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ABSTRACT

The one-dimensional stress reduction of a viscoelastic model of the
differential type is presented. Multiaxial data are required to comstruct the
three response functions necessary to describe the one-dimensional model. In
the absence of multiaxial data, certain simplifying assumptions are made which
would permit the use of uniaxial data alone. However, these assumptions lead
to physically unacceptable response functions.

This report should be of interest to those who are interested in the
constitutive modeling of ice.
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A ONE-DIMENSIONAL VISCOELASTIC MODEL FOR ICE

BY

J. F. DORRIS

INTRODUCTION

The Mechanical Properties of Sea Ice Program is a project consisting
of several phases to determine the mechanical properties of multiyear sea
ice. The project was developed and administered by Shell Development Company.
Participants sponsoring Phase I of the project included Amoco Production
Company, Arco Oil and Gas Company, Chevron 0il Field Research Company, Exxon
Production Research Company, Gulf Research and Development Company, Minerals
Management Service of the Department of the Interior, Mitsui Engineering and
Shipbuilding Company, Schio Petroleum Company, and Texaco U.S.A. The experi-
mental program in Phase I focused on defining the variation of the uniaxial
compressive strength of multiyear ridge ice over the temperature, strain rate
regime of most interest to the engineer. The experimental results are
reported by Cox et al.l

Phase I also included a_theoretical investigation into the
development of a constitutive model appropriate for ice. This theoretical
investigation was conducted by Professor L. W. Morland of the University of
East Anglia acting as a consultant to the project. Morland? studied the one-
dimensional stress reduction of the model previously developed by Spring and
Morland.3 The work presented here represents the application of actual test
data in the construction of the one-dimensional stress model.

Current techniques used to calculate ice loads on structures employ
constitutive models such as linear elasticity or perfect plasticity which fail
to account for the rate dependent nature of the mechanical response of ice.
Elasticity assumes a one-to-one correspondence between stress and strain
independent of time while plastic limit analysis requires an a priori assump-
tion about the strain rate to determine the appropriate yield function. In

general, ice structure interaction problems should have as their solution time

| H P T i
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dependent stresses and strains and allow for spatial variation of the strain
rate. Experimental observations, such as the nonlinear creep response of ice,
preclude the use of time dependent rheological models commonly employed in the
theory of linear viscoelasticity. Several empirical one-dimensional constitu-
tive laws have been proposed, but their generalization to more realistic
three-dimensional situations is limited.

To describe the mechanical response of ice, Spring and Morland3
develop a nonlinear viscoelastic solid model of the differential type. This
model is constructed from frame indifferent tensors which satisfy the funda-
mental invariance principles of physics. In the development of the model,
attention is focused on deriving the simplest tensor relation between the
physical variables which is necessary to describe the observed response of ice
under constant load (creep) and constant strain rate test conditions. As a
result, a relation between stress, strain, and their rates is developed.

As part of Phase I, Morland2 investigates the one-dimensional stress
reduction of the tensor relation. This reduction is described by three
material resﬁonse functions. The response functions are related to three data
functions which are constructed from a family of uniaxial constant strain rate
and unaxial constant load curves. However, these three data functions only
provide two independent relations for the response functions. In fact,
Morland shows that any one-dimensional test program will yield, at the most,
only two independent relations for the response functions. Consequently, two-
dimensional data are necessary to completely describe the one-dimensional
tensor reduction.

Morland attempts to develop a one-dimensional stress model from one-
dimensional data alone. Certain assumptions are made about the functional
form of the response functions which permit the construction of three so-
called "reduced" one-dimensional models. However, as will be seen later,
these reduced models are unacceptable, and further attempts to develop a one-

dimensional model are abandoned.

THE ONE~-DIMENSIONAL STRESS REDUCTION OF THE NONLINEAR
VISCOELASTIC MODEL FOR ICE

The nonlinear viscoelastic model of the differential type proposed.

by Spring and Morland is given without proof by the equation,
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s+ v [s9 - Zersm 1] =ep+s, [DP-31, 1] (1)
2
+ wl[§ - 1/3 Kl}] + w, [B - 1/3 (k] - 28,1} .

1)

Here § denotes the deviatoric components of the Cauchy stress g, §( is a
frame indifferent stress rate, D is the rate of deformation tensor, B is the
Cauchy-Green strain tensor, and 1 is the unit tensor. The quantities Iy Jis
and Ki’ i = 1,3 denote the invariants of D, S, and B, respectively. The
material response is described by the functiomns ¥, IF 0ps Wiy and Wy which
must be determined from experimental data and are, in general, functions of
the variants Jys J3, Kj, Ky and their rates.

The relation given by equation (1) is a frame indifferent
differential operator law which relates stress, strain, stress rate and strain
rate. It represents the lowest order differential relation necessary to
describe the qualitative features of the uniaxial response of ice under
constant load and constant strain rate test conditions. To simplify its
derivation, the relation assumes incompressibility and initial isotropy in the
reference configuration. The reader should refer to Spring and Morland3 for
the derivation and further discussion of equation (1).

