulus, and T is simply'f?
as measured in a constant load test. o

There are four more or less standard tests that can be used to determine
mechanical properties. These are: constant strain; constant load; con-
stant strain rate; and constant load rate. These have been analysed for
" the assumed constitutive relation given by equation 2. Two significant
conclusions were reached: ‘ ’

gonclu ion 1. Exactly two of these four types are required to determine
E and F. Any two will do, but there must be at least two, and a third
will add no new information (except, possibly as a consistancy check).

Conclusion 2. It is not possible, through any combination of the four
tests descriﬁgd above, to learn anything more about the response of ice
beyond E and F. That is, it is not possible, through uniaxial tests
alone, to determine separately Y, & , and & . Thus multiaxial tests
are essential. Note that, if one were only intgrested in uniaxial load-
ing, it would be sufficient to know only E and F.

In view of Conclusion 2, Morland considerxed the question of whet@sr

there might be plausible restrictions on the form of WV, ® , and& which
might permit us to determine them from uniaxial tests. Briefly, he

found that setting any one equal to zero leads to physically unacceptable
results. However, if we require the ratioﬂyﬂk to be independent of & ,
all three functions can be determined if, in addition to two of the

tests described above, we do a relaxation test in which we measure

strain as a function of time after a load is removed. The further

restriction that “ “
3U7,2) = o LF) G () &)

still appears consistent with our limited kngwledge of ice behavior,
and, in fact, the still further restriction E = E, = constant may be
satisfactory.

The Three Dimensional Equation

The proposed "simplest™ constitutive relation is
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We will not attempt a complete discussion of this equation here, but some
explanation is in order.

The trace of any tensor A, tr(A), is the sum of its diagonal elements.
It is one of the three Envarlants of A, the other two being tr (A ) and
det (A) Pressure, p, is

p= W (g @

where G /is the stress tensor. Incompressability implies p has no 'effect.
We therefore use the dev:.atoric stress tensor, Ss deflned as

| | !Svﬂ g - 1/3er (D’) L 9)
where 2., is the unit temsor. The constant volume requirement implies
tr(Q) = 3 | (10)
where D is the rate of strain tensor. If any two principal components
of D are knomal)the third may be found from equation IO. }; is the strain
tensor, and S is the deviatoric stress rate tensor given by

‘5(1.) - 5‘ + S + 'W) + @-ms  an

where His the rotation tensor (= 9 for our purposes). This more compli~
cated Yorm of the derivative is the source of the coefficient of ¥ in
equation 2 and is a consequence of retaining large deformations. The
parameters VY, tf' s+ y ¥25 Wy and w,are response coefficients, and in
general depend on the invariants of the tensors S, D, and B, denoted
respectively by J;,I;, K. For an incompressabl® materiaf/there is no
dependence on I, Iy » or K3

One way to view equation 7 is to suppose that we began with a general
relation depending linearly on the stress, stress rate, strain and strain
rate tensors, and on the square of both the strain and strain rzte temsors,
This general temsor equation is equivalent to three independent scaler
equations. These can be re-arranged so that one equation is the average
of the three original equations, and the other two are for departures

from the average. The equation for the averages will then relate pressure
to changes in volume. Incompressability implies no change in volume and
no pressure effects, so this equation is identically satisfied. Thus
there are only two independent equations. We remark that since the res-
ponse coefficients may depend on the invariants of S equation 7 does mot
imply only linear dependence on stress.



Spring and Morland (3) argue that E!’,. = 0, and we assume this in the
following. Strictly speaking, for a simplest relation we should take
W, = 0, but, following Morland, we retain it here. :

The two scaler equations equivalent to equation 7 are:

s‘l 1 ngn +3)=(5n Jll = Su.dn TSllJl-l. -2 slt ’(ll] = ¢t d“ -
Y 2 ;__X.‘L)‘-l] S w [).q_)‘l_)"’)\ ]
5“’.[1)\‘)‘1 ¢ A Jtg Y L2, z ¢ '
5).21'""’[. ézz"'%(szz Ju_ 'Su.‘,u - Sy Jn -2 snﬂlny = é"« Ju. (’1)
i wlor - AT v el - NN

where s d;., and )\ are components of §, D, aicl%.

An objective of the present project is to determine the functional
dependence of v, A s}, and e«jon the tensor invariamts L., J: ,
and K; . '

There are four test configurations which appear feasible for use in
determining these. The stress conditions in these tests are listed in
Table 1, with the non-diagonal stress terms being 0. The tests with
true triaxial stress (TS) and biaxial stress (BS) are described by
equations 12. These are two independent equations describing the res-

. ponse in two directions. They are sufficient in principal to determine
the functional dependence of the response coefficients on each invariant
separately, although as Morland shows, they do not necessarily determine
the dependence over the full range of the invariants.

For conventional triaxial, here called transversely isotropic stress (TIS),‘
and uniaxial stress (US), each of equations 12 reduces to the same equa-

tion: . -1 ¥y .
su ¥Y (Su + S, olu) = C}GJU "'% Wy ()'tl- M )*‘;U"()‘ ~)'1) (‘3)

This is a consequence of incompressability, which, in this test, implies
that the radial deformation is completely determined by the axial
deformation. Nothing can be learned from this test that cannot be
learned from the simpler uniaxial test. It is important to note that
this is not true if the material is compressible.

In order to recover equation 2 from equation 13, we set (1—-6‘) ook >\)

wes= “’z[‘“("c)gl(‘“c)“’Wl[l--(‘“-€)6.7; and TS, T T(1-¢)

If we substitute the stress conditions for TIS from Table'l into the



expressions for J, and J, we get
2 3 ¢ \ \
:Tz - %‘ (U|| -U:z) .5/ ('{
2 Tx)
73-—5';(0"..-;1)'1( | - 0s)

Thus for the TIS test J, can be written explicitly as a function only

of J,. It is therefore not possible to distinguish dependence on J, from
dependence on J, using TIS data. This is a limitation on the test, and
does not depend on the incompressability assumption. It is one reason
other tests, such as the BS test, are needed.

Pressure Dependence

Recall that volume changes and pressure were subtracted from equation 7
since incompressability implies no volume change, 2nd no pressure effects.
For the same reason we assumed that none of the response coefficients
depended upon them. This suggests a simple way to incorporate compress-
ability. First, assume that the response coefficiénts may depend on

Jl’ I., K,. Second, add an equation relating pressure and volumme change.

Recali that \
1, - “,Juhgn (6

Thus, I, 1s a ‘measure of the rate of volume change. A plausible equation
for I1 is .

zk‘j.'l*' ﬂlj:l*ﬁg :3—3 ‘ (,7)

We note that while the TIS test is still not able to determine completely
the response functions, it does provide useful information if compress~
ability is important.

Summary

A "simplest", three dimensional constitutive relation for sea ice has heen
described. A study of this equation has shown that:

1. At least two types of uniaxial tests are required to determine
uniaxial behavior. T

2. In general, behavior of ice under multi-axial loading cannot be
inferred from uniaxial tests.

3. The conventional triaxial test has inherent limitations which
mean that it cannot be used tc completely determine the dependence of the
response coefficients on all of the invariants.

4. Thus, a complete determination of the constitutive relatioms
requires at least the use of biaxial or true triaxial tests.
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TABLE 1

Standard Test Configurations for Mechanical Properties Determination,

TEST ABBREVIATIONS PRINCIPAL STRESSES
Triaxial Stress ' . Is - | TR & Uss
Tran;versely Isotropic Stress TIS - T X T2 , Q’lz =03, Xo
Biaxiai Stre§s BS @, X Q2 R q-;3 = Aa

US ' - -
Uniaxial Stress v T, X0 , Ty © q:” 0



Attachment I-2

Technical Memorandum

toughness is in ferms of the ability to dissipate energy before frac

TO: Dr. E.N. Earle, Shell Development Company
FROM: Dr. M. Mellor, CRREL
DATE: October, 1981

FRACTURE TOUGHNESS MEASUREMENTS FOR ICE

As part of the current sea ice study, CRRﬁL has been asked to comment on
fracture toughness measurements for ice and, in particular, to suggest what emphasis
should be given to fracture toughness studies.

In responding to the Shell request, we first review some of the relevant
terminciogy and historical developments of the subject.

Toughness. In everyday sveech,toughness is a quality which enables people, objects,

or materials to endure punishment or strain without yielding. In engineering,

tcughness is a rather poorly defined concept, but traditionally it has been associated
with the capacity of a material to absorb energy before fracturing. Clearly energy
alone, as represented by the area under a stress/strain curve, is not an adeguate
measure of toughness, since high strength and small failure strain could indicate

large energy for a very brittle material. Perhaps the best way to define and measure
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words, toughness can be associated with the integral of stress multiplied b
inelastic strain, or with total strain energy minus the recoverable strain energy.
However, in recent years the term toughness hes beer. appropriated, or perhaps mis-
appropriated, for virtually exclusive use within the ccntext of fracture mechanics.
In fracture mechanics the term toughness, cr fracture toughness, is defined
properly as the cfitical value of the Irwin parameter G, which is aiso known as =2
"erack extension forece". G, or Gﬁ, has the dimensions of energy per unit area and

it is, in fact, equal to twice the effective specific surface energy for fracture.




However, many practitioners of fracture mechanics refer to the critical stress
intensity factor Kc as the fracture toughness of & material, even though Kc hes
dimensions which have no direct reletion to any reasonable definition of toughness.
In order to keep things clear, we have to refer back to the origins of fracture
mechanics, and to the development of modern noctions about fracture toughness.

Griffith Theory. Starting from the observation that the bulk strength of brittle

sclids is, in general, orders of magnitude lower than the theoretical strength

deduced from consideration of interatomic force, A.A. Griffith postulated the

existence of minute cracks and associated stress concentrations. Drawing upon the

stress analysis given by Inglis for a two-dimensionsl elliptic crack in an elastic
plate, Griffith equated the change of potential energy in the plate to the change
of surface energy in the crack as the crack grew in length. For a thin elliptic

crack of length 2c:

= wvzet) = > <4c's\.
Y & Ve /_

(1)

-

where E is Young's modulus for the plate, x is the specific surface ernergy of the
material and @ is the applied stress (tensile and perpendicular to the long axis of

the crack) at which crack growth occurs. Thus

T = (f..t.)h(%l}‘/‘ (2)

for plane stress. For plane strain the corresponding relation is

“ - 't
<o = .____EE_____..} (’Eiji\> (3)
Tli— =2 3

Where # is Poisson's ratio. Numerically, the two equations are not much different.
Much the same result is obtained by direct consideration of theoretical material
strength and stress concentration at the end of an elliptic crack. From considera-
tion of interatomic forces as a function of separation, the theoretical tensile

strength of the material Q; is

n



— YV~
o = (EX
» Q (%)
where g is the atomic spacing in the unstrained state. From the Inglis stress

analysis for an elliptic crack with tip radius/o , the stress at the crack tip

Gt is

- 7w .
2o (—3
S e (5)
where & is the applied stress in the plate. Equating C%t to‘q;for crack growth:

oo "
T = (L) ‘_=_¥_3 (6)
’ ¢}a.,) =
in which/n is considered to be of the same order of magnitude as g for a sharp

crack. This version is identical to Griffith's plane stress relation if

/; = (g/ﬂ> a = 2-55 a (1)

In addition to providing a reasonable physical explanation for the discrepancy
between theoretical strength and actual strength, Griffith was able to develop a
failure criterion for the cnset of brittle fracture in multiaxial stress states.

Modification of Griffith Thecry. Griffith developed his theory primarily to explain

the properties of glass, and the theory was later believed tc be generally applicable
to brittle solids. However, if the strength equations which pontain the surface
energy 5 are applied to metals or polymers, the predicted strength often turns out

to be very much lower than the actual strength of the real material. This can be
explained by plastic yielding at criticel stress ccncentrations, which has the

effect of blunting the cracks.

In the late forties, Orowan and Irwin independently modified the Griffith
equation for strength by taking into account the energy dissipated in localized
plastic yielding, while at the same time retaining the elastic analysis for the
overall effect of a crack because the plastic yield zones were considered small

relative to the crack length. Orowan substituted for the surface energy x a term
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which included a specific energy for plastic working Xp:

v = (&2_3" [E(X:&Q]% ~ (;S”[E_gf_]vz (8)

for plane stress. The approximation follows from the fact that XP >> g .

Irwin expressed the same idea by dencting the critical rate of change of energy

with crack length by a parameter G,. Being an energy per unit area, G, has the

dimensions of force per unit length, and it is referred to as a crack extension
force. In the Irwin formulation

!,z ’ '/1
o F L EEC::T)
T~ < (9)

for plene stress. Thus the Orowan and Irwin expressions are identical with

a. = 2(x*¥ed (10)

An important feature of the Irwin and Orowan modifications is the combinaticn
of elastic and plastic assumptions. The local stress field near a crack tip is
allowed to create plastic yielding, but the overall solid matrix is still assumed
to behave elastically. Obviously, these assumptions can only be justified if:

(1) the spacing between cracks is significantly greater than the extent of the

plastic yield zones at the crack tips, and (2) the sclid matrix really is elastic.

Fracture Mechanics and Fracture Toughness. The name "fracture mechanics” has ccme

to be used, somewhat restrictively, for study of the effect cf cracks on the bulk

strength of solid materials. It derives from Griffith theory, and from the

later modifications of that theory by Irwin and Orowan, as outlined above.
Griffith's original idea was that fracture occurred when a crack externded

without limit because an increment of crack extension involved a gain of surface

energy Us less then the drop of potential energy of the surrounaing elastic

teri :
material Ub

l su"l > \Su‘l (11)



Irwin and Orowan introduced the idea of energy dissipation by plastic yielding at
a crack tip (S\A(,) and the possibility of external work input to the system (SWQ),

making the critical energy balance:

SU, + SWe > SU ¢ W (12)

Since SWO > gUs and g\«lz is, for all practical purposes, zero, the condition
simplified to

SUe > W, 13)

The change of pctential energy S-UP as the crack extends by an increment of length

gx can be equated to & unit force G multiplied by S;':

§U(, = G Sx

(1%)
or
- S Ve
G = S (15)

This 1is Irwin's crack extension force, which was mentioned earlier. From elastic

analysis, the critical value G, for unstable crack extension is

2
S = T o

< =

for plane stress, and

2

G, = "h’(\-’-">c o

(x7)

[ =
for plane strain, where ¥ is the applied stress at failure.
Analysis of the stress distribution around an idealized crack in an elastic

plate gives‘ stress fields that are geometrically similar for geometrically similar



"oracks". The absolute magnitude of & given stress component is proportional to
the stress applied to the plate, © , and it is also proportional to the square
root of a characteristic linear dimension of the crack, such as the half-length
of the major axis c. Thus the effects of geometric scale and stress level can be

expressed by a stress intensity factor K which contains the product‘ T VE; . For

convenience, K is defined as

Yy |
K = (%) )

This is obviously ancther way of expressing the erack extension force G. In

terms of the critical values for failure, Kc and Gc:
K :
G, = —= (19)
=

for plane stress, and

Q = K: (‘—" ”t\)

=

(20)

for plane strain.

