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1. Introcduction

Bubble plumes occur above blowouts of subsea gas-containing hydrocarbon

wells and it is the desire to understand the hydrodynamics of subsea blowouts

_that has stimulated the most recent studies of bubble plumes. In order to increase

the range of available data, plume vertical velcocity measurements were made at
a water depth and at gas flow rates that are intermediate between laboratory scale

and well blowout scale.

These data have been combined with other available, smaller scale, data

‘by the author do determine how the entrainment coefficient and the fraction of

the momentum flux carried by the turbulence depend upon local plume properties.
The results of that study will be published in the future. Here the results of,
the intermediate scale experiments, including implied values for the entrainment
coefficient and the fraction of the momentum flux carried by the turbulence, are
presented.

The method used to determine the entrainment coefficients and fractions of
the momentum flux carried by the turbulence is the combination of measured
data with an integral plume theory.. Such an integral theory requires an initial
specification for the general forms of the radial distributions of velocity and
density defect. These forms are chosen o agree well with experimental findings.
Gaussian forms are most commonly used and they will be used here. They are:

—l J1 2
u(r,z) = U(z)e * /b : (1.0

p._ - Dp(r,z) = S(z)e'rzfckzbz)

w {1.2)

where: u is the vertical velocity of the liquid,
~is the height measured upward from the gas outlet,

is the radius,

z
r
U is the centerline velocity,
b is the "plume radius”,

@

w is the mass densiry of water,
pp is the mean mass density of the plume,

5 is the density effect at the plume centerline,

A is the ratio of "gas-containing radius" to "plume radius'.



The integral theory to be used follows along lines similar to that in
Ref. 1. All the parts of the theory needed for combination with the experimental

measurements will be given in the next section.



2. THEQORY
2.1 The Integral Plume Equations

The integral plume theory is based on a principle of local similarity
for which radial profiles of velocity have similar forms at different heights
as do the radial profiles of density defect. These guantities can then be
specified by their centerline values U(z) and $(z); and their characteristic
radii, b(z)} and ib(z).

The gas is presumed to follow the isothermal expansion law and mean pressure
variations on horizontal planes are presumed to be small encugh to have only
negligible effects cn the plume dynamics. Under these conditions, for a liquid

of depth H, the gas density, og(z), is given by
pg(z)=oT(HB--z)/HT (2.1)

B is the gas density at a pressure of one atmosphere, HT is the atmos-—

pheric pressure head and HB is the pressure head st the level of gas relaase,

where o

Hp=H_+4 (2.2)

The integral plume equations will involve the lccal mean gas fraction,
f(r,z), which is given by,

p.=¢ (r,z)

f(r,2)= (2.3)

owﬁpg(Z)
and the local gas velocity which will be approximated as the sum of the local
liquid speed, u(r,z) and a constant slip wvelocity, s to approximate the effec:t
of the rise velocity of the bubbles relative to the liquid. q(z), Q(z), M(z)
and B(z); the gas volume flux, the liquid volume flux, the momentum flux and

the buoyancy per uﬁit height respectively are expressed in terms of local

properties as:

g(z)=2n fm [u(r,z)+ub] £{r,z}rdr (2.4)
Q(zy=27 (7 u(r,2z) [1-i(r,2z)]rdr (2.5)
M{z)=27Y fw {HZ(I,Z}QW[l‘f(r,Z)] + [u(r,z)+ub]2 o _(2)i(r,2)}irdr (2.6)

B(z)=27g fm {;w—cg(z)If(r,z)rdr (2.7)
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¥ is called the momentum amplification factor and (Y=-1)/Y is the fraction
of the mean momentum flux that is carried in the turbulence. g is the
acceleration of gravity.

Closure of the integral plume equations requires a relationship between
local plume properties and the rate of increase with height of the liquid

~ volume flux. This is provided by the well known entralnment hypothe51s..

which takes the form:

£ - 2rab(2)U(2) _ (2.8)
where a is the entrainment coefficient. However, whereas all previous
investigators considered the entrainment coefficient as a constant to be
specified for any particular plume, here it will be comsidered to be dependent
upon local plume“properties.