For the uniaxial state of stress, o,, = 0 < 0 and all other Oij =0,

11
the tensor relation in (1) becomes,

-~

1-P G- U-es-253] =30 Q- rue , (2

where the superposed dot refers to the material derivative. The quantity s

is the nominal stress referred to the reference configuration and is related
to the Cauchy stress by o = o (1 -¢). The quantity € is the longitudinal
engineering strain given by ¢ = (lo - 2)/20 where 2 and % are the reference
and current longitudinal lengths, respectively. In the derivation of (2),
Spring and Morland restrict the dependence of the response functions on the
stress and strain invariants Jos J3, Kpy K and not their rates. For uniaxial
stress they become functions of o and ¢ only. The restricted dependence is
emphasized by introducing the notation,

~

v = 9(a,e), 6 = ¢(3,e), w = w(o,e)

~ -~ ~

The quantity w is a combination of w; and w, and is given by
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we = ;1(1 -1 - - 2)3] + ;2[1 - (1 - 5)6] = [3;1 + 6;2]e + 0(52) (3)
Hence, the uniaxial stress rfductio? of (1) cannot distinguish between the
individual contributions of wy and w,.

Equation (2) is derived with the purpose of describing the
qualitative features of the idealized uniaxial constant load and constant
strain rate responses illustrated in Figure 1. In Figure 1(a), the constant
load response initially consists of an instantaneous elastic jump, €y which
depends on the magnitude of the applied load. The elastic jump is followed by
periods of primary, secondary, and tertiary creep which correspond to periods
of decelerating, constant (or minimum), and accelerating strain rates. The
secondary creep may only be an inflection point defined by the time, tps TO
minimum strain rate. In Figure l(b), the constant strain rate response is
characterized by the stress rising from zero to a peak value, Iy? and then
falling to an almost constant post peak value.

Following Spring and Morland,3 the uniaxial response functions in
(2) are constructed by considering the idealized responses from a family of
constant load and constant strain rate tests. Consider first a family of
constant load responses. In this case 3 = 0 which reduces equation (2) to an

explicit expression for e in terms of 0 and ¢ , i.e.

~

: [% 5 (1= ¢) + 2931 = e>2} = (1 -5 - we . (4)

Since the strain response e(t) in Figure 1(a) is a monotonic function of time
for a given o, the strain rate response can be expressed as a function of

¢ rather than t. Hence the family of response curves for a range of constant
5 values determines a relation € = F(g,e) for € 2 se(a),g > 0. Solving

for & in (4), the data function F(o,e)is given by

- (1 - €)°5 - we
3

35,1 e) + 29501 - )2

(5)

Q e
]
o
Me
[1}
m
~~
Q
™
~
[

The data function F(g,e) is the strain rate response of the family of constant
load curves and is determined by measuring the slope at various points along

each curve.
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® Fig., 1 - Idealized responses for uniaxial stress tests.
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Consider now a family of constant strain rate curves. At constant
strain rate ¢ = w, the typical stress-strain curve is shown in Figure 1(b).
As w increases, the peak stress, Ty will increase and the corresponding
strain, Ey? will decrease or remain approximately constant. From these
observations, it is reasonable to assume that a family of constant strain rate
curves will not intersect in at least the small strain ranges. Thus, for each
strain, €, in this range, the stress increases with w and there exists a

monotonic o - w relation which can be inverted:

€ = w = constant: o = G(w,e), w = W(3,¢) (6)

Applying the chain rule, o can be rewritten as,

2 35 _ 30 . _ 3G
i e T (7)

Substituting for o and ¢ in equation (2) and solving for %%, we find:

~

[ 36 . 20 ](1 __g)
VY A SR W (8)

‘}(;’E) (l - %)

The function Y(g,ec) measures the stress-strain gradient of the constant strain

3G _ .=
3 Y(ao,¢e)

[}

rate response and represents a generalized Young's modulus. The function pair
v(3,e) and W(g,e) are two data functions which can be determined from a family
of constant strain rate tests.

The three data functions Y, W, and F are not sufficient to determine
the three response functions ¢, w, and ¥ since the constant load and constant
strain rate test configurations only provide two independent relations given
by equations (5) and (8). Morland? investigates the possibility of other
uniaxial test configurations, such as constant load rate and constant dis-
placement tests, providing a third independent relation. His results show
that only two relations can be independent because equation (2) can be
expressed in a form involving only two combinations of the coefficients,

namely

= ¥(5,2)8 - L(3,e) , (9)

Qe
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where L(o,c) is the data function obtained from a family of constant
displacement tests. Morland concludes that any prescribed uniaxial stress
history can only give relations involving combinations of Y(o,e) and L{g,e).
Consequently, two-dimensional data are required to construct a uniaxial stress
reduction of the tensor relation in (l). However, certain assumptions about
the functional dependence of the response functions can permit the construc-
tion of one-dimensional stress models from one-dimensional data alone.
Morland? describes the assumptions necessary to construct three of these
so-called "reduced" models. It will be seen later that these reduced models

are unsatisfactory.

LABORATORY TEST DATA

The first step in testing the applicability of the one-dimensional
model given in equation (2) is to construct the data functions from laboratory
test data. The test results from the Phase I experimental program show much
scatter due to the large variations of ice types and physical properties of
multiyear ice samples. The Phase I constant strain rate tests were conducted
at two temperatures and two strain rates on samples taken from multiyear
pressure ridges. Each test condition consisted of at least 40 tests. The
Phase I constant load tests were a limited scope study on multiyear floe ice
to develop test techniques for subsequent phases. These tests were conducted
at two loads and two temperatures. Each test condition consisted of only two
tests, and the results had in some cases differences cof over an order of
magnitude. Given the scatter in the data, the different ice type for each
test type, the limited number of test conditions for each test type, and the
small sample population for the constant load tests, the Phase I data set was
not judged to be suitable for testing a new constitutive model.