In this summary of crack analyses the basic ideas have been developed with
reference to the opening or closing of a two dimensicnal crack in a plate that is
under uniaxial tension or compression. ﬁowever, in fracture mechanics three
Gistinet types of crack motion are recognized (Fig. 1). Mode I is the simple sep-
aration considered for the foregoing discussion. Mode II is in-plane shearing
dispiacement, with opposite faces of a flat crack sliding across each other in the
direction of the crack's major axis. Mode IIT involves twisting, and sliding of
opposing crack faces in a direction normal to both axes of the two-dimensional
crack. As far as materials testing is concerned, interest centers on Mode I, and
virtually all test methods are designed to extend cracks according to Mode I. The
critical value of the stress intensity factor for Mode I is denoted by the symbol

K. .
Ic



Fig. 1 Displacement and crack propagation modes

Application of Griffith Thecry to Ice. There is no reason to believe that basic

Griffith theory will have much relevance to the fallure of ice at low strain rates.

-3 )
However, for high strain rates (2 \Q 3§

at typical temperatures) there is
ample evidence that ice deforms elastically, with a mecdulus close to the true
elastic modulus. Thus before applying modern fracture mechanies, which was
developed largely to explain the inapplicability of Griffith theory for certain
materials, we should check to see whether Griffith theory might apply to ice
under high strain rates.

Equaticn (2) provides a means of calculating the uniaxial tensile strengtn
of ice J, a5 a function of the controlling flaw size when Young's medulus E and
the specific surface energy & are known. For ice of very lcw porosity,
(€ 0.01), the true Young's modulus E is 9 to 10 GPa at typical temperatures.
For non-saline ice, the vapour/solid specific energy 3 is approximately C.1 J/mg}
and the liquid/solid surface energy is about 30% of the vapour/solid value (Fleicher,

1970; Hobbs, 197L.*¥ The vapour/solid value is probably the apprcpriate one

*Liu and Miller (1979) use values that are off by two orders of magnitude
due to incorrect conversion of Fletcher's values.
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for conéideration of brittle fracture in "ecold" ice, but the lower liguid/solid
value might be applicable in ice which has a "liquid-like layer" or liguid-

filled flaws. The latter condition might give something equivalent to the Rehbinder,
or Joffe, effect, whereby x is reduced by adsorption of certain surface-active
chemicals and strength decreases in consequence.

2
If we substitute into equation (2) &= 10O ST and 1 S 3/"“ s
\

te - t
o = (=) (s Y
v
aut < :

- 2.52 « 1ot 1?1
'3

where the helf-length of the controlling flaw, ¢, is in metres. In figure 2, the
resulting calculated values c&'q;are given as a function of the fiaw size 2c.

Figure 2 gives a comparison of calculated values with measured values of
for non-saline ice, meking certain assumptions about "flaw size" for the various
test specimens. In none of the test specimens were Griffith cracks actually
observed or measured,.and so identifiable structural dimensions such as grain size
and bubble size have been used to permit plotting of the data. It seems unlikely
thet the controlling "Griffith crack" could be larger than the grain size in
these intact 1lab specimens, but it is conceivable that the confrolling flaws could
be smaller thgn the grain diameter, perhaps by a factor of 2 or 3 if we are con-
sidering a mosaic of eguant but angular grains.

The real importance of figure 2 is that it gives theoretical strength values
which are credible in comparisons with actual test data. While figure 2 does not
prove that simple Griffith theory is valid for ice, it certainly gives iittle
reason for rejecting Griffith theory out of hand. In other words, we have nc need to
invoke a specific energy for plastic working ( XP) which is orders of magnitude

greater than K , as is apparently the case for metals.
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If simple Griffith theory were to prove valid for ice’there would be little
Justification for studying fracture toughness, which is a ﬁeasure of a material's
departure from simple Griffith behaviour. However, various investigations have
measured fracture toughness, and it is necessary to review the data.

Fracture toughness of ice. Virtually all fracture toughness measurements on ice

depend on tests which flex or pry open a2 crack in "Mode I". Test data are thus

presented in terms of the critical stress intensity factor, KIc' Because the

measured values for Kp, vary greatly, and because we need some intuitive "feel"

when considering these vaslues, it is worth recelling what Ky, means.

Toughness is measured by the specific energy dissipation at failure G

which is also known as the critical crack extension force. KIc is related to Gc by

_ (= GA"‘

i

K

in plane stress, and

ty
- eEG. b
KI: - -

b2
in plene strain. Thus there is a simple direct relation between X and G_ if
Ie e

E is a constant. Ky

¢ is also related to the overall tensile failure stress of the

material O :

Ko = (="

Te

where ¢ is the half-length of the controlling cracks. This relation impiies thst,
if ¢ 1s constant and the stress state does not change, K1o is directly preoperticnal
to the bulk strength of the material.

For ice straining at lcw rates, say less than 10'6 S_ls we would not expect

KIc to have any relevence, since the ice is inelastic and it flows without cracking.



At extremely high rates and low temperatures, ice could conceivably become perfectly
elastic and perfectly brittle, and under such conditions the original Griffith
theory ought to apply. For such a limit, vitrlxctending to the specific surface

energy K . KIc would tend to a low value:
)
‘2
K — (ZE XB
Ie

in plane stress. Taking E = 10 GPa and the grain boundary specific energy

¥ = 0.1 J/m? for freshwater ice, the lower limit of K;, might be about L5 kN-m'3/2

for plane stress.

Measured values of Ky, for ice are typically of order 100 kN—m‘3/2, This is
not much higher than the "Griffith" value, and it implies that XP ~ 5 3 s
assuming that E is more or less constant.

When strain rate, or loading rate, is varied in a fracture toughness test for
a given type of ice, we would expect Ky, to decrease as é or‘&'increases, at
least for non-saline ice. While at least one set of experiments shows a trend
opposite to this, the overall trend shown by compilation of published data is in
the expected sense (Fig. 3, L4). Rate effects were criginally expressed in terms
of the speed of the testing machine, which is clearly of limited interest, but now
the accepted rate variable seems to be iI’ which is really the inverse of the time
+0 failure. Strain rate has been used as a variable, but there are some problems
of interpretation.

In sea ice, K;, has been found to decrease with increase of loading rate for
;(I > Io.sz°v:\2/3 S-‘ s OT effectiveé > \0.3 s" (Urabe et al., 1980; Urabe
and Yoshitake, 198la & b). However, for lower rates Ky, appears to be insensitive

to rate (Fig. 5). The lowest measured values for sea ice are lower than the

expected "Griffith value" for pure ice.

1D



In discussing rate effects, we have assumed that Ky, Will gecrease as the

material become more elastic and more brittle due to higher loading rates. Externding

this line of argument to temperature effects, we might therefore expect Xj. to

decrease as temperature decreases, since lower temperature undoubtedly mekes ice
more elastic and more brittle. However, experimental data (Fig. 6) seem to show
exactly the opposite trend, with KIc increasing as temperature decreases. This
observed trend is consistent with the fact that tensile strength<z}increases as
temperature decreases, since Ky, is proportional to strength if the crack length

2¢ is constant. Nevertheless, there does appear to be fundamental contradiction

between the observed temperature effect and the rate effect if the ideas of fracture

mechanics are applicable to ice.

17

If measurements of Ky, are valid, they permit a systematic treatment of flaw

size. For a constant value of Ky, and variaticn of crack length 2c between samples,

the tensile strength Q}mdght be expected to be inversely proportional to /?;
Urabe and Yoshitake (1981) tested both notched and un-notched beams with varying
grain size in order to calculate flaw size fcr the ice, and they found a perfect
correlation between calculated flaw size and observed grein size. However, this
experiment appears to merit further discussicn, since bothcgwand X1, were
functions of grain size, and the effect of grain size onﬂ;%appears to be in the
wrong direction.

Vaudrey (1977) messured Ky, for sea ice at -10° and -2¢°C, and plotted the

results against the square root of brine volume for a very narrow range. Vaudrey

drew a line on the graph to indicate linear decreas of Ky, with increase in the root

of brine vclume but, in fact, there was no significant correlaticn between the
variables (K7, values scattered by a factor of 5). Shapiro et al (1981) made

measurements in the same range (brine porosity 0.16 to 0.38), and showed a mere
convincing decrease of Ky, with increase of porosity, althcugh there was stilil

large scatter.
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Discussion. When ice is tested at high rates, so that its behaviour is almost
purely elastic, simple Griffith theory gives credible predictions of tensile
strength, and it predicts values of Ky, which are very close to the values measured
at high strain rates.

If ice behaves perfectly elastically, we expect little variation ofc;_and
S

o with temperature, since decrease of temperature involves a slow increase of E and

a slow decrease of x . The experimental data forc; are consistent with this speech
and the data for K;, given by Miller (fig 6) suggest that the expectation might be
borne out if loading rates are sufficiently high.

At the same time, purely elastic behaviour cught to eliminate wvariation of
G; and Ky, with strain rate, since neither E nor’x are expected to be significantly
rate-dependent. The limited data forq’r as a function ofé (Hawkes and Mellor, 1972)
are consistent with this expectation, but date for Ky, do not appear to be tending to
a limiting value for high strain rates.

To sum up the foregoing, ice loaded at high rates behaves elastically, and the
limited experimental data forc;,and Kr. at high rates are not in serious conflict
with the predictions of Griffith theory.

Going to the other extreme of behaviour, when ice is strained at very low rates
its elastic behavicur is completely overwhelmed by non-linear viscous flow. In
this ranée of behaviour there is no justification for applying elastic fracture
mechanics, and Ky, has no significance whatsoever.

This leaves the question of the intermediate range, where elastic deformation
and viscous flow both contribute significantly to the total strain. In considering
the possible relevance of Ky, for this range, it is important to keep in mind the
derivation of the relevant theory, and alsc the distinction between ideal plasticity
and viscous flow.

In deriving the thecretical framework into which Xic fits, it is assumed that

the solid material is elastic-plastic, so that the general matrix can remain elastic




while only the most highly stressed zones suffer plastic yielding. However, ice
does not have & finite yield stress; it begins to flow at very low stresses, and
the flow rate increases with the third or fourth power of stress. Thus, if loading
rate is low enough to permit significant inelastic strain prior to final failure,
it is unlikely that elastic-plastic fracture mechanics would be applicable. WNever-
theless, there might be a2 range of behaviour, at rates just below those which give
purely elastic response, where Kie is a useful parameter. To examine this pos-
sibility, we have to reconsider the experimental data.

K;. 1s supposed to be a measure of toughness, and a material's ability to
resist weakening by flaws and stress concentrations. We therefore expect K1, to
increase as ductility increases, but we have to keep in mind that increase of K1o
would usually be reflected by an increase of strength.

For ice, Ky, certainly appears to increase as strain rate decreases from the
pure elastic range. There are also experimental data showing increase of strength
as strain rate decreases through the same range, but these data are not yet con-
clusive because of the possibility that the trend is caused by imperfections in
test technique.

However, as ice temperature decreases, the limited data show KIc increasing,
even though the material is undoubtedly becoming more elastic and more brittle.
This trend cf Ky, corresponds to the trend shown by strength, indicating a degree
of internal consistency in the theoretical ideas, but it is in direct conflict
with the strain rate response. Perhaps more to the point, it is in conflict with
common sense --- ice does not get tougher as it gets colder.

The reasons for this strange behaviour of K1, are not immediately obvious, but
one might suspect the test method, which is usually beam flexure. Overall, the
strength data from beam flexure tests on ice are wildly inconsistent, and it is not

hard to see why. The basic assumptions for beam anélysis are as fcllows:



(1) linearly elastic homogeneous material, (2) equel moduli in tension and com-
pression, (3) small strains, with cross-sections remaining plane and mutuelly
parallel. These are met only at very high strain rates, where the test becomes
very sensitive to imperfections of specimen preparation and loading technique.

Even if a perfect test is made at high rate, fracture initiates at the surface, the
zone of critical stress is very thin, and the crack propagates in a stress |
gradient. If conditions are such that the beam is not perfectly elastic, the
degree to which the assumption remain valid varies with temperature and strain
rate. Thus the variation of "flexural strength" with strain rate and temperature
is unlikely to provide a good indication of the variation of‘c;with strain rate and
temperature. When ice beams are notched for fracture toughness tests, a further
level of complication is introduced.

Conclusions. When ice behaves elastically (é 2 lo.ss"at typical temperatures),

L

simple Griffith theory can be used to assess the effects of flaws and stress

concentrations.

When ice is subject to significent creep (& € 1075 571 at typical tempera-

tures), Ky, has no significance.

For the range of behaviour where ice is quasi-brittle (say 10~% to 1073 s™1

. - RS i A S e

at typical temperatures), the existing data for KIc are not easy to accept at face

SRS

value. Until the apparent contradictions are resolved, it would seem unwise to
use K1, as a design parameter.
Recommendations. Fracture toughness measurements by other research groups should

B e E———
be kept under review. New measurements by Shell probably ought to be deferred

e e —

until beam flexufé testing has been subjected to critical examinaticn. It may be

néEéss&ry to devise new test methods in order to obtain reliable measurements of

KIc for ice.
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Dislocation theory for crack nucleation

Griffith theory and its derivatives deal with the growth of existing cracks.
There is another body of theory which deals with the nucleation of cracks by pile-
up of dislocations. The latter theory is usually considered to have originated
with Zener, and its development is associated with the names Stroh, Petch, Cottreil,
Smith and Barnby.