The three integral plume equations can now be determined. The first is
the conservation of liquid equation (2.8). The second is the conservation of

'gas equation which can be expressed as
afy/ (Hy=2) = a(2) (2.9)

where 4 is the gas volume flow rate at a pressure of one atmosphere. The
third equation results from equating the buoyancy per unit height to the spatial

rate of change of momentum flux.

B(z) =

dM
I (2.10)

2.2 Equations for Gaussian Profiles of Velocity and Density Defect

Experimental evidence shows that the radial profiles of velocity and
density defect are well approximated by gaussian curves so equations (1.1)

and (1.2) will be used henceforth. For these profiles equations (2.4) thfough

o 2
TU(2)b2 (2) 51 - 2°8(z) (2.12)
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Q(z)
[l+A2][pw—pg(z)]
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M(z)="b (z)Yii (z)[:z 1722 ‘] + Qw“pg(z) [:l+kz Uy (2.13)

B(z)=mgA*S(z)b%(z) (2.14)

The plume equations (2.8), (2.9) and (2.10) then become:

= & L2 _ A2S(z) ‘3 -
. 200(2)b(z) = U(2)b (z){l T Tor. T 3 (2.13)
g ,z
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with'og(z) given by equation (2.1).
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2.3 Initial Conditions Near the Bottom of the Zone of Established Flow

Equations (2.15), (2.16) and (2.17) can be integrated upward numerically
if all parameters are known and if conditions near the bottom of the zome of
established flow are known so that the integration can be started. Equation (2.18)
for the conservation of gas is valid so two additional conditions are required.
The precise determination of these requires unavailable informztion about the
zone of flow establishment, but suitable zpproximations for most conditions can
be made. The reasons for this are that over most of the extent of the plume the
momentum gained in the zone of established flow dominates the momentum gained
in the zone of flow establishment, and sclutions to the plume equations are
generally particularly stable to perturbations in initizl conditioms.

The momentum flux at the height where the integration is to be started, Zos
is estimated as the sum of the momentum flux coming from the gas outlet and an
estimate of the buoyancy in the zone beneath this height. Te¢ minimize the error
of this estimate, zg should be chosen as low as possible so that the buovancy
beneath it is minimized. However, as the height of :the gas cutlet is approached
there is expected to be more error in the first part of the integration dus to

inaccuracies in both the gaussian appreximaticns znd the entrainment aypothesis.



The best choice for 2z is the one which gives the best balance between these
influences. Although this is not known exactly a reasonable position would
seem to be the greater of five gas outlet diameters, D, and the height of the

zone of flow establishment for single phase plumes given by Chen and Rodi (1980).

/75D _
2p = min { 1 %\’
10u (D/g) “[o, (o) /o ] j

where o, is the gas velocity at the outlet as determined from the gas volume

This is:

(2.18)

flow rate and the area of the gas outlet.
Estimating the mean gas speed below z = zo as uO/Z, the estimate for the

momentum flux becomes:

Zq(zE/Z)
M(zE) = qTog(H)u0 +-—~E:———- [pw-og(zE/Z)lgze (2.19)

Finally, the centerline plume density defect is estimated as:

S(zE) = pw/zl : (2.20)

It must be emphasized that these cavalier estimates of M(zE) and S(zE) are
not represented as accurate values for the top of the zone of flow establishment,
but rather are reasonable values for beginning the numerical integration at
z = zg. Figure 2.1 is an example of the insensitivity of results over most of
the plume of the numerical integration to reasonable variations inm the initial

conditions.