The ideal data set for constructing the uniaxial data functions
should consist of test samples which have consistent physical properties and
test results from a large number of constant loads and constant strain
rates. The data set which best fits these criteria is the data set obtained
by Mellor and Cole.% Their tests were conducted on fine-grained isotropic ice

under uniaxial compression at =5°C. The applied stresses for the 24 constant
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load tests ranged from 116 psi to 550 psi. The strain rates for the 26 con-
stant strain rate tests ranged from 10”7 /sec to 1073/sec.

Four constant load tests and four constant strain rate tests were
chosen from the entire Mellor and Cole data set to construct the data
functions. The four constant load tests were chosen to divide the range of
loads into approximately equal intervals. The minimum strain rates for the
constant load tests ranged from 1 x 10'7/sec to 2.64 «x lO’s/sec. Since two of
the data functions correspond to typical strain rates of the two test types,
the four chosen constant strain rate tests were restricted to this strain rate
range to ensure an order of magnitude correspondence of strain rates between
the two test types. ILf the resulting one-dimensional model shows merit in
this restricted strain rate range, then the extension into larger ranges can
be investigated later. Once the particular tests wére chosen for each test
type, exponential functions were fitted to each test to facilitate data
manipulation. The procedures for each test type are discussed in the
following.

Constant Load Tests

The typical strain, time response for ice under constant load test
conditions can be approximated by an expression of the form,

t/tl t/t

e + g e . (10)

e(e) = e+ ¢ 2

o} 1
The constants €gs €12 Ep7 tl, and t, are determined by requiring that the key
features of the observed response be matched exactly. In our case these are
the elastic jump at t = 0 and the minimum strain rate. Explicitly these

requirements are:?

1. €(0) =¢,

e

2. e(e ) = e,

3. &(c ) = ém, (11)
4, s(cm) =0,

wn
°
(4]
~
r
~

1]
jy3
o
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Here €, denotes the elastic strain jump at t = 0, (cm,em) defines the point at
which minimum strain rate occurs, ém is the measured minimum strain rate,

and (t_,e_) is a point beyond (tm,sm). Condition (5) provides the fifth
condition necessary to determine the five constants and insures that the
measured response at large strains is well matched.

The specific constant load tests chosen from the Mellor and Cole
data set are listed in Table 1 along with the data points used to calculate
the constants for the approximating functions. The elastic jumps in Table 1
are not actual data points but are instead calculated by dividing the applied
stress by the Young's Modulus. The Young's Modulus is determined by looking
at the apparent initial tangent moduli of the constant strain rate tests and
selecting a typical value. The value chosen for Young's Modulus is
4.64 x 1077 psi.

Figure 2 illustrates a typical fit of the functional form given by
equation (10) to the experimental data. When solving the nonlinear system
given by equations (11), it is easier to pick good initial guesses for the
solution by scaling the data with respect to (tm, em). The coordinate axes in
Figure 2 are the scaled axes. Once a solution for the scaled constants is
obtained, those values are unscaled. The unscaled solutions for the constants
are listed for each test in Table 2. Figure 3 illustrates plots of all four
fitted curves and represents the family of constant load tests to be used in
the construction of the data functions.

Constant Strain Rate Tests

The typical force-time record for ice under constant strain rate

test conditions can be approximated by an expression of the form,

c/t:l t:/t:2 c/t3
f(e) = £ + f. e + f e + f e . (12)
0 1 2 3
Although a constant plus two exponential terms is sufficient to describe the
general shape of the force-time record, the additional exponential term
provides a better fit for the post peak response. Values for t; and t, are

assumed and values for fo, fl, fz, f3, and tj are calculated by requiring,
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1. £(0) =0,
2. f(0) =F.,
1

3, f(c)=f£f, (13)

m m
4., f(t ) =0,

m
S. f(tm) = fcn .

Here ?i is the initial slope of the force time record, (tm,fm) is the peak of
the force time record, and (t_,f_) is some point beyond the peak value. The
specific constant strain rate test chosen from the Mellor and Cole data set is
listed in Table 3 along with the data points used to calculate the constants.

Figure 4 illustrates a typical fit of the functional form given in
equation (12) to the experimeﬁtal data. The fitted curve and experimental
data in this figure are normalized with respect to the point (tm,fm). In
Figure 4, the local maximum seen in the experimental points is a typical
feature of the curves obtained by Mellor and Cole and represents the initial
yield point of ﬁhe material. The primary objective here is to obtain a family
of stress-strain curves which exhibit an increase in strength with increasing
strain rate and strain softening. Consequently, no attempt is made to include
the initial yield point in the approximating functions.

The stress-strain curve for the experimental data is easily
approximated by appropriately scaling equation (12). In developing the family
of constant strain rate curves, it is assumed that the initial material
response is elastic for each test. Thus, the initial slope of the force time
curve is actually a calculated value obtained by multiplying the Young's
modulus by the initial cross-sectional area of the test sample and the test
strain rate. The value of Young's modulus is the same value (i.e., 464,000
psi) used to calculate the elastic jumps for the family of constant load
tests.