The dislocation theory gives an expression for the effective shear stress 'tpac

which is needed to produce crack nucleation:

v
T - IMY @ 2
off (‘30- N ,_) (8-1)

where G is the shear modulus and L is the length of the disiocation pile-up. Sub-

stituting for G in terms of E and rearranging the eguation:

Tefi‘ - (IG(t-'!a‘)}( ) (a-2)

This is similar in form to the Griffith equation if L is thought cf as a fiaw size.
However, ‘I;f;is the shear yield stress TY » Which is directly preportional to

C{; » minus a "friction stress" ‘f} which resists dislocation nction:

I

TQ:; T - T; (A-3)

v

Carter (1970) applied these ideas to ice, taking 'f; = Of/2anda L = q/2,
where d is the grain diameter (others have taken L = d). He apparently determined
'E experimentally as 3 kgi‘/cme, but did not explain how this was done. The prediction

equation was thus

G‘

T

Y "2 —_
= (%) (B0 ~ 2T "

2li-?)

This gives a grain size dependence similar to that predicted ty the Hall-Petch

relation, instead of the simple d'% relation which is obtained by identifying zrain

size with Griffith cracks.

16




| Attachment I-1la

MECHANICAL PROPERTIES OF SEA ICE

.Report Ml. Background and Aims

1. Preamble
The meeting with Dr. Earle in Vancouver served to inform me of
the overall project and long term aims, and of the present negotiations

with CRREL to start a testing programme. My understanding of those aims

is as follows:

(i) To obtain accurate data on the time dependent response of sea ice

SR —

up to stress levels which occur in the engineering applications described

below. The time scale of interest can be of order 1055, so that primary

(decelerating) creep, secondary (a period of steady response or simply

an inflexion point) creep, followed by some part of the tertiafy
(accelerating) creep, can arise under a maintainéd‘stréss (Mellor, 1980).
Thea%ate process is strongly dependent on (deviatoric) stress level, though
possible dependence on mean pressure in situations of high confining
pressure does not apﬁéar to be known. There is also strong dependence

0 - 4]& R s
on temperature, and the range 273K to 230K is of practical interest.

—— e

A range of deviatoric stress and of confining pressure must be defined.
The effects of salinity, up to 0-015, on ductility and anisotropy,
particularly of newly formed ice, will be important. Finally, rupture

sttt

criteria in different failure modes must be determined.

(ii) To construct a constitutive law (or laws) which fits the data
to an acceptable degree of accuracy. For application fhis must describe
the response under general stress, and must therefore (a) be expressed in
tensor form to be coordinate invariant (b) satisfy the principle of material

frame indifference (objectivity — material properties independent of the




-

-2 -

observer). In addition, any important anisotropy, restriction on

1
material symmetries, must be described, in contrast to the conventional
assumption of (full) isotropy. There is also the distinction between
compressive and tensile response observed in uni—axial stréss vwhich is
lost in the very simple tensor model usually assumed in glaciology. It
is self-evident that a tensor law to describe general stress response
cannot be determined by uni-axial stress tests which, so far, are the
only source of accurate data on natural ice. The experimentally difficult
combined compression — shear tests of Steinemann (1958) had much more
restricted aims and, it seems, were not subsequently refined to improve
accuracy. This stress combination would be of great value in
distinguishing tensor relation "shapes" which are identical under
uni-axial or bi-axial stress (Morland 1979), but is not viewed with
enthusiasm by experimenters. Tri-axial stress tests will therefore be
essential to determine combined stress features. Rupture criteria must
also be formulated.

(iii) To solve boundary-value problems describing the main features

——y

of ice-sheet flow, both thin newly formed sheets and thick multi-year

L

sheets, against structures and artificial islands, in order to determine

contact pressures and total loads. Contact problems involving both
S ettty ——
crushing of ice against the structure and bending of the ice sheet prior

——

to breaking are observed, and both situations must be analysed to determine
PR

the maximum pressures and loads required in the structure design brief.
Both ﬁhe problem formulation and method of solution can depend on the
type of ice law (differential operator, integral operator, fluid, solid)
adopted, but since the time scale of the necessary model construction

outlined in (i), (ii) must be long (years), it will be necessary




to proceed with this applied mathematics development in parallel by
considering one or more qualitative laws of anticipated form(s).

Solutions may give strong indications of the relative significance

of different features of the model in determining structure design
parameters, and in turn re-direct the testing prograﬁme to concentrate

on the more significant features. However, at this stage I would not
anticipate any dramatically simplified programme, which should be
approached in the spirit outlined in (i). Nevertheless, the solutions

can exhibit useful qualitative features arising from the chosen law,

with possible magnitude estimates, and may suggest rational approximation
procedures to deal with a more complicated law. The problems are highly
non-linear and will certainly require a lengthy combination of mathematical
analysis and numerical computation. It is important to establish and

test procedures to treat some class of problems accurately, to be
available as a starting point for subsequent developments, and such
analysis will require a lengthy research effort. Since thick ice sheets
can have a large temperature variation through the thickness, and creep
rate depends strongly on temperature, the mechanical response is
significantly non-homogeneous. A constant (mean?) temperature assumpticm,
often used in glaciology, may not yield the correct shape of results,

and poses the prior question "what constant temperature?”. It does not
follow that adopting the worst design parameter from a range of constant
temperature solutions is satisfactory, and alternatively this may be far
too pessimistic. The most simple approximation procedure to take some
account of temperature effects is to assume a temperature profile (based
on field data), but at some stage a solution of the coupled momentum - energy

balance system is required to test the validity of such approximations.




2. Constitutive models

The non-linearly viscous fluid model adopted in glaciology gives
constant strain-rate at constant stress, and neglects entirely the
transient primary (and tertiary) creep described by MellorA(1980).

In fact, laboratory test time scales at the low deviatoric stresses
common in glacier flow are probably much too short to predict the
assumed long time 'steady' response, strictly a tertiary creep limit,
not secondary creep inflexion, on glaciological time scales. Small
strain creep tests inm uni-axial stress have been carried out by Sinha
{1978), Gold and Sinha (1980) to determine a creep law suitable for
engineering applications. The data is fitted to a one—~dimensional law
for strain in terms of stress and time explicitly, not associated with
a tensor relation, and the explicit time dependence violates frame
indifference.

A frame indifferent tensor law relating stress to strain-rate
and strain acceleration (Morland 1979) shows that the shape of observed
transient primary creep followed by a steady secondary creep at constant
uni-axial stress can be modelled, but not necessarily the detailed time
response at different stresses. A generalisation of this viscoelastic
differential operator fluid law (Morland and Spring 1980) has shown that
the secondary inflexion followed by tertiary creep to a steady asymptotic
limit can also be modelled, with reasonable approximation to an assumed
idealised set of creep curves at different stresses. However, to account
for the known stress-time behaviour at constant strain-rate, it ig necessary
to include dependence on stress-rate, and since this term is identically
zero in a constant stress test it is never recognised. Thus, constant
strain-rate data provides additonal information to constant stress data,
and vice-versa. Model fitting to idealised constant stress and constant

strain-rate curves has allowed a good description of the time response




for one set, but less satisfactory for the other. For example, good
time response is modelled for a family of constant stress curves - range
of stress levels - but the chosen model has then only flexibility to
correlate with a single constant strain-rate curve, and predicts the
response at other strain-rates. It would be possible to improve the
correlation of this first order differential operétor law in stress

and strain-rate with given curves by allowing more complex response
function dependence, and higher order operators would give more
flexibility. However, for coupling with momentum balance laws in
applications, the differential operator form, even of first order,
is’not convenient, and must introduce undesirable features into numerical
formulations. This contrasts with homogeneous linear viscoleastic
analysis where the constant coefficient differential operators in time
allow use of a Laplace transform.

We have also investigated differential models of solid type,
incorporating dependence on a reference configuration through stretch
rate instead of strain-rate. This dependence is essential to describe
anisotropy, and the model will be used to determine uni-axial response
following a period of maintained shear, to determine the induced anisotropy
from the new sample configuration, even when the model is isotropic
with respect to the initial state. In the case of anisotropic newly
formed saline ice, it would be possible to start with an initially anisotropic
law, and find that the response from later configurations (after
confinement by growth) is less anisotropic. Here, though, the decrease

of salinity may be the more important factor.

3. Planned investigations

For both fluid and solid type laws I think that an integral operator

law can provide better correlation with time response and be more suitable
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for formulation and numerical treatment of boundary value problems.

An investigation of integral laws will be the next stage of my research
project supported by US Army ERO in collaboration with CRREL, and, with
CRREL approval, developments could be available for use prior to
publication. In the meantime,‘the differential operator fluid law
(Morland 1979, Morland and Spring 1980), which is shown to be the most
simple differential structure to model known qualitative response of ice
in uni-axial constant stress and constant strain-rate tests, can be used
to determine minimum test geometries and procedures required to recognise
the essential features.

An immediate problem is the shape of the tensor relation describing
the viséous fluid behaviour in steady creep at the inflexion point or
long time limit (Morland 1979). Siﬁce the simplifying assumption that
deviatoric stress is parallel to the strain-rate was made in the early
days of ice testing, it has not been questioned in glaciology, though
never confirmed. It cannot, of course, be assessed by uni-axial stress
tests, which can only determine one response function of one argument,
but departure from this parallel relation has strong implications for loads
involving shear. It has now been shown that bi-axial tests, involving
two independent principal stresses, serve only to verify the incompressibility
approximation (during creep), and do not separate the two independent
response functions of a general frame indifferent (necessarily isotropic)
viscous fluid law.

Discussions with Dr. Earle suggested the following immediate
investigations to assess further the value of bi-axial load tests and

some restricted forms of tri-axial test, illustrated in terms of the
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viscoelastic fluid models:

(I1) Applications of independent principal stresses ol(t),
oz(t) = 03(t), with distinct time dependence to see if any
separation of response functions is possible. For example,
combinations such as o = ooﬂ(t) A constant, with cz(t)
continuous (zero at t = 0), or vice-versa, to investigate any
order of loading effects, or o, = A;ol with A constant,

2

al(t) continuous.

(I2) Application of a longitudinal stress with a kinematic constraint,
such as zero displacement, in one lateral direction, free displacement
in the third direction, or alternatively, application of two

independent principal stresses cl(t), cz(t), with 03(t) = 0.

(I3) Analysis of tri-axial loading, that is, three independent principal
stresses. In particular, to determine the extent of information
obtained by a restricted range of tri-axial loads to see what
minimal programme of tests is required to describe important combined

stress situations.

(I4) 1Inclusion of the third (odd) strain-rate or stress invariant
in response function arguments to distinguish compressive and tensile
response, not, as yet, explored in any theoretical models, but of
significant practical importance. Each of the investigations
(I1) - (I3) should be followed in this manner, noting the difficulty
of applying tensile stress in more than one direction, so that the
range of the odd invariant will be restricted. We need to know how

restricted, and if important combined stress configurations will




be omitted from the domain covered. Furthermore, how will
dependence on the odd invariant influence simple shear response,

which should be directionally invariant.

The above investigations all appear feasible within a modest time
scale so that conclusions could influence test programmes in the early
stages. It seems sensible to treat the (I4) question simultaneously
with (I1), (I2) before stafting (I3). Progress usually prompts more
pertinent questions so the themes (Il) - (I4) may not be exhaustive.
Looking ahead, these sort of questions‘must be raised and examined for
integral operator laws, with experience gained from the differential

operators directing attention to the key issues.

5. Rugture

To complete this report I will add a few comments on rupture.
Firstly, this term should always be used since failure (in ice mechanics)
is ambiguous, certainly used in the sense of peak stress in a constant
strain-rate test beyond which the stress relaxes smoothly without any
material fracture. The most simple theoretical model is the postulate
of a critical value of some given stress combination being reached,
necessarily a scalar function of the stress invariants for frame indifference,
analogous to the "plastic yield" conditions adopted in rock/soil mechanics
(Morland 1971). Here bi-axial tests can investigate rupture over a
two-dimensional stress domain, so tentatively separating shear stress and
mean pressure influence. This approach is strictly empirical and within
the framework of continuum mechanics, since it does not invoke any

underlying physics cause, but a correlated dual approach may be useful.




In the recent IUTAM Symposium a number of scientists proposed that

strain (not stress) was the essential physical ingredient of a rupture

criterion. This contrasts strongly with the model described above,

since a given current stress allows a variety of strain histories.

This appears to be an area where careful testing and interpretation

is required to decide the essential dependence.

6.
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MECHANICAL PROPERTIES OF SEA ICE

Report M2. Viscoelastic Differential Operator Model and Test Geometries

1. Introduction

Report Ml listed some immediate investigations to assess the values
of conventional bi-axial and limited forms of tri-axial tests to )
determine the tensor shape and coefficient depéndence of laws for an
incompressible viscoelastic fluid. Specifically, (Il) seeks the
significance of distinct time dependences of the principal stress
Gl(t), oz(t) E q3(t), in a bi-axial test; (I2) proposes the examination
of alternative twb parameter loading configurations, namely
(a) 03(t) =0, ol(t), oz(t) independent, (b) 63(t) é o, Ul(t)
arbitrary, strain-rate dz(t) = 0 (zero displacement in xz—direction);
(I3) is the analysis of tri-axial loading to determine how restricted
ranges of the principal stresses describe general stress configurations;
and (I4) introduces dependence on two independent stress invariants and
two independent strain-rate invariants, necessary to distinguish compressive
and tensile response in uni-axial stress.

This Report covers each of the investigations (I1) ~ (I4) in relation
to a differential operator model relating stress, stress-rate, strain-rate,
strain-acceleration. It is shown that the bi-axial test can provide
no more information than the uni-axial stress test, except that
incompatible results would invalidate the adopted model. The analysis is
presented for general tri-axial loading, with coefficients depending on
all four stress and strain-rate invariants, and the bi-axial configuration
0'2=0'3

cases. It is shown that three independent stresses are not necessary

and alternatives (a), (b), with 035 0, are extracted as special




to determine the model, and that alternative (a) provides (in principle)

a full cover of stress configurations,including uni-axial tension,
even with the restriction 9 L 0, o, € 0 (both applied stresses

compressive), and must therefore become a priority in constant stress

test programmes. Correlation between model and data requires an analysis

of two simultaneous non-linear differential equations, for which the
shape of the observed response is significant, and this will be an
important part of the theoretical research programme. Constant stress
response is not sufficient to determine the mechanical properties, and
must be complemented by constant strain-rate response. Here, the more
practical alternative (b) with oz(t) a resulting response, not applied,
is only of limited value. This specific investigation arose out of my
discussions with Dr. Earle, emphasizing the value of interchange of
views.