2.4 Theoretical Framework for Analysis of Velocity Measurements

One use of measurement data is to determine both the entrainment
coefficient, o, and momentum flux amplification factor, Y, at various parts
of the plumes. Application of the theory requires a priori specification of

the bubble "slip velocity" u,_, and of the gas/velocity radius ratio, A.
7%

Photographic measurements of bubble sizes made by the author (for air
bubble plumes in water) showed that most of the gas was carried by bubbles whose
volumes ranged from 0.0l to 33 cm®. Of these, most of the bubbles had volumes
between 0.02 and 0.5 em® for which Haberman and Morton (Ref 2) found rise velocities

in still water between 0.23 and 0.25 m/s. However, the larger and faster moving



bubbles contain much more volume than the smaller bubbles and Haberman and Morton
found a rise veloeity of 0.45 m/s for 33 cm® bubbles. For the subsequent appli-
cation of the theory here, a value of 0.35 m/s is used. Figure 2.2 shows an
example of the results of numerical integration of the plume equations (2.15),
(2.16) and (2.17) for four different values of w5 0.00, 0.30, 0.35 and 0.40 m/s.
The effect of * 0.05 m/s variation in Uy is small, but clearly oy cannot be
discounted altogether.

By comparing measured gas fraction profiles with measured veloeity profiles,
Milgram and Van Houten found an average value for XA of 0.8 for their laboratory
experiments. No other experimental values are available. However, under the
presumption that turbulent velocities scale with mean velocities, A is expected
to be larger (but still less than 1.0) for the larger and faster plumes to be
studied here. Figure 2.3 shows an example with values of both 0.8 and 0.9 for Y.
The effect of the variation is quite small and a value of 0.8 will be used here
in the analysis of the measurements.

The gaussian approximations given by equations (1.1) and (1.2) for radial
profiles of velocity and density defect will be used. For each measured radial
profile at a height z, U(z) and b(z) are determined by a fit of-equation {(1.1)
to the data. The local gas density is gi%en by equation (2.1) and the local
gas volume flow rate is given by the left hand side of equation (2.16). The

local density defect can then be determined from equation (2.11) as,

[pw-ﬁg(z)]q(z)
(2.21)

5(2) = THRI 0/ (L5 D) + uy |

The loczl momentum amplification factor, Y(z) will be obtained as the ratio'of

rhe total leccal momentum £lux, MT’ to the momentum flux of the mean flow, Mm.

MT(Z)

Mm(z)

(2.22)

Y(z) =

4

where M {z) is cbtained from equation (2.13) with ¥ set equal to L.
m



The total momentum flux at height z will be calculated as,

M) = M () + /% B(2")dz" o (2.23)
z
B

where the buoyancy per unit height, B(z), is given by equatiom (2.14).

The height Zg will be taken as the lowest height in the zone of established
flow at which conditions are measured or estimatad. The momentum flux at 23
is estimated in the fashion of equation (2.19), but since Zg is generally
considerably greater than zp 2 different estimate for the mean gas speed below
Zp is required. Within a short distance above the height of gas release, tie
moving material involves a volume flux of water that is of the same order of
magnitude as the volume flux of the gas. Therefore the average gas speed below

Zg will be estimated as the average of uopg(zB/Z)/pw and {U(ZB) + ub]' Then,
MT(ZB)=quTuO + 2q(zB[2)ng[pw-pg(zB/2)]/[uoog(zB/Z)/DW+U(ZB) + Ub] (2.24)

Because of uncertainty of the buoyancy below Zg» MT evaluated in this way cannot

be expected to be accurate enough for quantitative estimates of 7. at z For

all measurement heights above zp that are used, MT(z)>>MT(zB) so that EQuation
(2.23) is expected to be accurate enough for making quantitative estimates of
¥ by use of equation (2.22).

The other parameter which depends on local conditions to be determined from
the experiments is the entrainment coefficient, a. Although it could be obtained
from experimental determinatica of the terms in equation (2.8); the differentiation
of the liquid volume flux would accentuate experimental errors. To avoid this,
¢ will be determined by an integration of equation (2.8) between heights at which
radial velocity profiles are measured. Call these heights z, (i=1,2,...). Then,
under the presumptions that & varies only slightly between z, and Zs01 and that
the liquid volume flux, Q, is well approximated by a linear function in this

same height interval, the integral of equation (2.8) is solved for o as

bz +b(z, J10(z )40z, )1z, -2,]

. (Zi+zi+l) _2 Az, ) - Uzy) (2.25)
.2 T

where Q(z) is given by esquation (2.12).