The unscaled solutions for the constants of the functions describilng
the force time records are listed in Table 4. Table 5 contains the scaled

constants which yield the corresponding stress-strain curves. The family of

o
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Table 3

CONSTANT STRAIN RATE TESTS FROM MELLOR AND COLE
USED TO GENERATE DATA FUNCTIONS

€ Fi En fM t, fcn

Test
(1/sec) (1b/sec) (sec) (1lb) (sec) (1b)
121 CD 7.8 x 10-7 1.137 16260 570 66660 430
123 ¢D 2.25 x 10-6 3.280 4650 933 15870 635
46 CD 1.32 x 10-5 19.240 660 1470 2160 1120
31 ¢b S.14 x 10-5 74.930 179 1859 1167 1271




16
BRC-1451

&

*BIEP

0009

1eijuBW1a2dXd 01 2AIND U1e115-552315 pawnsse ayl jo 11j jeord4dy - 4 819

000§

000°%

s ‘

IWEL Q3IZ1IVIYON

000°¢ 000°2

| I 1 1

000"t

000°0

tc1d93

3AUN) O3)ild —
VIVO TVINIMIYILKI W

935S/ (/-38" /) =31VYY NIVYIS

+y38WNN 1S3l

0000

002-0

oor ‘9

0090

0080

000"t

30804 d3Z1TYWEON




17
BRC-1451

~c~ X 6l 1- ~c~ x 76°1- 01 6L°1- nc— L O £ 501 % ot 1- qc~ x 801 nc~ X 9T°1 [ 0T X %1°6 | A0 T¢
~o~ X 69°y- AL 56" Y- 0t * 09" 9~ ~c~ X 06° (- 01 X €y s- g0t * 61°6 AL IR 6°6 ¢-01 X Ze*1 | a2 9%
~c~ x g1t mo~ X 6y°¢- mc_ X C9° Y- ~c~ LR A A mc— X Gyt - ¢O1 X STy 01 X TY°S [4_ 01 X €Z°T 1 a0 g1
z01 x g2 ¢- co~ X ge°1- vc— X £9°1-~ ~c~ x 79°¢- mc~ X %0°¢- mc~ x 00°¢ AL S0°Y (0T x 87 | a {RA|
(999) (298) (99s8) (an) (a1) (a) (a1) (228/1)
€4 I, 1, mu Nu ~u 0, 3 180]
@nu + 271 + 1 w—u + cu = ()3
nu\u NU\H 1

‘ S3IABND IWIL I0¥O4 3HL

¥ 219%)

40 SNOILONMd ONILVHIXO¥ddY IHL HO4 SLNVISNOD




18
BRC-1451

¢|o~ X 00°6~ M|c~ X 18°L~- nto~ X 0¢°6~ No~ X g6 ¢~ mc— X 06°¢- mc— X gy ~o~ x [0°Y nlc~ X %1°¢ a3 1t
p-O X 91°9- | OT X €679~ [ OT X T£°8- | ,01 X 6872~ | (O1 X €41~ | (O X €9°T | ;01 X 91°¢ | 0T X Z€°1 | 02 9¥
c|o~ X 99°¢- muo— X ¢g8° L~ Nlc~ X ¢0° 1~ No~ X 60° 1~ mc— LERA A O nc_ LIS A § ch X gLt olc— LR Y AN ad el
elc~ X 9¢° ¢~ N|o~ x 80" 1~ Nlcﬁ X [Z°1- Nc~ LIS B O Nc~ X 89°6- ~c~ X €6°6 Nc~ X 62°1 Ntc— x g as izi
(ruy/cur) (cui/cur) (cui/cur) (18d) (18d) (1ed) (18d) (298/1)
€, [ L £ [ LS 0, 3 1831
m abto 4 alo & alo 4 %0 = Auvow
mu\u Nu\u _u\u

SIAUND NIVYULS-SSIULS FHL JO SNOILONNG ONILVAIXOWddV FHL ¥OJ SINVISNOD

§ 23198l




19
BRC-1451

stress-strain curves which are to be used to construct the data functions are

shown in Figure 5.

CONSTRUCTION OF DATA FUNCTIONS

Before constructing the data functions, the approximating functions
for each constant load test and each constant strain rate test are made non-
dimensional by dividing each time, strain, and stress quantity by scale

factors. The time scale, t_ = 720 sec, is the time to minimum strain rate of

s
the constant load test with the largest applied load, the strain scale,

e, = 0.008, is the strain at tg, and the stress scale, o, = 592 psi, is the
maximum stress of the constant strain rate test with the highest strain rate.
The three data functions, F, W, and Y constructed from the
dimensionless equations are functions of the normalized stress, s = c/os, and

normalized strain, e = s/es. The data functions will be represented as
surfaces defined over the stress—-strain plane. Attention is restricted to the
points (s,e) in the domain defined by 0 < s < 1 and 0 < e < 4, It will be
seen later that the data functions obtained from each test type will be

restricted to a subset of points in this domain.

Constant Load Data Function

The family of constant load curves yields the data function F which
describes the strain rate response of the material. The actual family of
constant load tests to be used is shown in Figure 3 and for the sake of
discussion, a schematic representation of those curves is shown with
normalized axes in Figure 6.