The full analysis of this‘differential operator model applied
to uni-axial stress response has only been recently completed as part
of an ERO contract in collaboration with CRREL, and will appear in an
Annual Report. A paper for publication is presently being typed, and
I have requested permission to give you an advance copy on completion.
Further to the outline in an earlier technical report you have, it is
now shown that the entire family of strain-rate v time responses at
different constant-stresses, and the family of stress v time responses
duripg primary stress increase at different constant strain-rates, can be
correlated with the model. This means that constant strain-rate response

contains additional information to constant stress response, but reflects
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some common properties in that the stress-relaxation is now predicted.
Alternative combinations of correlation and prediction may be adopted,
and in particular the roles of constant stress and constant strain-rate
response may be reversed; full correlation with constant strain-rate
response, partial correlation with constant stress response.

I will start by describing the uni-axial response at constant
stress and constant strain-rate which the model must predict, and the
necessary and sufficient forms of differential relations (up to .
stress-rate and strain-acceleration). These cannot determine explicitly
the corresponding tensor relations for general stress configurations,
but a general shape is inferred and particular examples are proposed
which could 'be a starting point for analysis of the simultaneous
differential equations corresponding to case (a). This approach to
model construction will be relevant when compatibility with two-dimensional
observétions must be ensured. My presentation here is different from
that of the paper which starts from tensor relationms.

Simple shear motion is analysed for the general model, showing
that normal stresses on planes perpendicular to the shear plane are
necessary. More important, the effects on the model coefficients of
assuming invariance of the shear stress—shear strain-rate relation
under reversal of shear stress direction can be investigated. Even
thoﬁgh simple shear tests are not practical, this property appears
entirely plausible. It implies no restrictions on the coefficients. Next,
tri~axial stress is analysed and specialised for cases (a), (b), deriving

the simulaneous differential equations arising from constant stress and

constant strain-rate tests. A detailed analysis of the domain of stress
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jnvariants covered by compressive loads in case (a) is presented,
showing in particular that oy = 101 for different constant A > O,
constant O, < 0, can cover the full domain, including tensile

configurations

2. Differential operator model

Figure 1 from Morland and Spring (1980) shows the typical longitudinal

compressive strain-rate r(t), where t denotes time, at a constant

uni-axial compressive stress o , and Fig. 2 shows the typical stress
o(t) at constant strain-rate r (Mellor 1980). 1In the primary creep r
decreases from the initial strain-rate ro(o) to a minimum strain-rate
rm(c), which corresponds to the inflexion point (secondary creep) on a
strain-time curve, then in the tertiary creep r increases to an
asymptotic equilibrium strain-rate re(o). Results are stated for

T, < T, but analogous results can be given for L > T . It is suggested

.

that r, > r, as o > 0, so that tertiary greep becomes indistinct
from secondary creep at low stress. Note that the significant non-monotonic
strain-rate implies that strain-rates r in r, < T <r, occurat two
distinct times during the creep. In turn this requires that a differential
equation for r(t) which expresses the strain-acceleration é(t) as

a function of r must have two branches. Similarly, at constant r,

stress increases from zero to a maximum GM(r) at time tM(r), then
relaxes asymptotically to an equilibrium level OE(r). Consistency

of the two types of response for the same material implies the inverse

relations

r;I(r) = oE(r), r;l(r) = OM(t) . (1)




We now seek a differential equation for r(t) which describes the

response shown in Fig. 1 at constant o , strictly a family of such

curves for different ¢ . A viscous fluid law which implies constant r

at constant o 1is quite inappropriate, but inclusion of a strain-acceleration

term, and hence dependence on r in uni-axial stress, allows this
variation with time. A more limited description of primary creep with
secondary creep an asymptotic equilibrium limit was so modelled by
Morland (1979). The principle of material frame indifference requires
that time does not occur explicitly in response coefficients of the

model, which must be functions of invariants of the arising tensors.

T,

For uni-axial stress, coefficients will reduce to functions of ¢ and
so that the differential equation relates r and r with o as a
constant parameter. To describe the response shown in Fig. 1 it must
yield two branches:

r () =R (r,0) €0, r >r>r_,

- - o m

. (2)

r+(t) = R+(r,c) > 0, rm's r<r,
where R_(r ,0) = R*(rm,o) =0, R, >0 as r~ re(c), and R_, R+
are given data. It is convenient to define R+(r,c) = 0 for
r,<r<r. The appropriate differential equation is

P2+ £(r,00F = F(r,0), 1(0) =1 (0), (3)
which has two branches

2 [?—] = - f 2 (f2 + AF)i, N ' (4)

r, >

if F»0, f > 0. Comparing (2) and (4),

f = —(R+ + R), (f2 + 4F)% =R, ~-~R, r STr$r,, (5)




which determine £(r,o0), F(r,o) with F = 0 for r,<rs T, Various
properties of £ and F required to reproduce the smooth response
shown in Fig. 1 are deduced by Morland and Spring (1980).

A similar analysis of the constant strain-rate response o¢(t) shown

in Fig. 2 yields the differential equation

3% - g(r,0)s = G(r,0), 0(0) = 0, (6)
with two branches

2(%+]- 52 2 v 40k @

n

We require G20, g>0, and G= 0 for r > T, using the inverse
relation_(l)l, and also f=F=g=G=0 for r< r - The various
tensor laws relating stress, stress-rate, strain-rate, strain-acceleration,
compatible with (3) and (6), deduced by Morland and Spring (1980) all

imply

F =G, (8)

so only one response function g(r,s) 1is available to correlate (7) with

observed data once £, F are determined by (5). For example, the primary

stress increase given by 5+ can be matched by choice of g, then

the relaxation &_ is predicted. Thus, constant stress and constant

strain-rate response are neither fully dependent nor fully independent.
The full correlation (5) requires both £ and F to depend on both

r and o0 , and in turn the tensor coefficients must all depend om

at least one strain-rate invariant and one stress invariant. Dependence

on one stress component 0 and one strain-rate component Tr cannot

distinguish dependence on two independent stress and two independent

strain-rate invariants, though some restrictions are imposed by seperate




compression and tension results.

A simple form of frame indifferent tensor relation between stress,
stress-rate, strain-rate, strain-acceleration, for an incompressible
fluid is

. 2
v.S + p (8 + SO+ W + (D - WS - Ztr (S D]
) 3+ -~ - -~ - 3 -
2 2. .9 ®
= 00+ 4,[07 - 3] »e[D e w-w)
where D + W is the symmetric-skew decomposition of the spatial velocity
gradient, S is the stress deviator, and the superposed dot denotes

-~

material time derivative. Thus’

L]
i

S o-%trc 1, D+W=gradv, ¢trS$ = trD

-~

0, (10)

where o is the Cauchy stress and v the velocity. The form (9) assumes
linear dependence on the stress-rate and strain-acceleration temnsors. The

coefficients can be functions of any invariants of S, D,

tene

» D and their
products, and to obtain (3) and (6) in uni-axial stress it is necessary
to incorporate some dependence on rate invariants. A basic set of

invariants 1is

_ 1 2 _1 2 _
JZ"T'?_'tr? R J3 det§, 12-—2—trP s I3~detP,
. . . . (11)
J2, 33, Iz, 13 .
In uni-axial stress =047 %O (>0 for compression), other
= 1 1 1n— . - ‘= = = !.'_
o’ij = 0, with corresponding strain-rate D11 T, D:22 D33 5T s the

constant stress relation is

2 2 1 2 .
‘3“"1" + —§w3or + ¢lr - —2—4:21' + ¢3r o, 12)




to be compared with (3), and the constant strain-rate relation is

2 2, = 2 1 2
—3-11;10 - -3-11:30 + -51;;3 or + ¢1r -itbzr o, | (13)

to be compared with (6). Both (12) and (13) are special cases of the

tri~axial stress relations constructed later. Two examples of the
comparison

simultaneous(12) with (3) and (13) with (6) are cases in which rate

dependence is entirely through the tensors S and D ,and entirely through

the invariants 32 and iz . First

U

¥ =1, 2y, =-5+g(5,0) -1, 4, =1+ £(r,0) |
(14)
2 22 . 2

F(r,o) = G(r,0) = ~ ¢1r + %#’21’ - rog(r,o) + r ¢ + 39 >

in which w3, ¢3 depend on stress-rate and strain-acceleration invariants
respectively as well as on J2, J3, 12, I3 » and ¢1, ¢2 depend only
on the latter set. Second

¢3 = ‘1’3 =0, %'411 = - 1..'2 - f(r,o)l" - 5’2 + g(r,c)c.w » ‘
(15)

1 2
F(I,O') = G(rsd) == ¢11’ + '2'¢2r »
in which wl depends on the rate invariants.
3. Simple shear motion
Consider a simple shear motion
v, =2y x,, Vv,=vy=0, v (16)
for which
Y 0 c v 0
D=1{ vy 0 O ’ W={-y 0 O R a7n




where vy 1is the shear strain-rate. The corresponding stress has the

form
o T 0 go -1 T 0
1 371
o=y oy o], § = T %OZ-T 0 ’ (18)
o o0 o 0 0 3,49,

in which oy = 0 is compatible with (9), but in general non-zero normal

stresses 0, and o, are required. The invariants are

2 1,2 2 1 :
J2 ™ + 3(01 + o, 9102)’ J3 57(01 + 02)(01 202)(201 02),
(19)
2
12 =y , 13 =0,
so Jy is independent of T and I, is zero for all Yy ; no I,
dependence could be detected. The tensor relation (9) yields three
independent simultaneous first order differential relationms
2 1 2e 1. 4 12
Vo -3y +¥3lEe -39 - 3] = 3r 6, - 6oy,
2 1 S r,2e 1- 8 12
v, G, - 30 +0s[G, - 3 H3TY] =376, + 60)), (20)

I S )
byt u[E 4 2Gey - 3] = ey ey

For given coefficients ¢1, ¢2, ¢3, wl, w3, and prescribed y(t),
the solution ol(t), cz(t), 1(t) will not in general have oy =0
or o, = 0, so these normal stresses are required to maintain the
simple shear motion. Similarly, an analysis of simple shear stress

shows corresponding non-zero axial strain-rate Dll’ DZZ' Now if the
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direction of shear is reversed, y -y, we can safely assume

but
T *——'r,L'ol, o, are unchanged, so JZ’ J3 ’ 12, 13 are unchanged.
Thus - ¢1, ¢3, *1’ w3, can be arbitrary functions of 12, 13, J2, J3,

and their rates, consistent with each relation of (20).

4, Tri-axial stress

Consider three independent principal stresses T1» T95 Ogs with

corresponding deviatoric compenents Sy 32, §, = -(Sl + SZ) where

55 %9 7 %k« ¢
o, 0 0 s, 0 0
a=l0o o, o], s=lo s, 0
o o o, 0 0 -(s;+S)
2.2 _1r2, 2, 2 _
JZ = S1 + S2 + 8182 3[§1 + oy + Oy (0203 + 0 391 + 0 1° 5]
(21)
=L - - - - - -
33 = =5,5,(5; + ) = 7((20; - 0y = 03320, = 0y - 93205 = 0} - 0))].

The corresponding strain-rate and rotation are

d1 0 0
D= 0 d2 0 sy W=20,
0 0 (d 2)
(22)
=d2+d2+dd I, =-4d.,d,(d, + d,)
2 1 2 172 3 1721 2 *

Now the tensor relation (9) yields two independent relations
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9,8, + ¥[8, + 3(5,4) - 5,4; - 5,4, - 25,d))]
= 01d; + b %dg"dd;*%l’
(23)
V.S, + ¥[8, + 35,4, - 5,4, - 5,4, - 25,4,)] |
= 014, + 5[ 3“%""112—]*"’32’ ’

with the third principal component just their sum.

Varying three stresses cl(;),cz(t), 03(t) independently gives
two independent deviators Sl(t), Sz(t), plus an independent mean
pressure p(t) = - %(ol tao, + 03). However, by the incompressibility
assumption, (9) is independent of p, so that variation of p provides
no further information, except confirmation or rejection of the
incompressibility approximation. Thus, for ;orrelation with the model
(9), it is sufficient to prescribe two independent stresses, provided

that the corresponding deviators Sl’ SZ’ are independent.

5. Bi-axial stress

A conventional restriction to two independent stress components is
Oy = Tys discussed for a viscous fluid law by Morland (1979) and
shown to provide no more information than uni-axial stress response.
This conclusion will now be demonstrated for the viscoelastic fluid
law (9), for all time variations ol(t), oz(t). However, a curve
in the domain of invariants corresponding to tensile response in uni-axial

stress, can be covered with 9 < 0, 9, < 0.
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Now
2 =-1
S; =3(0) = 0y)s 8, =83=-35 3
3.2 _1, _ 2 1.3 _ 2
1 3.2 1.3 _ 2
dy =dy =-3d;, I,=3d, I3=7d =¢% 2(1,/3)" »
so that 82, Sl’ and d2’ dl’ are not independent. The two relations

(23) provide only one independent relation

- 1 2 . .
¥i5; ¢ "’3[51 +8pdy) = 4pd;y +g0,d) +éad, (25)

This is also the relation for uni-axial compressive stress ¢ where

2 1 2 3

g, =0 1 1=

2 3

which yields (12) and (13). Tension correspg?ds to ¢ < 0; that is,

J3 > 0 and hence the branch J3 = + 2(J2/3)2. While uni-axial tension
tests are not easy, the bi—axial test with 6, <0; < 0 covers J3 > 0.
However, for any variation cl(t), oz(t), the same loading history

Sl(t) can be realised by appropriate ol(t) in uni-axial stress, and

only the same two-branch curve in the J2 - 33 plane is covered.

6. A free lateral direction, oq = 0.

Consider o4 = 0, 0, = A(t)cl, then
2 _1  _1 _ _2 1 _1 _
S; =39, " 32 =392 " M) S, 730, m 39 =30 (3 - 1),
@27
1.2,.2 1 3 3 4,2 _
J2 = 301(1 X+ 1), J3 = 3503 (22 3 3x + 2),
so Sl’ S2 are independent and Jz, J3 are independent, as cl(t),

A(t) are varied independently. 1In the constant stress case
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o, = const, o, = const, so A = const, (23) reduces to two simultaneous

differential equations for d;» d2:

1w3[(1 - 4, - Adé]

~ 2 .2 .
=64 ¢+ '¢2[31 2d; - 2d,4,] + ¢,d;,

th

1
P2 -0

W]

(28)

Zo0, 2 - 1) = Zoy.fa v @ - 0a)

= 014, + 39,(47 - 207 - 20,0,] + 4,3,
Given data dl(t), dz(t), and hence al, &2 as functions of dl’ d2’ o, X,
(28) in principle provide two relations between the coeffi;ients
*1’ w3, ¢1, ¢2, ¢3, in general, functions of JZ’ J3, 12, 13, and rates.
Normalising by wl = 1, 1if any necessary rate dependence is incorporated
in w3, ¢3, "leaves two functions to determine by constant strain-rate
response.