3. EXPERIMENTS

3.1 Facility and Equipment

The experiments took place in Bugg Spring which is a natural sinkhole
spring located at Okahumpkd,_Florida and which is part of the United States Naval
Research Laboratory. Figure 3.1 is a cross-sectional profile of the spring. Both
currents and spatial temperature variations in the spring are smaller than can
be measured with ordinary instruments. A barge which is tightly meored to anchors
on the shore by five cables floats on the surface with one edge of the barge over
the deepest part of the spring. An existing gantry was extended to a distance of
4.6 m past this edge. A 2.5 meter tall vertical air entry pipe having a 5 cm
inside diameter was secured to a concrete anchor block such that the upper open
end of the pipe was 50 m below the surface and vertically under the extended end
of the gantry. Air was supplied to the bottom of the pipe through a hose from an
airflow meter on the barge which in turn was connected by a hose to a rotary screw
air compressor on the shore.

Velocity profiles were measured with tﬁe use of a horizontal array of 36
vertical current meters configured as a ¢ross as shown in figure 3.2. Each of
the two arms of the cross was 12.9 meters long and the distance between adjacent
current meters was 0.75 m. ‘This permitted an accurate estimation of the location
of the instantaneous center of the plume from the location on each of the arms
on the cross at which the velocity was a maximum.

A system of four support cables was used to adjust the height of the cross
and to provide horizontal restraint against turbulence-induced motions of the
cross. A taut upper cable attached the upper bridle shown in figure 3.2 to
the gantry. A taut lower cable attached to the lower bridle passed through a
sheave near the air outlet and then to the barge. Two adjacent ends of the cross
rode on vertical cables tensioned to about 10" newtons which led from the edge
of the barge to anchor weights on thé bottom. — '

The current meters were made from the mechanical speed detecting parts of
Aanderaa current meters and 36 electronic signal conditioners, each of which
contained a low-pass filter with a 10 second time constant. The resulting signals
were sampled at a rate of Hz through 36 analog-to-digital channeis of a digital
computer for 10 minutes for each airflow rate and current meter cross height. Each

of the groups of 36 samples was obtained in a time interval of about 0.5 millisecond
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S0 the samples can be considered to be simultaneous. Finally, for each channel
2ach set of ten successive samples was averaged together giving 60 of these
short-time averaged measurements for each of the 36 channels in a ten minute
measurement period. These measurements were made for airflow rates of 0.024,
0.118, 0.283 and 0.590 N m3/s; and for heights zbove the air outlet of 16.47,
25.62, 37.81, 43.90 and 46.95 meters. 7

3.2 Data Reduction .

The purpose of the data reduction was to fit a gaussian function as given
in equation (1.1) to every radial profile measured with respect to the instantaneous
location of the plume centerline and thereby obtain values for the centerline
veloecity, U, and the plume radius, b. This was done by the following steps:
1. For each 36 point, 10 second velocity average, there were 18 values along
one axis of the measuring cross and 18 values along the other. Spline cubic
interpolating functions were fit to. each of these 18 sets of points. The location
of the maximum of each of these functions was taken as the value in "cross
coordinates” for the location of the plume center. The distance from this
location to each of the current meters was determined so that 36 sets of values
(u,r) were obtained. This was done for all 60 sets of 10 second averages so
that 2160 pairs of (u,r) values were obtained for each airflow rate and measurement
height,
2, The range of values of radius, r, was partitiomed into segments 0.08 meters
long. The values of u for all the r values falling in any particular segment
were averaged together to obtain a value of u for the midpoint of the segment.
This reduced the number of pairs of (u,r) values for each airflow rate and
measurement height to about 100. Figure 3.3 shows an example of a plot of these
values.
3. A gaussian function of the form of equation (l.1) was fit to the reduced
data points with U and b chosen to minimize the standard deviation between the
function and the points. Figure 3.3 shows the gaussian approximation o its data.
4. The above procedure gave 20 radial profiles of velocity. The one for a
measurement height of 46.95 m at an airflow rate of 0.118 N m?/s was '"out of line"
with other profiles and the measured profile had excessive scatter. Therefore
this profile was eliminated from the data leaving 19 of these larger scale profiles