We want to construct the function F defined over some stress-strain
domain determined by the family of constant load test. Consider the family of
curves in Figure 6 obtained by applying the constant stresses §,, k = 1,4.
Clearly the stress will range between the lowest and highest applied stresses.
In our case, this range is §; = .196 = s < .766 = S,. For any constant load
test, the lower bound on strain is the elastic jump defined by Hooke's law.
All subsequent strains lie to the right of the elastic jump. Thus, all
permissible (s,e) points associated with any constant load test lie in a
restricted region to the right of the line s = Ye where Y is the normalized
Young's modulus. In our case the lower bound on strain 1is Ei = Sl/§ = ,0313
and we arbitrarily specify the upper bound to be E, = 4.0. The resulting
stress-strain domain for our family of constant load tests is illustrated in

Figure 7 by the cross~hatched trapezoid.
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S1<S2<83<34
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Fig. 6 - Calculation of the data function F from the constant load curves.
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Fig. 7 - Stress-strain domain for constant load tests.
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We want to evaluate the function F at any arbitrary set of points

(si, ej) defined by the partitions, S1 S s; S 84, i =1, mand El < e < E

j =1, n. Consider the constant strain ey shown in Figure 6. The function F

can be evaluated by measuring the slope at the intersection of e and each

constant load curve identified by the applied stress S - The ordered pairs

J
Figure 8. The values of F(si, ej) can then be evaluated by constructing an

(Syy F(Sy, ej)) can then be mapped into the constant e: plane as shown in

interpolating function between the mapped points. This procedure is repeated
for each ey until the function F (si, ej) is defined at every point.

From Figure 6, we see that for a constant strain, e the measured
value of F increases with increasing S;. The resulting mapping in the
constant e plane should then be a monotonically increasing function as shown
in Figure 8. An exponential function of the form F = a + be® is chosen to
evaluate F at all s;. Two of the constants of this function are chosen to fit
the endpoints F(S, ej) and F(S,, ej) exactly and the third is chosen by
minimizing the error from the intermediate points, F(S,, ej) and F(Sj, ej).
The function F(si, ej) is shown plotted in Figure 9, and Figures 10 and 11l
show plots of F for planes of constant strain and stress, respectively.

Constant Strain Rate Data Functions

The family of constant strain rate curves yields the data functions
W and Y which describe the material's strain rate and stress-strain gradient
responses, respectively. The actual family of constant strain rate tests to
be used in the construction of these functions is shown in Figure 5, and for
the sake of discussion, a schematic representation of those curves is shown
with normalized axes in Figure 12.

In constructing the functions which approximate the family of
constant strain rate curves, we have assumed the initial response of the
material to be elastic by requiring the initial slope for each curve to be
equal to Young's modulus. Because of viscoelastic effects, the slopes of each
curve will decrease from the initial value at rates dependent on the strain
rate. Thus, for any constant strain rate test, all permissible stress—strain
points will be in the region to the right of the line s = Ye. As strain rate
decreases, the departure from the initial Young's modulus will increase at
faster rates. This, along with the observation that peak strength decreases

with decreasing strain rate, guarantees that each stress-strain point to the
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Fig. 9 - Three-dimensional representation of the F data function.
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Sy F---=-=
4 f ‘, — Y(Sg3.ej)
| ' ' -
| W(S4,ej)
: ! W(S3.ej)
sst---f-F  Avseep
! .
So b - - - ' ‘ Y(S1.ej) W(SQ’ej)
|
Si - f/~/ -

W(S 1.ej)

W(S1,e))< W(Sp,ej)<W(S3,ej)<W(S4.e))

Fig. 12 - Calculation of the Y and W data functions from the constant strain
rate curves.
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right of s = Ye corresponds to a single constant strain rate curve (at least
at small strains).
We arbitrarily restrict strain to the interval, E, = 0 < e < 4.0 =

2

E,» The partially open interval at 0 will be discussed later. Consider a

partition of this interval defined by Ez < e; < E,, j =1, n. The constant
strain e:, shown in Figure 12, intersects each stress-strain curve. The
intersections are defined by the stress values, Sk’ k = 1,4 where Sl < 32 < 83
< 84. Clearly for e; = constant the stress domain is defined by S, (ej) <s

< S, (ej). Since this is true for any e., we see that in our case the

stress=strain domain is further restrictid to all points lying on and between
the two curves with the highest and lowest strain rates, shown schematically
in Figure 13.

At each intersection of e the slopevand strain rate of each
stress-strain curve can be associated with each S,. The ordered pairs (Sk’
W(s,, ej)) and (S, Y(S,, ej)) can then be mapped into planes of constant e;
as shown in Figure l4. The functions W(s, ej) and Y(s,ej) can be evaluated
for any s in S, (ej) < s <S, (ej) by choosing appropriate interpolating
functions between the mapped points. Again, this procedure is repeated for
each e until W and Y are defined everywhere.

From Figure 12 we see that the mapping of the points (S, , W(S,, ej))
must be a monotonically increasing function of S, as shown in Figure léa.
Consequently, we choose an exponential function of the form W = a + be“® to
interpolate between the mapped points. The endpoints are again matched
exactly and the intermediate points are fit in a least squares sense. Because
of strain softening, the mapping of the points (S, Y(S,, ej)) from Figure 12
may or may not be monotonic., Figure l4b illustrates a possible nonmonotonic
mapping of these points. To allow for nonmonotonicity, cubic polynomials are
chosen to interpolate between the mapped points. Continuity of the inter-
polating functions and their first derivatives are required at each
intermediate mapped point.