As in the uni-axial response, non-monotonic dl(t), dz(t) will
impose two or more branches for &1, &2. Since A =0 1is thé uni-axial
case, with its double branch for él’ we must expect such behaviour for
al » probably 32 , as |A] increases from zero, possibly over a large
range or for all A when A > 0; both stresses compressive or both
tensile. A combination of positiQé and tensile stresses, A <0, may

induce different shaped response dl(t) and dz(t). An immediate

question of importance is whether data (unpublished) is currently

available to indicate the shapes dl(t)’ dz(t) in such a loading

configuration, in particular, has the shape of dz(t) been recorded in

the uni-axial stress case? Once response shape is clear, the simultaneous
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differential equations (28) must be studied further in the spirit

of the uni-axial analysis, to determine the required structure so that
correlation with response is compatible. Plausible response shapes
could be adopted to initiate and gain experience of such analysis,

if Shell wants to pursue the theoretical development of model construction

at this stage. Can any plausible shapes be inferred from existing data,

or anticipated from other experiences?

For constant strain-rates dl’ dz, with d2 = le’

2,2 3
12 = dl(v + v + 1), 13 = - vdl(v + 1), (29)

and (23) reduce to two simultaneous differential equations for Sl, 82:

2 - . 1,2 2
¥18, *+ 39,9500 - VIS, - @+ 2w)s)) + w8 = 0gd) +3dTe, (L - 2v - V),
(30)

2 . 1,2 2
418, - 3pvs(@ + Vs ¢ W= s w8, = 00d) - 00,2 r v -V

The lateral constraint case d, =0 (v = 0) will be easier in practice
than controlling two independent strain-rates, but only leaves one
strain-rate invariant 12, since I3 £ 0 as in simple shear strain
motion. Response over the full I2 - 13 domain cannot be detected. It
is not clear that a combination test with o, = const, dz = const
leads to tractable simultaneous equations for correlation purposes since
both S1 and S2 still vary with t, but possibly this and further
applied stress tests with varying Sl(t), Sz(t) will be necessary if

controlling dl(t)’ dz(t) independently is not practical, at the expense

of more difficult analysis.
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7. Stress invariants domain

It remains to demonstrate that the case Oq = 0, o, = Adl, with

6, § 0, 0,

domain, including J3 > 0, if the complete range of constant oy < 0,

& 0 (both compressive) will cover the complete J2, J3

constant A > 0, can be applied. By construction Jz > 0, and is

zero only if g =0, = 0. Define

3J
= 2 _3 1,2
=7t G-3
c
1
273
= 3 _1 1,79 1
3, = — =0+ -DNA-2)=~-0 5)[—,;-(1-5)2], (31)
c .
1
93, I,
s I e =k(l)0’ N k(O) = 1 .
23, = 1 1
2 7,

Now (31)1 2 imply a relation 35 = h(?é), though h is not
4

single-valued, and hence

3J
_ 2 3 2 _
I3= 27 1) 52
!

This reduces to an explicit J3 - J2 relation, or fixed curve in the

J2 - J3 plane if, and only if, (8J3/801)]J2 = 03 that is

(S

(33)

Clearly (33) is not satisfied by the expressions (31)1 29 and so variation
»

of o and A 1is not confined to a fixed J2 - J3 curve, but (33)

is satisfied by the bi-axial stress expressions (24) with K= 1 .

3é has a single minimum %- at A = %-, and is strictly positive.

3
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respectively, given by

21,2,3° 71,03, 25 A, = '12'(1 R OR™ 03, (34)
with

J(,) =2 %@z £ 1-299 . (35)
Eé v Az and ”35 N 13 as A+ *eo , , so k(A) v A . Figure 3 shows

sketches of jé(l), ES(A), k(A), all symmetric about A = }.

k(2) has a maximum kM¢= 1-02 at A =-0°1 and a minimum km¢= -1-02
at A% 1-1, Specifying A determines unique 3&, 33, k, then
specifying % determines J2, J3 from (31). Alternativel&, if 32’ J

are specified, hence k(l)a1 and (A -2+ 1)01 s, eliminating o

3

yields a 6-tuple equation for A with (probably) more than one real
root. However, data correlation determines function values at points
(ol,k) for which the corresponding point (J2,J3) is readilyrcalculated,
and function fitting or tabulation is a direct numerical calculation in
the J2 - J3 plane. It is not necessary to construct analytic functions
of (ol,l) and determine Oys A as functions of (J2, J3).

If only compressive stresses g, <0, 0,¢< 0 (A > 0) are considered,
then tension in uni-axial stress requires J3 > 0 which implies 35 < 0.

Figure 3 shows that at each constant Oys the range O > 33 aVES(i_)

is covered by X > 0, in addition to the full compression range J3 > 0.

For A 3 0, all k » km are covered, and hence all rays

2 _ 2
J3 ,-§ k oy when o; > 0, and all rays J3 3 J2k 2] when 01 < 0.
Thus, for compression oy < 0, since km < ¢, all rays

J3 %—J [k g [ are covered, shown in Fig. 4, with the two branches
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of the fixed curve covered by bi-axial stress. Hence, taking increasing
constant stresses 0, <0 increases the slope of the limit ray so
that the excluded sector decreases. The maximum excluded sector is
governed by the maximum compressive stress (—01) which cén be applied.
Note that pure uni-axial tension lies on the bi-axial curve (upper branch),
and is trivially covered.

A similar strﬂgn—rate invariant analysis for 12, I3 can be made,

essentially by the correspondence dlk—§ Sy» dzk—* s, (not dik*-ol,

dZH 02) .

8. Anisotropy

It is possible that anisotropy of newly formed saline ice is
significant. Any such asymmetry is associated with a reference
configuration and can be described only by a viscoelastic solid law.

We are presently examining on the ERO contract, simﬁle forms of differential
operator laws for solids to find the structure required to describe the
qualitative responses of Figs 1 and 2 in uni-axial stress. So far, however,
we have considered models isotropic in the reference configuration in

order to investigate anisotropy induced in subsequent configurations by

loading from the reference state. It will be necessary in the Shell
programme to take the newly formed ice as a reference state, and develop
iniﬁially anisotropic models. This involves defining the actual asymmetry
of the newly formed ice and must be tied to observation. Do we yet have
a clear picture of the asymmetry?

It is suggested that salinity is an important factor in the asymmetry,
which decreases as the salt concentration decreases. The asymmetry structure

(directional properties) cannot be defined by a scalar salinity factor,
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and must be a feature of the formation process. An appropriate model

may be to relate the degree of asymmetry to salinity. An example of degree
'is given by the ratios of different directional moduli in a linear
anisotropic elastic solid, but will be more complex here. A full theory
will need to describe the variation of salinity with time, either
independent or dependent on the loading history, and a careful phyéical
description of the known behaviour is required before more elaborate

iaws are formulated. This is an area where detailed discussions between
theorist and experimental/field observers would be valuable. Has any

such theory been established, or even formulated?

An exact anisotropic frame indifferent viscoelastic solid law will
apply to finite deformations, but in many applications we are concerned
only with small strains (prior to rupture). It is possible to introduce
some simplifying approximations for small strain, examples are the
identification of initial and current particle positions after eliminating
rigid body motion, and forces per unit initial and unit current area
in the definition of stress. However, from observation, the laws are still
significantly non-linear, and truncated expansions in small strain are not
appropriate.

I still expect that non-linear integral operator laws will prove more
satisfactory overall than the differential operator laws, but research

in this direction has still to be conducted.
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MECHANICAL PROPERTIES OF SEA ICE

Report M3. Compressibility and dilatancy

1. Introduction

The viscoelastic fluid model described in Report M2 assumed
incompressibility. A generalisation is now presented which
incorporates volume change, with illustrations for elastic
compression, non-linear and linear, viscous compression, and
dilatancy - volume increase under maintained shear. The response
under tri-axial and bi-axial loading is analysed to investigate
the extent to which such tests determine the shape and fesponse
coefficients of the model.

The generalisation adopts the differential operator law of
the incompressible fluid as a relation between the stress deviator
and strain-rate deviator, instead of strain-rate, so that the
same viscoelastic relation is retained for the shear response.
The constitutive law is completed by prescribin§ one of the above
laws for the volume change. In the case of elastic compression,
stress—acceleration terms are therebye introduced into the general
relation, absent in the incompressible fluid law, but such terms
are zero in constant stress and constant strain-rate response.

Response coefficients of the model can now depend on three
stress invariants and three strain-rate invariants, together
with their rates, so in general a complete description requires
the respbnse under three independent (tri-axial) stresses and
strain-rates. 1In the case of dilatancy independent of pressure
(induced solely by maintained shear stress), provided that the

response coefficients for the shear response are also independent
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of pressure, a stress configuration giving two independent
deviatoric stress components is sufficient. Bi-axial stress

is not sufficient, but the configuration with a zero lateral
stress is sufficient. However, a pressure dependent dilation
can be distinguished by bi-axial stress tests provided that the
shear response is pressure independent. An alternative to the
zero lateral stress configuration which is more appropriate to
constant strain-rate tests is the configuration with one lateral
constraint, mentioned briefly in conclusion.

While the consequences of allowing volume change have been
analysed only in the context of a viscoelastic fluid differential
operator law, the general conclusions regarding test configurations
required to describe the response must apply to other models.

In the first instance the extent to which dilatancy occurs can
be checked by bi-axial stress tests, and possibly the chief
mechanism deduced. The complexity of more general tests may
be reduced if an adequate description can be obtained by the

simpler tests.

2., Volume change

If D+ W is the symmetric-shear decomposition of the spatial
velocity gradient tensor, then the rate of increase of volume

éer unit volume of a material element is measured by the invariant
I=trD=divv,=-%, (1)

where v 1is the particle velocity, div denotes the spatial

divergence, p is mass density, and a superposed <+ denotes
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material time derivative. The Cauchy stress J can be expressed

in terms of the stress deviator S, which measures shear stress,

and the mean pressure ©p:
S=g+p1, p=-—-§tro,trs=0. (2)

For an incompressible fluid model, I, = O and a constitutive
relation is given for S, with p not determined by the material
deformation. When volume changes occur, I1 is a deformation
variable to be related to the stress.

First consider elastic compression in which density change
depends only on the mean pressure p, and not on the shear

stress S. Then

~

p = £(p), g— = k (p)p where «x(p) = -f;-(%)—) . (3)
That is,
I, = - k(p)P (4)

where « 1is the compressibility. If volume changes are very

small in the pressure range of interest, then a linear approximation
for f(p), giving constant Kk , is appropriate. General elastic
compression allows p to depend also on the‘two shear stress
invariants (a necessary restriction for frame indifference), for

example

J =%—tr§ ’ J, = dets ., (5)




when

o = glp,3 3, &= (25 37, 92+ -2%3 55) 79+ (6)
That is,

I, = gl(p,Jz,J3)f> + g, (p,Jz,JB)j2 + 93(p,J2.J3)5’3, (7)

though dependence on shear is retained with g5 = O say. Now
volume change occurs even at constant pressure, but reversibly
as shear stress is aéplied and removed. Note that elastic
relations of the form (3) or (6) imply a density jump when a
stréss jump is applied, though so further density change if the
stress is maintained constant. Thus, applying (6), if the
stress is increased from zero to ¢ at t =0 and then held

constant,

p(t) = g(p.Jz,J3) for t >0, - (8)

where the initial density is Po = g(0,0,0).
A better model of dilatancy, the opening of pores and cracks

under maintained shear, including constant stress, is given by

I, = h(J21J3)I h >0 , (9)

1

or more simply a dependence on J2 say. Such a relation
determines a constant rate of volume increase per unit volume
at constant shear stress, the rate depending on the stress
magnitude. Similarly, if the ice has a bulk viscosity, not

necessarily constant, then

I, = -2%(p), L %0, (10)
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now giving a constant rate of volume change (decrease) at
constant pressure. However, in both situations there must be

bounds on the maximum and minimum densities, and pm,

Pm
independent of the load duration, possibly depending on the

stress level. Suppose pM/po =B >1, pm/po =Db < 1, then
I, = qalp/p,)h(J3,T3) or =-alp/p )e(p), (11)

or some combination, with

o] for x &b and x 2 B
g(x) = ’ (12)
>0 for b < x < B

controls the permitted density range, and the rate level as
the limits are approached. Now the relations (l1l) are

implicit equations for Il or p/po, since Ilp/po = -(p/po) .

3. Modified viscoelastic fluid model

The incompressible fluid relation (M2.9) relating stress,
stress-rate, strain-rate, and strain-acceleration, with linear

dependence on stress-rate and strain-acceleration tensors, is

915 + ¥[8 + S+ W + (@ - W8 - Fer (5D)1]
=¢D+q>|_'02-311]+¢[15+nw-wo] (13)
1< 22 372> 3l T XD T Iy

where the coefficients are, in general, functions of the invariants

_ 1 2 _ - 1 2 =
» [ [ - (14)
J2' J3' Iz' 130
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We now have additional invariants I1 and p, and il' é ’
which may enter the coefficient dependence, and an additional
relation for Il' In the dilatancy model (9) or (11)l there
is no explicit I1 dependence on p.

Note that each tensor term multiplying a response coefficient
in the relation (13) between a deviatoric stress S (tr§= 0)

-~

and a deviatoric strain-rate D (trD = O for incompressible
fluid) was constructed to have zero trace. It is convenient to
retain this form of relation between the stress deviator S and

the frame indifferent strain-rate deviator

=~D—%113, trdD =0 , (15)

tol
to|

to reflect the viscoelastic fluid nature of the shear response
and add the relation for the dilatation rate I1 to complete

the determination of D. Thus

TS+ T8+ s@ew ¢ B -ws - Fer 5Dy

- 55+ 5,[0% - 3T,1] + §,[5 + Bw - wD], (16)
where
I,=2trB =1,-212 , TI,=detD , (17)

and the new response coefficients @l etc are functions of
the invariants J,, J,, Tz, T3, and p and I;, together with
their rates. The relation (16) can be expressed directly in

terms of D, and invariants I,, I, used instead of TZ' 33.