Figure 15 is a three-dimensional plot of W(s,e) with Figures 16 and
17 illustrating traces of W in constant strain and stress planes, respec-
tively. Figure 18 is a three-dimensional plot of Y(s,e) with constant strain

and stress planes of Y illustrated in Figures 19 and 20, respectively.
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Fig. 13 - Stress-strain domain for W and Y data functions.
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W(s,ej) A e; = Constant

W(S4,ej)

W(S3,ej)

W(S2,ej)
W(S1,ej)

Y(s.ep) A | ej= Constant

Y(Sz,ej) ““““
Y(Sg.ep) | - - -

Y(S 1 ,ej) B

Y(S4,ej) ———————————————————————

Fig. 14 - Mapping of the points W(Sk,ej) and Y(Sk’ej) k = 1,4 into the

€] = constant plane.
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18 - Three-dimensional representation of the Y data function.
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RESPONSE FUNCTIONS

In the previous section, the three data functions F(s,e), W(s,e) and
Y(s,e) are determined from families of constant load and constant strain rate
tests. The task now is to determine the material response functions
w(s,e), o(s,e) and u(s,e) from the data functions. From the two types of
tests considered, the response functions are related to the data functions by
equations (5) and (8). From these equations we see that the two test types
only provide two independent relations from which to determine the three
response functions.

Morland2 investigates other uniaxial test types (i.e., constant
displacement and constant load rate tests) in an effort to find a third
independent relation to uncouple the response functions. He finds that
regardless of the test type chosen, only two relations can be independent,
since the uniaxial stress response defined by equation (2) can be expressed in
a form involving only two combinations of the coefficients. The form depends
on the two types of tests chosen to measure the data functions. If the
constant strain rate and constant load tests are chosen, then equation (2) can

be reduced to the form,
s =Y (&-F), (14)

where Y is a combination of F, W, and Y.

The simple form in (14) is obtained by dividing the uniaxial stress
relation in (2) by a function of (s,e). This division reduces the number of
coefficients from three to two. In the general tensor relation this division
is not possible and the function remains as a distinct quantity which governs
the separation of ¢ and w into the quantities o, 9,, w;, Wy The separation
of ¢ and w along with 3 provides the five independent coefficients necessary
to describe the deformation of an incompressible material. These coefficients
must be determined from a program of multiaxial tests. If these coefficients

were known, then the composition of ¢ and w could be determined which would,

in turn, yield the uniaxial stress model defined in (2).

s

w
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REDUCED UNIAXTAL MODELS

Despite the necessity of having multiaxial data to describe the
uniaxial stress model described by Equation (2), Morland? suggests three
reduced models which can be determined by uniaxial data alone. These reduced
models depend on certain assumptions about the functional dependence of the
response functions. The assumptions provide a third equation necessary to
uncouple the three response functions appearing in Equations (5) and (8).

The first reduced model considers the removal of terms in (2) by

~ ~

setting the ¢, ¥ and w equal to zero in turn. Setting ; = 0 leads to a
contradiction involving the elastic jump and ¢ = 0 leads to a physically
unacceptable response for the constant displacement test. For ; = 0, there is
no explicit dependence on the strain tensor, but dependence on strain is
maintained through the arguments of ; and L. The absence of w in (2) implies
that upon complete unloading from any stress-strain state there is an elastic
strain decrease but no subsequent creep relaxation. Whether or not this is an
acceptable approximation needs to be determined from experimental data.

if ; = 0 is an acceptable approximation, then ; and & can be determined from

Equations (5) and (8) which yield,

>

co =23t 2y Loy - 28} (15)

s __
FY 3FY

) =

-~ -~

This reduced model, however, is not acceptable. The functions v and ¢ in (135)
become unbounded since ; + 0 at points which correspond to the peak wvalues of
any stress-strain curves.

Morland? suggests an alternate approach for obtaining reduced models
by restricting the dependence of the response coefficients ¥, w and ¢ on s and
e. These restrictions can be obtained by measuring the creep recovery upon
complete unloading from some current state (sl, el) at the time tl/ts. In
this case, we have,

.

t/t_ >t /t s =0, & =F(0,e) =~ £(e) <0, el — |=¢e (16)
s 1" 7s o

where e; - eI, is the elastic strain decrease. Here f(e) measures the strain

rate response of the material upon unloading and is necessarily independent of

the stress Sy In the absence of unloading data, we would expect the unload-

ing response to be similar to the response shown in Figure 21(a). As t » =,
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ty/ts

Fig. 2la = Expected creep response of ice upon

unloading.

€ o

Fig. 21b - Expected shape of £(e).

t/tg
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f(e) » 0 and the material recovers to some permanent strain e_. The expected
shape of f(e) is shown in Figure 21(b) which can be approximated by a power

law of the form,

e-.emn +
f(e) = fo - ) re,Sese ,n2 1 (17)
e, ~ e,

The values of fo’ n, e, eI, aid e_ would depend on the history of loading and
the elastic jump from e; to e - Since f(e) depends implicitly on loading
history, many unloading tests would have to be conducted for different values
of (sy, e;) before f(e) could be determined.

In his investigation of the strain rate response f(e), Morland?
concludes that complete recovery is necessary and, hence, e_ in (17) must
equal zero. However, in general one would expect e_ = 0 since creep tests
under large applied loads induce deformation mechanisms such as microcracks
which would be irreversible upon unloading. Whether or not e_ =20 1s an
acceptable approximation needs to be determined experimentally.

From equations (5) and (8), we have

~

f(e) = =2 (0,e)e . (18)
3 (1 - e)efo,e)

Thus, the relaxation function f(e) determines the ratio w(o,e)/s(o,e)

A A

W

evaluated at zero stress. If we assume that w/¢ is in general independent of
stress and, hence, given by f(e), then a third independent relation for the
response functions is obtained. From equations (5), (8), and (18) we find,
~ (v

we=%o(l-e)f,'u=

[T

(1 - e)ZQ - 2(1 - e)s

2 - (19)
(1 = ) s{(l = e)Y = 25}

2sF + (F + £){(1 = e)Y - 25}

3
2

@:

In order to evaluate the response functions in (19), values for the
parameters defining f(e) in (l7) must be assumed due to the lack of experi-
mental data. We assume that upon unloading, there is a complete recovery,

l.e., we assume e_ = 0. Furthermore, we assume that the initial value of f(e)
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is obtained at the strain state eI = 4.0. This guarantees that £(e) is
defined everywhere in our strain domain, 0 < e < 4.0. We arbitrarily choose
£, = 1.0 and n = 2. With these assumptions, three~dimensional plots for the
three response functions can be obtained. Figures 22-24 illustrate the

response functlons ¢, w, and w, respectively. These figures show that the

assumption w/¢ £(e) leads to singularities in the response functions.
Further simplifications for the response functions in (19) can be

made by recognizing that elastic strains assocxated with a stress jump, S, ére

infinitesimal, i.e., s/Y << 1. Neglecting s/Y compared to unity yields

30
2¢1 - e)zw

Y = (20)

which implies ¢ >> 0. This approximation leads to the following simplifica-
tion for F and the response function:

-~

(l-e)s—we

F ;
¢(1 - e) (21)
s - L s - e)’st
el -, (L= e) st
2 Pt (F + £)Y P

-~ ~

This simplification is also unacceptable since ¢ becomes unbounded as Y ~ 0
near points which corresfond to points of peak stress in a constant strain
rate test.

Morland? proposes a third reduced model which follows a development
parallel to the fecond model. The third reduced model is obtained by dividing

Equation (2) by w. This normalized reduced model is,

(1 - &) - 21 - %58 + (1 = &)Purs = 3 o%(1 - e)e + wre , (22)
where
~ l A~ ~ ~ -
p* = =, ¢~;=$, we.--_-&j.,
] P P

This third model can also be constructed with one-dimensional data alone

provided unloading data are available, i.e., f(e) must be measured.
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The simplifications resulting from neglecting s/Y compared to unity
and which correspond to Equation (21) are,

Q- e)3s * - w¥e
3

3 o%(l - e)

F

% o* = (1 = e)ZY ,  YF = SE—:;ElZ , w¥e = (l - e)3Yf .

Note that this model depends on (F + f) approaching zero as fast or
faster than s for u* to be bounded. However, data are not available to
investigate this limit.

Further simplifications of the second and third models can be made
by assuming ; and ; (or ;* and ;*) to be separable functions of stress and
strain. Pursuit of these models would be a meaningless exercise without
experimental measurement of f(e). The reader is referred to Morland for
development of these models.

The three reduced one-dimensional models introduced by Morland? are
either unacceptable due to singularities or incomplete due to lack of data.
It may be possible to devise other reduced models, but further investigations
would be needed. It is doubtful that other such reduced models will be suit-
able, since the original model is the simplest rensorial relation necessary to
describe the observed response of ice. Reduction of this "simplest' model
would probably eliminate certain key features of the material's response.
Thus, the satisfactory development of a one-dimensional model will probably

require multiaxial data.

STRESS-STRAIN DOMAIN FOR RESPONSE FUNCTIONS

Regardless of whether the response functions are determined from a
suitable reduced model or from multiaxial data, their construction would
permit the solution of initial boundary value problems involving uniaxial
states of stress. Of course, solutions to these problems can only be obtained
in stress-strain domains where the response functions are defined. The domain
of definition is simply the intersection of the stress-strain domain for the
data functions illustrated in Figures 7 and 13. The intersection of these

domains is shown in Figure 25.
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Fig. 25 - Stress-strain domains for the response functions.
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From Figure 25, the stress-strain domain for the response function
is rather restricted and should be extended in order to solve problems of a
general nature. In particular, the extension of the domain to include the
origin is necessary to solve problems where the initial state of the ice is
undeformed and stress free. For these problems, the initial values of the
data functions must be evaluated.

From equation (5), we find F(s,e) = 0 as (s,e) » (0,0), and since we
have restricted the initial response of the constant strain rate tests to be
elastic, we have Y(s,e) » Y as (s,e) - (0,0) . Thus, both F(s,e) and Y(s,e)
are defined and unique at (s,e) = (0,0).

However, since W(s,e) represents the strain rate of a constant
strain rate test, its value at the origin is nonunique. This is not
surprising, since the strain rate of an idealized constant strain rate test is
a step function at the origin. A unique W at the origin would require
dependence on the stress rate. This would, in turn, require general rate
dependence of the other data functions. To maintain rate independence of the
data functions, a unique value of W can be artificially imposed at the

origin. A candidate for this value is obtained by redefining W(s,e) to be,

+ wj- (24)

W(s,e) = (W, - W )ells,e)Y
]

Here W), j = 1,4 (Wl < Wy < Wy < Wa) are the strain rates associated with each
stress-strain curve in our family of constant strain rate tests.

Equation (20) couples the strain rate W(s,e) with the stress-strain
gradient Y(s,e). Since Y(0,0) = Y , the value of W(0,0) is the highest strain
rate of our family of constant strain rate tests. Since high strain rates are
associated with an elastic response, this equation is consistent with our
assumption that the initial response is elastic. As the current (s,e) point
moves away from the origin, the first term of equation (20) decays exponen-
tially to zero. This decay should be sufficiently fast to guarantee that the
proper definition of W(s,e) prevails at points away from the origin.