’y

N e e s o1 o o
e PR,

4, Tri-axial stress

For three independent principal stresses 01005103, and

three independent principal strain-rates dl'dz'd3 :

P=-3(0; +0,+03), 8 =0y + P, S, =0, +D, 53 =-(5 +5,),
I, =4, +d,+4d,,d =da, -+1,,d, =4d, -%1,, @, = -3, +3d,)
1 1 2 3’ %1 13717 %2 2~ 371 93 1 2’
(18)
J %Sz+sz+s J, = -S,8,(s, + 8,)
2 1 2 1°2¢ V3 1°2'"1 2’
I =32 +3 +33,, T,=-3,d,(3, +4d,)
2 1 2 1927 3 1929 2’ -
Hence, with zero rotation, (16) yields two independent relations
_ - [ 2 - - - -
¥y8; + ll’3[‘51 * 3059 - 84 - 819, 2S:zdz’]
_ 1=2 _ 222 _ 2= = - =
= ¢1d1+¢2[§d1 392 §dld2] +63dy .
(19)
- 2 - -
¥1S, + ¢3[%2 + 3(8,d, - 8,d; - §;d, - 2sldl§]
== o= [1s2 222 _ 2= = - =
= 08 * 95|39 - 39 §dld2:' + 639, v

with the third relation just the sum of the relations (19) because
each tensor combination in (16) has zero trace. These relations

are analogus to the Sl,Sz,d d relations (M2.23), but now

1’72
the response coefficient can depend also on the variable invariants

I, and p. Also 31,52 depend on I, as well as d,,d that

27

2'd30

Measurement of three stresses and three strain-rates is

is, on the three strain-rates dl,d
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required to describe the two deviatoric relations (19) together
‘with a volume change relation. In the incompressible case,
Il = 0, p arbitrary, the two relations (M2.23) require only

s.,.,S,, and 4,,d to be independent in order to describe the
1772 1

2'
response, which was possible with two independent stresses.
If the relation for I1 is already known, however, then
measurement of the response for independent Sl and S2 is

sufficient to determine the deviatoric response (l16). Since

* L]
d

I, occurs in (19), through 31,52, the elastic compressibility
laws (4) and (16) introduce dependence on ; or 32, 33; that
is, on stress—acceleration, which are higher derivatives than
arise in the incompressible model. However, in constant stress

e .

tests, p = J2 = J, = 0, and in constant strain-rate tests

3
1 = O, so these higher derivative terms do not arise in the

I
differential relations describing the response.

It is worth noting that the elastic and viscous volume
change models suggested in section 2 exhibit no time variation
of Il at any given constant stress, in contrast to the
primary-secondary-tertiary creep phases of the expected
deviatoric response. Such time-independent strain-rate would
be distinguishable from the viscoelastic response, and so a
dilatation model may emerge even when only two independent stresses

are varied.

5. Bi-axial stress

"
o7

Conventional bi-axial stress implies O3 Oy d3 20




p=—%(ol+202), Sl=—23—(ol-02). 52=S3=—-]2=Sl;

I, =d, +2d,, d, =2(@, -da.), d, =d, = -+3 (20)
159 20 4; = 3(8) - dy), 4, =d, 59d; -

Jp = 300 = 0,07, I3 =355(0; - 0,07, I, =3(q; - d;)7,

Now Sz, Sl, and 32,51 are not independent, and the two relations

(19) provide only one independent relation
Y5, + w3[él + Sldi] = ¢,d; + 5¢,d] + ¢34y (21)

analogous to (M2.25) but with response coefficient dependence

on I1 and p also. The identity of the second and third
components, and zero trace of each term of (16), reguires that
the second component is half the negative of the first component
for each term.

Thus only one relation between S, and d; is given,
which can describe dependence on one deviatoric stress invariant
and one deviatoric strain-rate invariant only. However, measurement
of the two stresses 01¢0, ‘and two strain-rates dl’dZ' also
determines Il and p, and will determine any bulk viscosity
relationvbetween I1 and p or any dilatancy relation between
and J3, or some combination of J2,J3.

1 1
Thus, a bi-axial stress test can distinguish a dilatation response

I and J2 or 1

from a deviatoric response. In a uni-axial stress test,

= = = 2 -1 =1 —-
=03=0, 8§ =30,,p= 30, 281. but Il and ql are

o)




- 10 -

independent, so while dilatation and shear strain rates can
be distinguished, dependence on p or Sl cannot be

distinguished.

6. A free lateral direction, 03 z 0.

For 03 = 0 and 02 = A(t)dl'

= 1 - =1 - =-1
(22)
_ 12,2 _ _ 13 3 _ 2
Jy = gcl(k A+ 1), J3 = 3701(21 32° + 2),
and Sl' 82 are independent as Ol,l are varied independently.

The analysis (M2.§7) of the stress invariants domain shows that

a full JZ’J domain, including tensile conditions, can be

3
covered by compressive principal stresses, 01 < 0, 02 < 0.
But now, in contrast to bi-axial stress, while JZ' J3 are
independent, p is a function of Jl and J2 so that

dependence on all three stress invariants J2,J3,p, cannot be

distinguished. That is, varying o and o, allows a response

description only on a surface in J2,J3,p space. The corresponding

domain for bi-axial stress with cl £ 0, 02 £ 0, 1is the

surface J3 = 1:2(J2/3)3/2 ; P >» 0. If shear dependence can

be restricted to J,, then a domain J, » O, p » O is covered

by 9, £ 0, o, & 0. 1In the dilatahcy models (9) or (1l1), for

which there is no dependence on p, and if the deviatoric response

coefficients are also assumed independent of p , then the full
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JZ'JB domain of dependence is covered.

Constant stress tests, 51 = 0, X = 0, again give the
two differential equations (M2.28) for 51,32 in place of
dl'dz' which in turn yield two differential equationé for dl,d2
which depend also on d3(t), 53(t). Thus, by measuring
dl(t), dz(t), and d3(t), two relations on the response

coefficients are obtained as before, and with the assumption

that the deviatoric response coefficients are independent of p,

then the full JZ’J domain of dependence is covered. The three

3
independent dl'dz’d3 determine three invariants Il'TZ'T3
as required.

Hence, with this assumption for the deviatoric response

coefficients, constant bi-axial stress tests can be used to

determine any dilatation dependence on p, then the above

configuration used to determine deviatoric response.

Constant strain-rate tests in this configuration require
all three rates dl’dz'd3 to be controlled, which may not be
practical in general. Two independent constant strain-rate
tests are required to complement (M2.28) to determine the
deviatoric relation. An alternative configuration is the following

lateral constraint test.

7. Lateral constraint, d3 = 0.

For d., = 0, and dl' ad independent constants, there

3 2
are three principal stresses 01+05r04. Provided d; <O,

d2 < 0, representing compression in both directions, d3 =0

can be maintained by a rigid constraint supplying the necessary
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compressive stress o4 < O. From (18) and (19),

_ 5 _ 2, _1l, = _2. _1
I, =4d; +4d;, ) =39; - 3d,, 4, = 34, - 34, |
(23)
T, =1@?-a,a, +a%, T, = - 2(d, +d,)(2d, - d,)(2d,, - 4.)
2 = 3ldy - 4,4, 2)r I3 274y + dy)(2d; - dy) (24, - 4,),
and the two differential equation for sl’SZ are
— 2_ - 2— . -_— .
¥18; + 3938, (d; = dy) - F93S,d, + V35,
1= _ 1- 2 _ 2
= 3%, (24, - a,) + 15, a2 - 29,4, - &2) (24)

2 2— — &
V1S, — 3¥3S,(d; = dy) - 3935:4; + 935S,

1-—- 1l 2 2
§¢l (2d2 - dl) + '§¢2 (2d2 - Zdldz - dl).

f
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MECHANICAL PROPERTIES OF SEA ICE

Report M5 Pressure Dependence

1. Introduction .

Report M2 described a viscoelastic fluid differential operator law

to describe the mechanical response of ice under the assumption of incompres-

sibility. 1In this case, the mean pressure 1s not determined by the deformation

and the law determines only the deviatoric response. Various compressibility/

dilatancy models were discussed in Report M3 which relate volume change to
pressure or shear stress, or both, and these can be appended to the devia-
toric relation. However, the simplifying incompressibility assumption may

be a good approximation in many practical situations, but increasing the

mean pressure can increase the ductility by inhibiting microcrack development.

For example, the constant strain-rate response in uniaxial compressive stress,

illustrated by Figure 2 in M2, may exhibit an increased peak stress Oy and

the smooth increase to Oy actually shown there, if the test is conducted
under a superposed isotropic pressure. That is, the deviatoric (shear) re-
sponse is influenced by mean pressure.

Thus, in a flﬁid model (necessarily isotropic), the response
coefficients will depend on p in addition to two shear stress Iinvariants,
JZ’ 3°
viscoelastic solid model (Spring and Morland, 1981) with respect to an iso-

J3 (M2.11), as well as the two strain-rate invariants 12,1 In a

tropic reference configuration, the response coefficients then depend on

P> JZ’ J3, as well as two strain invariants Kl’ K2 (S&M.6). The dependence

of response coefficients on three stress invariants p, Jz, J, can only be
-

distinguished if test data determine the response to three independently

varied stress components. If shear tests are not practical, then general

triaxjial tests, with three independent principal stresses ol, GZ, 03 must
be conducted to confirm such dependence. Note that the principal stress
configuration (ol, Tys 0), arbitrary O1» Tg» discussed in M2, with super-
posed mean pressure (-p, -p, -p), arbitrary p, is equivalent to a general
triaxial stress configuration (ol, 9ys 03), arbitrary Gys Oys Og.

If data only for two independent stress component tests can be

obtained, an alternative interpretation to the (J2,J3) dependence described

in Report M2 is the interpretation as (Jz,p) dependence. That is, we consider

a model in which deviatoric response coefficients depend only on one deviatonic
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stress invariant and on the mean pressure p. Both strain rate invariants
12,13 in the £fluid model or both strain invariants KlKZ in the solid model
can be retained since a third deformation invariant is constant by the in-
compressibility assumption. The (Jz,p) domains covered by the test configu-
rations discussed in Report M2 will be compared with the analogous (JZ,J3)
domains after clarifying the stress configuration terminology.

.

2. Stress Configuration Terminology

In general triaxial stress there are three independent principal
stresses (ol, Oys 03), so that the Cauchy stress g and deviatoric (shear)

stress § are given by

1
g = 4] [o] 0 , é ={0 S 0 (l)
-2 1 =2, 1 =2 1
51239 305, *93), 8, =739, 300 +03), $53=30; 303 +9)
with mean pressure p and deviatoric invariants given by

1
= - 3-(01 +o0, + 03) s

p =
1 2 1, 2 2 2

J2 =5 tr = 3 [cl + 7, + Oy (0203 + G40, + oloz)] . 3)
- =1 6. - -G - - -

J3 = det § = 37 [(ZU1 o, 03)(202 o1 03)(203 o 02)] .

By convention, principal stresses are positive in tension. The general
triaxial configuration defined by (1) - (3) will be described as triaxial

stress, abbreviated to TS.

A conventional triaxial stress configuration usually refers to

2 with 03 = 02. This

was designated biaxial stress by Morland (1980), but this terminology is

the restricted case of two independent stresses 0150

better reserved for stress applied along two axes only. Let us introduce

(2)
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the precise description transversely isotropic stress, abbreviated to TIS,

since the stress in planes transverse to the longitudinal principal stress

o axis is isotropic. For TIS,
oy 0 o . 2(01—02) 0 0
g=10 o, 0 » R = 3 4] 0,-01 0 , (4)
0 0 9, 0 0 ‘02-01
P = 3(01 + 202), J2 3(01 02) R J3 37 (ol 02) . (5)
Thus, Jz and J3 are not independent, but
J, = +2(J /3)3/2 . (6)
3 =2
Uniaxial stress, abbreviated to US, is given by 0, = 03 = 0:
_ 1 _ 2 _ - .1 -1 2 =2 _3
P=-39 5 53% $;,%83°5-39, J=3, J3=379 .0

so that in uniaxial compression (ol < 0 33 < 0 and in uniaxial tension
(ol > 0) J3 > 0.

Finally, biaxial stress, abbreviated to BS, will refer to the

case 03 = 0; that is, one lateral direction is free and stresses ol and 9,

are applied longitudinally and in one lateral direction. Now

9 0 0 L ch-oz 0 o
2 2 L 8=3| 0 2 o | ®
0 0 0 _ 0 0 -(01+02)
_.1 Sl 2. 2
p = —‘3(01 + 02), J2 3(01 0,9, + oy Y,
_ 1 3 _ 2 2 3
J3 =57 (201 301 Gy 30102 + 202 ) . (9)
Here J2 and J3 are independent. Uniaxial stress (7) is recovered by
setting o, = 0.




3. Stress Invariant Domains in TIS and BS

In both TIS and BS, there are two independent stresses > 0q and
02. It is convenient to set -
0, (t) = A(t)o, (v) (10)

and regard ol,l as the independent parameters. We can examine the more
practical situation oy <0, o, < 0 (» > 0) when both applied stresses are
compressive, to determine the (Jz,p) domain covered by such tests. Jz_z 0
by definition and with the restriction o <0, o, < 0, the mean pressure

p > 0 for TIS (5) and BS (9). Thus, pure uniaxial tension,

Us(s, > 0: p=-(3,/nM% <0, (1)
is not covered by compressive tests, in contrast to
_ 3/2
US(ol > 0): J3 = 2(J2/3) >0 |, (12)

covered in both TIS and BS tests (Report M2, Figure 4). In the (JZ,J3) domain,
TIS (described as biaxial stress in Figure 4 of M2) lies on the two branches

of the curve (b), while BS covers a sector

2
J3 239, lkmoll s constant km s (13)

which allows increasing positive J3 as (-01) increases. Hence, interpretation

of TIS and BS compression data as (J,, p) dependence does not describe the

response in uniaxial tension.