With the definition of W in equation (20), all response functions
are defined at the origin. We now need to investigate the data functions near
the stress and strain axes. Consider first the strain axis. The data
function F(o,e) cannot be determined by the constant load test, s = o, since

if no load is applied, there will be no measured response, i.e., F(o,e) = 0.

[z 3
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This implies that upon complete unloading there would be an elastic strain
decrease but no subsequent creep recovery. Instead, the function

F(o,e) = - f(e) < 0 must be measured by complete unloading from some state
(s;, ;). If the measured response f(e) depends appreciably on the stress
before unloading then the response functions depending only on stress and

strain are uﬁsatisfactory.

To extend the data functions W and Y toward the strain axis, we need
to obtain stress-strain curves from tests conducted at increasingly small
strain rates. As the strain rate decreases, we would expect the stress-strain
curve to collapse toward the strain axis. Hence, we would expect Y(s,e) = 0
and W(s,e) » 0 as s - 0. However, since we have specified nonzero values of Y
and W at the origin, the data functions at best can only be defined along the
strain axis for some small value, s = 0%. This is satisfactory as long as the
current stress-strain point lies in the quadrant s > 0, e > 0. If the current
stress-strain point moves across the strain axis, then the data functions W
and Y must be redefined at the origin. This would require the response
functions to be rate dependent.

Finally, consider the stress axis (s,o). When defining the
stress-strain domains of the constant load and constant strain rate tests, we
saw that all permissible responses were restricted to domains to the right of
the line s = Ye. Responses corresponding to points to the left of this line
can be obtained from nonmonotonic load paths. Consider a tension compression

load path:

0 <t =<t s -T < 0 (tension)

t >ty s P > 0 (compression).

During the tension stage there will be an elastic tension strain jump followed
by tensile creep resulting in a total tensile strain e = e <0att=1¢,. At
t = t; the stress jump P + T will cause an elastic compressive strain jump
followed by compressive creep. The relative magnitudes of the compressive and
tensile loads can be adjusted so that the compressive creep responses

correspond to points to the left of s = Ye.
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SUMMARY AND RECOMMENDATIONS

A nonlinear viscoelastic law of the differential type has been
developed by Spring and Morland3 to describe the mechanical behavior of ice.
This constitutive law represents the simplest differential equation necessary
to describe the observed behavior of ice under constant load and constant
strain rate conditions. As a first step in applying this law to the solution
of ice structure interaction problems, Morland2 investigates the uniaxial
stress reduction of the general tensor relation in (l). The uniaxial model
requires the measurement of three data functions from a family of uniaxial
constant load and constant straln rate tests. These data functions are
related to three response functions which appear directly in uniaxial stress
reduction of the governing differential equation. Morland assumes that both
the data and response functions are functions of stress and strain.

Although there are three measured data functions and three
undetermined response functions, Morland2 shows that any uniaxial testing
program will only provide two independent equations relating the data and
response functions. Consequently, multiaxial data are required to uncouple
the response functions. Morland suggests some assumptions regarding the
functional dependence of the response functions which permit the construction
of three reduced uniaxial models from uniaxial data alone.

The work presented here describes the procedures followed to
construct the reduced uniaxial models from experimental data. The data chosen
for this study are from the tests conducted by Mellor and Cole® on fine
grained polycrystalline ice. Four constant load and four constant strain rate
tests were chosen from the data set to construct the three data functions.
Construction of the three reduced uniaxial models from the data functions was
unsuccessful. It appears that a suitable uniaxial model will require
multiaxial data.

The domain over which the data functions are defined is restricted
to a small domain in the compression quadrant, s >0, e 2 0, of the stress-
strain plane. The ability to solve problems of general interest requires this
domain to be extended to at least the entire compression quadrant. Extension
of the domain toward the origin reveals nonuniqueness of a data function
there. Uniqueness of this function at the origin‘would require general
dependence of the response function on stress, strain and their rates. Rather

than reformulate the response functions with rate dependence, a unique value
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at the origin is imposed on the data function. Further theoretical work
should be done to ensure that this approach does not lead to contradictions
for any arbitrary approach toward the origin. To extend the domain of defini-
tion toward the stress and strain axes, additional tests need to be conducted.
These are specialized tests involving unloading and tension-compression load
paths. Extension of the domain outside of the compression gquadrant would
require further theoretical and experimental work.

Once all theoretical questions are resolved and the additional
laboratory data are obtained, much effort is still required to develop the
numerical procedures necessary to use the nonlinear one-dimensional material
model. Even if these problems are solved, important features of ice's
behavior, such as pressure dependence, are omitted. The inclusion of pressure
dependence in the model, for example, would require the generalization of the
response functions to include dependence on the stress and strain invariants.
An extensive multiaxial test program would then be required to evaluate the
generalized response functions.

It is clear that in order to develop the constitutive model discus=
sed here into a useful tool for calculating ice loads, extensive additional
theoretical, experimental, and numerical work needs to be done. The implemen-
tation of the model would require the allocation of large amounts of resources
and manpower which would not yield results for quite some time. Even if such
allocations were made, implementation of the model would probably be limited
to laboratory ice given the variability of properties in natural ice. For

these reasons, further work on this model does not seem promising.
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