First, consider TIS and express (5) in the notation (10):

o1 Sl 2 a2 J2 30 3
P=-3 cl(l + 2})} Jz =30 Q1 Ao, J3 55 9, (1 b R G XY
Then, 2
= yp2 =g (L= ,
Jz = up , = 3 (l -+ 2}\) i 0 ’ (15)

and for each fixed A, fixing u, a parabola (15)l in the (JZ’ p > 0) domain

is traversed as (—ol) increases from zero. Now



)

du 18(1 - 1) 0<Arx<1l
-d-;:—(l+zx)3>oas A>1 (10
and - -
u(r=0) =3, w. (A=1)=0, u(h > =) =3/4 . 17)

The range 0 < u < 3 'is covered by 1 > A > 0; that is, - 0, < -0y, and an
interval O < u < 3/4 is duplicated by A > 1 when -0, > -0;, providing some
check on the assumption of (Jz, p) dependence only. Figur? 1 illustrates
the domain covered, bounded by the positive p-axis (J2 = 0) and limit parab-
ola J2 = 3p2 (uniaxial compression). Here, TIS covers a domain of the

(JZ, p) plane, not just a curve.

In BS,
D N R P 2l 300 353324933
P=-3 01(1 + 1), J2 3 ol (1 A+ A7), J3 27 cl (2-3x-3x"+227) ,
whence
2
J2=vp2, v=3(1")‘;7‘> R (19)
(1 + 2)
0 <X <l
N T R T (20)
dx a+x
v(A = 0) = 3, v (A =1) = 3/4, V(A > =) =3 . (21)

min

Thus, a ﬁore restricted range 3/4 < v < 3 than for TIS is obtained, with
complete duplication between A < 1 and A > 1 (simply the roles of %1 and 9,y
reversed since o3 = 0). The limit parabolas are shown in Figure 1, J2 = 3p
common to both TIS and BS. Recall (M2) that TIS gives only one independent
deviatoric relation for the minimal differential operator tensor law describ-
ing a viscoelastic fluid, while BS gives two independent relations necessary
without further ad hdc aésumptions to restrict the model. Both excluded

domains in BS, J2 > 3p2 and J2 < (3/4)p2, are of practical significance, so

additional test geometries are required to complement BS if complete (J,,p)

dependence is required from compression tests.

If tension can be applied in the axial direction:

(18)



(22)
with compression in the lateral directions (TIS) or one lateral direction
(BS), the (Jz,p) domain is extended. With (22), TIS gives

<
- 0>\x>-1/2 dyu
P Z.O as A< -1/2 T 0 for A<0, (23)
and
uw (A=20) =3, (A > = 1/2) » =, p(r + —=) = 3/4 . (24)

Figure 2 shows the limit parabolas J2 = 3p2 (A=0,p= —01/3 < 0) and J
(3/4)p (A > -= or oy
limit J2 = 3p2 (A=0,p= —o /3 > 0), which corresponds here to A = -2,

2=
+ 0+, p > 0), together with the previous compression

The domain between J2 3p and J = (3/4)p (p > 0) is therefore duplicated
by the compression and tension conflguration, but the tension configuration

extends the previous domain from J, = 3p (p > 0) to J, = 3p (p < 0).

For BS,
0 <0 s 0> 3.—1’ v <4 s 0>x>1 , (25)
>0 A<-1 di A <=1
and
v(A=10)=3, v(A + ~1)> =, v(A > =) = 3 . (26)

The limit parabolas J2 = 3p2 (p < 0, p > 0) are shown in Figure 3, so the
previous domain is extended to Jz = 3p2 (p < 0) with no duplication. However,

the domain between J, = 0 and J. = 3/4p2 is not covered by either of the

compression or tension configurations, and will therefore require a loading

configuration combining shear stress and confining pressure (unless the BS

configuration is possible with both 9. > 0, 952 0).
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MECHANICAL PROPERTIES OF SEA ICE

Report M6: Constant Stress-Rate and Constant-Strain Tests

1. Introduction

-~

The minimal differential operator viscoelastic solid relation feferred
to an isotropic configuration, with the incompressibility approximation, in-
volves five response coefficients, each in general functions of two stress and
two strain invariants and their rates (Spring and Morland, 1981). In uni-
axial stress, two strain-rate coefficients occur only in a particular combination,
as do two strain coefficients, so only those independent functions of invariants
appear in uniaxial stress relations. This is also the situation in a trans-
versely isotropic stress configuration (TIS), so that a biaxial stress configuration
(BS) is required to distinguish the five functions. The stress invariants
domains for TIS and BS are described in Reports M2 and M5.

Focusing on uniaxial stress tests, there are three functions to deter-
mine, each a function of one stress and one strain invariant, and their rates,
which may be combinations of the principal invariants. Only one stress and
one strain invariant can be distinguished in the uniaxial stress geometry.
Conventional constant load and constant displacement rate tests determine two
relations between the three functions (usually restricted to a compression
domain), so that a full uniaxial stress description needs a further independent
relation. Constant load rate and constant displacement test responses are now
analyzed on the assumption that the response coefficients do not depend on
invariant rates and it is shown that neither provides an independent relation
between the coefficients. Thus, only two of the above four tests provide
independent relations for the three response coefficients describing uniaxial
stress response in the model. The implication is discussed further in the
concluding remarks.

It is convenient to introduce the following terminology:

CL = constant load (constant nominal stress),

CLR = constant load rate,
CD = constant displacement (constant engineering strain),
CDR = constant displacement rate.
Corresponding constant stress and constant strain rate tests refer to current

configuration measures: traction per unit current area (Cauchy stress) and the
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symmetric part of the spatial velocity gradient.

2. Uniaxial Stress Response
From Spring and Morland (1981), equation (28),

(1-e)3 5 + ¢ (1-e)2 [(1-e)5-285] = % ¢ (1-e) & + o e, 1)

where o is the axial compressive nominal stress, e is the axial contraction
per unit initial length, and the three response coefficients @, é, ; are
functions of 3, e; that is, independent of G and e. A possible dependence
on the square of the strain-rate term has been ignored, since for sensible
stress jump-strain jump relations its coefficient must be rate-dependent
and vanish as rates become infinite. If included, the ; e term becomes more
complicated, but only a single combination function replaces ;. It is supposed
that the response coefficients @, %, ; are bounded, in particular as o or
e - 0, The stress invariants are
3

s

- 1 2 - 2 -
P =-§- (1-e) 0, J, = 5 (1-e) 32, Jy=-353 (1-6)3 o (2)

7
where p is the mean pressure and J2 and Jg are principal deviatoric invariants.
Note that ¢ = (l-e)o where o is the Cauchy compressive axial stress. The strain

invariants are
_ 2 -1 - -2
Kl = (1-e)” + 2(1-e) *, K2 = 2(l-e) + (1-e) %, 3

with

K, = K, = 3(1+e2) + 0 (&) (4)

1 2

in a small strain approximation. Clearly, dependence on o does not distinguish

dependence on Jz and J3 (nor on J2 and p), and dependence on e does not distinguish

dependence on K1 and Kz, which in fact are identical to O(ez).
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Assuming that the strain response e(t) to constant load ¢ is monotonic,
t can be eliminated in terms of e, and the strain-rate e expressed.és a_function
of 0, e. Thus, from Spring and Morland (1981), equation (33),

CL: =20, e=F (5, e , e (0) = e, (o), (5)

where e, (6) is the initial (elastic) strain jump to a stress jump o, and

F (3, &) = ‘1‘el o - ue . (6)

—¢(1—e)+2wc(l—e)

At constant strain-rate e = w, it is supposed that the family of response
curves G(t) for different w do not intersect, so that there is a monotonic

0 - w relation at each e which can be inverted:
CDR: e =we=constant , w=W (o, ), o=G (w, e). (7N
From the response family G (w,e), a family of generalised Young's moduli
3G

E (-U-’ e) = 'a_e (8)

can be defined, where w is eliminated by (7). Then

E (5, e) {1 -—-59————} (9)

CDR: e = w , E (o, e)
W (o, e)

where ~
3¢ + 29
2(1-e)2w 1-e (10)

ﬁ (o, e)

Thus, given the response functions E (o, e), W(o, e) from CDR tests, and

F (o, e) from CL tests, (6) and (10) are two relatiomns for the three response
coefficients. Models constructed by Spring and Morland (1981) from idealized
CL responses and considering constant é and é with rapid exponential decay

in e showed that the CDR response G (w,e) was insensitive to the choice of

é. No conclusion can be drawn about the sensitivity of the combination E

(10) to changes in G, hence E, F and W.
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G = q. Assuming that a family of non-intersecting curves are obtained as q

Now consider constant load-rate responses e(t) at different load-rates

varies, illustrated in Figure 1l(a), with the time to reach a given strain e -

increasing as the rate q increases (in accord with general observation), then

the corresponding curves for e as a fraction of o = qt fan out, as shown

in Figure 1(b), and hence remain non-intersecting. Thus, at each 5, there is

a monotonic e-q relation which can be inverted:

.

CLR: ¢ = q = constant, gq = Q (o, &), e = e*(ad, q),

with the following properties

Bex Lo, 2.0, 85, Ao,
90 2q ac de

Using (11), the strain-rate can be expressed in terms of 0, e:

* -
=q-a—g-:= D (Q’, e).

80

[ R

Substituting in (1) for CLR:

(1-e)3 5 - we + -3 4Q G, e
24 (1me) + 29 5 (1-e)°

D (o, &) =

By (10)

(1-e)” v E (o, e),

% ; (1-e) + 2 @ o (l—e)2

and using (15) and (6), (14) becomes

DG, &) =F (5, &) + 3L €
E (o, e)

’

which is independent of the response coefficients, and hence a consistency

(11)

(12)

(13)

(14)

(15)

(16)

check on the functions D and Q given by the CLR test, and in turn on the adopted
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model. Thus the CLR response functions D and Q do not determine a third inde-
pendent relation for ;, 6, ;. Any two of the CL, CDR, and CLR tesis, giving
the relations (6), (10), (14), are independent, but a third independent response
is still required to complete the uniaxial description of the model.

Turning to constant displacement responses o (t) at different constant
strains e, then assuming these are monotonic and non-intersecting, there is a
unique relation t = T (o, e) by which t can be eliminated. It is expected that
o < 0 at constant strain, so that the respomse is defined by

CD: e=0, o=-L (5, e <0 (L>0). (17)

Substituting in (1), ) 3. -
L (5, e) = {dze) g = ue (18)
(1-e)” v

Hence, by (6) and (15),
L (5, e) =E (3, e F (3, e), (19)

again, independent of the response coefficients, and only a consistency check

on the model. No independent relation for the coefficients is provided.

3. Concluding Remarks

Thus, not only does the uniaxial stress response (1) involve too
many functions to be determined by CL and CDR tests, but the other fundamental
tests, CLR and CD, appropriate to the derivatives occuring in (1), provide no
further information, and are only consistency checks on the model assumptions.
Any two of these four tests provide the independent information, and can be
selected for practical convenience. An explicit model therefore must eliminate
one of the response coefficients. Elastic jump relations in the parent tensor
relation require both tensor rate terms, that is, ¢ # 0, ¢ # 0, so ; =0
would be a first tentative choice, eliminating dependence on the strain tensor.
However, dependence of y, ¢ on the strain invariants still implies dependence
on the reference configuration, and hence induced anisotropy from preloaded

states (Spring and Morland 1981). Consider



Mechanical Properties of Sea Ice

then CL and CDR, (6) and (15), give

- 25(l—e2

{(l-e) E - 2'0‘} ,
{(l-e) Q-20 (D-F)} s
{(l—e) L-20 F} .

REFERENCES

&slas

while CL and CLR, (6) and (14), give
V= s (D-F) 3 =2 g _(1-e)
= “%q .
CL and CD, (6) and (18), give

.2 g (1-e)

Hlat

Spring, U. and Morland, L. W. (1981), as in M5.

(20)

(21)

(22)

(23)
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MECHANICAL PROPERTIES OF SEA ICE

Report M7: Uniaxial Stress Data Correlation

1. Introduction

-

The differential operator viscoelastic solid relation which aséumes
incompressibility and isotropy in the reference configuration requires strain,
strain-rate, stress and stress-rate terms in order to describe observed uni-
axial stress behavior at constant stress and at constant strain-rate (Spring
and Morland 1981). A frame indifferent tensor relation which is linear in the
adopted stress-rate tensor and allows linear and quadratic dependence on the
strain tensor and strain-rate tensor involves five response coefficients which
are functions of the various tensor invariants. In uniaxial stress, or transversely
isotropic stress (TIS, Report M5), there is only one independent relation,
and this involves three independent response coefficients. The two strain
terms and the two strain-rate terms form composite strain and strain-rate
terms respectively. Uniaxial stress response is therefore governed by three
response coefficients and can determine, in principle, three such coefficients
as functions of one stress component and one strain component (not two inde-
pendent deviatoric stress invariants and two independent strain invariants).
The model assumes no dependence of the response coefficients on invariant
rates.

Report M6 describes four fundamental test configurations: constant
load (CL), constant displacement rate (CDR), comnstant load rate (CLR), and constant
displacement (CD), and shows that only two of the four provide independent
relations between the response coefficients. That is, the data functions
determined by the four tests satisfy various identities for this model, which
means that the test responses reflect common properties of the model. The
next question is whether a third relation can be determined by other uniaxial
stress loading histories, including a sequence of applied stress jumps to cor-
relate with the jump relations given by the model. It is now shown that
uniaxial stress response is described by two response functions only, and can
therefore determine only two functions; that is, these are at most, two
independent test responses. The uniaxial relation can be expressed in terms

of functions from various pairs of the above four tests.
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An immediate conclusion is that the three separate response coeffi-

cients required in the tensor relation, even as functions only of one stress

and one strain, cannot be determined by uniaxial stress response. »It has not

yet been shown that multiaxial test data which determines the response over

a domain of two stress and two strain invariants will yield sufficient inde-
pendent relations to determine the required five response coefficients of

this model, or whether the uniaxial response defficiency extends also to multi-

axial response. Since the five associated terms are introduced to represent

distinct directional and rate response features, they are expected to be pre-

dicted by general multiaxial loading tests, but if not the apparently general

relation must be reducible to a form involving fewer coefficients. The reduction

obtained by setting the three uniaxial coefficients zero in turn are examined,
and it is shown that the reduced model is physically sensible in only one case,
namely, when the strain-~tensor term is absent. This implies that the solid
exhibits no creep relaxation; following an elastic strain jump, on complete
unloading from any stress-strain configuration (Spring and Morland 1981).
Finally, the stress-strain domains covered by the four tests above are noted
to show that they do not extend to domains which can occur in quite simple

tension - compression loading.

2. Uniaxial Stress Relations

The uniaxial stress relation (Report Mé6) is

(1-e)3 5+ ¢ (1-e)2 [(1-e) 5 - 2&5] = 2 § (l-e)e + we, (1)

rojw

where the strain-rate coefficient ¢ (o, e) = ¢l in the tensor relatio? (Spring
and Morland 1981) when ¢, = 0 is adopted, and the strain coefficient w (o, )

is a combination of wy and Wy The simplification $, = 0 is necessary to derive
the jump relation as a limit of continuous changes satisfying the differential
operator law when rate dependence is excluded from the coefficients. In

a constant load test the measured response is

=0, e=F @, e, exe(0)=e (3; ()

Qle

CL:
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in a constant displacement rate test

CDR: & = w , %% = E (3, €) {} - 2—553—3%}, w=W (@ e); (3)

in a constant load rate test
CLR: 0 = q , e =D (o, e) , q=0Q (o, e); (4)
and in a constant displacement test

CD: e =0, o=-1L (0, e). (5)

The measured functions F, E (using W), D, Q, L are related to the response

coefficients by

. (1-e)3 5 - e S 36 25
34 X 2 =, 2
2 ¢ (1-e) + 2 ¥ o (1-e) 2% (1-e) 1-e
(6)
pole?s -we+ @3V . _ (=) 5 - ue
~ ~ o y ~
30 (1me) + 2 ¥ 3 (o) (1-e)3 ¥
which imply the identities
p=fF+23, L=EF, | %)
E

independent of the reponse coefficients

Using the definitions (6), the general uniaxial relation (1) can be
expressed solely in terms of the measured functions from any pair of the six

possible pairs of tests:

CL and CDR: o = E (e-F), (8)

CL and CLR: (D-F) o = Q (e-F), (9)
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-

CDR and CLR: o - Q = E (&-D), (10)
CL and CD: F '6 = L (e-F), Q1)
CDR and CD: E +L=Ee, (12)
CLR and €D: DG = (L+Q é-1D. (13)

That is, the response to arbitrary uniaxial stress loading is governed by any
one of the six equivalent relations (8) - (13), so that measured response

to any alternative test loading gives information only in terms of the above
sets of functions, and on no other combination of the response coefficients.

Furthermore, by (8), an infinitesimal strain jump relation

~ ~

e=nh (g, 50, e)), h (30, 30, e,) =0, (14)
is given by
8h 1 (15)

- -~ - *
20 E (09 eO)

so that a sequence of stress jump tests can determine only é (o, e) again.
Thus, the three response coefficients of (1) derived from the tensor relation
cannot be determined by uniaxial stress response, which is governed solely by
two response functions. That is, the five coefficients of the tensor relation
reduce to two combination functions for uniaxial stress, and not the apparent

three shown in (1).

3. Two Response Coefficients

Two independent sets of test data will determine two response co-

efficients. Consider the reduced models obtained by setting ¢, ¢, w zero
in turn.

If 3 = 0, then by (6)

$=0 E=22-=0@) ,E=0at5=o, (16)
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Now E is a modulus >> o, and in particular the jump relation (15) implies that
3&/33 = 0(o _1) as 0 +~ 0 which is not compatible with an infinitesimal strain
jump when a stress jump from o =0 is applied. Thus a model which relates
stress, stress-rate, and strain is not acceptable.

If ; = 0, when the model relates stress, strain and strain-rate,
then ﬁ is infinite and there is no strain jump if a stress jump is applied.
This is an acceptable approximation since strain jumps are small compared
with creep strains in many applications. The test functions F and D remain
bounded, form (6), but are identical by (7); Q is a bounded quantity by defi-~
nition. Thus by (9), e = F for all o(t), not just o = constant, and in the

CD test, direct form (1),
CD: &=0, (l-e)35 = we, (17)

which implies that the stress remains constant, also unacceptable.

If w = 0, there is no dependence on the strain tensor, but there

is dependence on strain through dependence of ¢1, Y on strain invariants,

~ -

hence dependence of ¢, ¢ on e. Now, by (6),
F (0, e) =0, (18)

and on complete unloading from any stress-strain state there is no subsequent
creep relaxation (é = 0) following the elastic jump. In classical linear
viscoelastic solid models, which exhibit decreasing strain-rate in time under
constant stress and satisfy a superposition principle, there is always relaxation
on fu}l or partial unloading (é < 0). It is not clear from the ice-mechanics
literature whether such a nonrelaxing property (on complete unloading) is a
reasonable approximation, but this reduced model is otherwise physically
sensible. Report M6 displayed various expressions for ;, & in terms of F, ﬁ

D, Q, L when ; = 0. It is clear from (6) that complete unloading from a

constant stress state in which e = F > 0, can produce relaxation e = F (0, e) < 0
only if & increases significantly with such decrease of stress and infini-

tesimal elastic strain decrease.. Relaxation after any small stress decrease,
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~

analogous to the classical linear model, would imply more dramatic increase of w

so that w derivatives would be large in some sense. Unloading response must be

investigated to find how much relaxation occurs; this model does not appear to be

satisfactory if relaxation occurs on any small partial unloading.

4, Stress~Strain Domains

In the constant load test with a load range 0 < ¢ < o*, F (o, e)
is defined only for e 2 e, (g), to the strain limit covered by the test. That
is, F is not defined in the domain 0 < e < e, (o), where e (o) is the elastic
strain jump for an applied jump stress o, and e, ®) = 0. X

In the constant displacement rate test to measure E (o, e), there is
again a limit stress-strain curve e (o) which depends on the maximum e =w
applied. Its initial slope is E (0, 0), since F (0, 0) = 0, for all w > O,
which is a restriction of the model. Now eé ) = i_l (0, 0), so the two
limit curves coincide as o - 0.

In the constant load-rate test, see Figure 1 (b) of Report M6,
D (o, e),.Q (0, e) are determined only in a domain e > eq (0) where q is She
maximum o applied, and as ¢ + 0, by (7), the limit slope eé (0) = D/Q = E-l (0,0)
again.

In the constant displacement test the limit relaxation curve g = ED(t)
for the L (o, e) domain depends on the maximum strain e applied with °p 0)
given by the initial jump condition. For each constant e, the upper stress
limit is GD (0), and hence the domain covered is precisely e 3_ee (8) again.

While the data functions will cover all uniaxial compression loading
(presumably extended to some "compression" domain in multiaxial stress), the
excluded domain 0 < e g_ee () can be reached by loading histories reaching a

current compression state. Consider a tension-compression history:

0O<t<ty : g =~T < O (tension)
(19)
t >t o =P >0 (compression). ’

During the tension stage there will be an elastic tension jump followed by

tensile creep, resulting in e = ey <Qatt = tl‘ Now the stress jump P + T
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at t = tl causes an elastic compression jump followed by compressive creep.
If P is sufficiently large (compared with T), the net creep must eéentuglly
become positive, with g = P > 0, so lie in the domain 0 < e < e, (P). This

domain can only be reached by tension-compression tests.
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Report M8. Reduced Viscoelastic Solid Models

~

1. Introduction

The isotopic viscoelastic solid relation discussed in earlier reports

has the form

S+ vy [§+5 (D+u)+(D-W)s-§tr (5D) 1]

(1)
1 2 1
= ¢D + w) [§'3K1}]+°’2 “f -3 K

2

1~ 2Ky 1l

involving four response coefficients y, ¢, Wys Wye The stress and stress-
rate tensors are assumed to occur only as a linear combination, and a possible

2 is eliminated to ensure bounded elastic jump

frame indifferent term in D
relations in the limit of increasingly fast stress changes. Since y # O is required
to recover observed uniaxial response at constant strain-rate, there is an

equivalent alternative relation

§+S(D+W)+(D-W)S—%tr(SD)l-ﬁ—w*S
(2)
- 1 2 _1 2 _
= ¢* D+ o* [B- 3K 1] +wy* [B" -5 (K - 2K;) 1].

The previous analysis supposes that ¢, ¢, Wy, w, are functions of all stress
and strain invariants, but not invariant rates, which therefore applies
to Yk, ¢*, wl*, wz*.

In uniaxial compressive (engineering) stress o, axial strain e,

(1) and (2) give the respective single relations

(1-e)3 5 + (1-e)2 § [(1-e) 5 - 258]
(3)

=24 (1-e) &+ e,

and
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(1-e)2 5 - 2 (1-e2) 5 e + (I-e)> y* 5

- (8

~

+ wke,

De

= % ;* (1-e)

~ N a ~ ~

where ¥, ¢, w, y*, ¢*, w*, are functions of (5, e) and w and w* are composite functions

of Wys Wy and wl*, wz*, respectively. Both (3) and (4) can be expressed in the

common form

5 =E (e-F), (5)
where . - _ . _
E=—20 4+ 29, 3o s+ 2, (6)
2y (1-e) l-e 2 (1-e) 1-e
(1—e)3 g - ;e s - ;*e -
F 3 - ~ _ ] = W*G = _——? E, (7)
5 ¢ (1-e) + 2 ¥y ¢ (1-e) (1-e)

involving only two data functions F (0, e), E (0, e) determined by constant
load and constant displacement-rate tests. While (3) and (4) are equivalent
when all response coefficients are general functioms of (o, e), making the same

~ ~ ~

restrictions on the dependence of ¢, ¢, w and yY*, ¢*, w* leads to different

' shapes of F and E, and hence different uniaxial response; that is, (3) and (4)

become different models.

2. Restricted dependence

Since the general uniaxial relation (5) contains only two functions
F and E, only two functions can be determined by uniaxial tests. Various
alternative pairings were exhibited in Report M7, where it was shown also
that @ £ 0, @ # 0 is necessary, while & = 0 is allowed but implies that no
creep relaxation occurs when the stress is unloaded from any configuration.
For complete unloading at time tl, with the model (3),

~

w (o, e) e

b (0, e)(1-e)

(8)

(S [




7

Mechanical Properties of Sea Ice 3

Since relaxation is observed, w ¥ 0, and these are three response coefficients
to determine from two data functions. Note that measuring the unloading response F
(0, e) gives only ratio w (O, e)/¢ (0,e) for ¢ = 0. Similarly, with (4),

t>t. : o=0, e=F (0, e) = - w* (0 e) e ’ ¢))

1 (1-e)> E (0, )

and w* # 0 for relaxation. In both (8) and (9), the creep relaxation is given by

>t : e=F (0, &) =-f (), e (t)) =e;, (10)

Where the strain-rate -f (e) depends only on e, but the initial strain e
depends on the previous load history, and elastic strain decrease on unloading
at time tl.
Ifﬁthe unloaded response f (e) is known, it gives an independent

relation on w, ¢ if the ratio m/¢ is independent of c, and an independent

relation on w* E if the ratio w*/E is independent of g. First consider

=0 B 0y @, w=9 @ w (o), (11)

A A

which are the necessary forms for w/¢ independent of o. Then

cuy (&) =34, (&) £ (e) (-e) (12)

~

is determined once ¢2 (e) is known, and hence w once $ is known.

Alternately
w* = w; (@) wy (&), E=w; (9) E, (e), (13)
which requires ﬁ to have a separable form, gives

w, (&) = Ey (e) £ (&) (1-e)>, (14)

so w is given when E is known.
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Since elastic strain jumps associated with a stress jump,.g are
infinitesimal, i

E> o, (15)
and so from (6),

&»E:p, o* >> o . (16)

With these strong inequalities, (6) and (7) give the simpler approximate

expressions
E=—3¢ > = 3¢*2, (17)
2 ¢y (1-e) 2 (1-e)
(1-e)3 3 - we (1—2)33 &* - a%e
F = ~ = (18)

34 (1-e) 3 % (1-e)

While total strain e may be small, it is not necessarily negligible compared
to unity, and no simplification is obtained with an approximation e << 1.
Applying the restricted forms (11), (12), to (17), (18) gives

F=-f(e) +F (o) F, (e) (19)
where - 2
FL @ =—2—, F, (o) = 5L (20)
2 (o) 3 % (e)
and _
E = g (21)

F, G) F, (&) ¥ (5, @

Thus, F (0, e) must have the particular structure (19), but E (o, €) is not
restricted since Y is not restricted. Data can be tested to check if (18)
is a satisfactory approximation. If (19) holds, (20) and (21) give
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- g 3 g1-e22
¢, (o) = — s 5 ¢, (e) = > N
1 F. (3) 272 F. (e) .
1 '¢ 2 '€ -
(22)
] (5’ e) = g ’

F, ()F, (o) E (3, e)

which, with (12), determine the three response coefficients. A special case is

~

6= 0y (@, v=u, (o), 23)

both independent of o, recovered by setting ¢1 (0)= 1. Then

1
F, (&) ¥ (3,

Fe=-f(e)+F, ()3, E-= (24)

requiring F linear in ¢ but é unrestricted.
If the restricted forms (13) and (14), with separable E, are applied
to (17) and (18), then

Fe-t(e)+2 @*_(5’ 8 (25)
wy (o) E2 (e)

is restricted, and

3 - 2 - - wy () E, (e) [F (3, ) + £ (e)]
74 = (1-e)" v (@ E, (&), yx= - . (26)
3 ,

Either wy (o), hence E, or F (o, ) + £ (e) must be order o (or smaller)

as ¢ + O for bounded y*. The special case

~

wk = w, (&) , E-= E, (e) (27)

is recovered by setting Wy (@) = 1, and F (o, €) + f (e) must be order o

(or smaller) as g » 0, but F (g, e) is otherwise unrestricted. Given that
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the response e=F (o, e) to constant o should be closely matched, the reduced
model (13) and (14) is preferable to (11) and (12), and the associgted separable
from (13)2 of ﬁ could behan adequate approximation since illustrations have
shown that variation of E with e has little effect on the constant displacement
rate response (Spring and Morland 1981).

Finally, consider the relaxation on unloading governed by (10),
which is a given feature of the viscoelastic solid model.

Since e
1 de'
t-tl=& "f'—z-:;,-s-, (28)
e

then if e » e as t »w» , and if

O<e, <e (29)

oo

so that the final strain is not a stretch and not a larger compression than at

time t1+
g
d 1
e T (:') =t (30

@®

Now f--1 (e) is integrable near e, to obtain bounded t by (28) for some initial
1
(e)

must be nonintegrable near e_. But these results must apply for any initial

relaxation (the case f = 0, implying no relaxation, is excluded), so f

strain e > 0, so in particular for e = 0. Thus f"1 (e) in nonnegative and non-

integrable as e > 0+, and has positive infinite integral. Hence
£(e)vEe (m>1) ase 0. (31)
A simple example is

f (e) = ke, e = e exp [-k (t-tl)] for t > t;. ' (32)