available for analysis,



5. The current meters measured velocities in the (r,z) plane. Since the
radial mean velocities are small in comparison to the vertical mezn velocities,
their effects on the measured mean velocities are small. However, a small
correction can be, and was, made for this. For each airflow rate the values

of b(z) and U(z) were fir by spline cubic functions so that their derivatives
could be easily evaluated. Then, using the form of equation (1.1) and a radial
integratibh of the continuity equation {(div $=O, neglecting here the effects of
the variation in mean density) gave the small radial velocity. From this and
the measured velocities in the (r,z) plane, the vertical velocity components
were calculated. These radial profiles of vertical velocity were then fit with

gaussian curves as before. The results are shown in table 1.

11.
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4. DATA ANALYSIS

4.1 The Data Set

The goals of the data analysis are the determinations of the entrainment
coefficient, o, and the momentum amplification factor, v. Thus the data to be
used here are in the form of values b(z) and U(z) at each airflow rate.

The lowest measurement height was 32% of the water depth and this is too
high for application of equation (2.24). A low enough point was estimated by
an application of the integral theory. This was done as follows. For each
airflow rate, the plume equations (2.15), (2.16) and (2.17) were numerically

integrated several times starting at z height z_ as given by equatiom (2.18);

each time with different values of & and ¥ whici were taken, for this step only,

to be independent of height. The integration which best fit the measured values

of b{z) and U(z) was chosen in each case. An example of this is shown in figure 4.1.
As is demonstrated in figure 2.1, errors in initial conditioms for beginning the
integration are most influential in the region below the minimum (maximum negative)

slope of the functiom U(z). Therefore, a value of z_ was chosen for application

of equation (2.24) that was above this point of miniium slope and the required
values of U(zB) and b(zB) were obtained from the numerical integration. The value
used for 2y was 1.98 m.

Values of b(z) and U(z) were fit with spline cubic functions. Instead of
forcing these functionms to fit all the data points exactly, functions with four
equally spaced nodal points with extrapolated end point curvatures were used
subject to the criterion of minimum variance with the unsmoothed data. Since
data at five or six heights were used, this process introduced a small amount of
data smoothing. The spline cubic functions were used for the remainder of the data
analysis. Table 1 shows both the unsmoothed data and the evaluations of the spline
cubic functioms. At each data height these evaluations were used together with
equations (2.21) and (2.14) to determine the centerline density defeét and the
bﬁoyancy per unit height which was then in turn fit with a four nodal point cubic
spline function. This was then integrated by quadrature to evaluaté equation
(2.23) at each data height. With this done, the momentum amplification factor was
evaluated from equation (2.22) at each data height except for the zB‘s and these
values are alsoc shown in table 1. Finally, table 1 shows the values of the
liquid volume flux, Q(z) which were determined from equation (2.12).

The values of the entrainment coefficient, o, were determined from equation

(2.25) at positions midway between data heights and these are shown in table 2.
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5. CONCLUSIONS

The integral plume theory, which has been used successfully in the past to
describe plumes of laboratory scale, has been found to be applicable to plumes of
larger scale as well. The entrairmment coefficient has been found to increase‘with
increasing gas flow rate for the large scale plumes and this is consistent with the
same finding at laboratory scale. The entrainment coefficient, itself being
dimensionless, must depend on dimensionless plume parameters which must include
the gas flow rate in their formulation. Details of the relationship between the
entrainment coefficient and the dimensionless plume parameters will bhe published
in the future.

For the small scale laboratory plumes described in ref. 1 the mean momentum
flux carried by the turblence was of the same order of magnitude as the mean
momentum flux carried by the mean flow. For the larger scale plumes described here
only a small fraction of the mean momentum flux was carried by the turblence. Thus
we can conclude that the fraction of the mean momentum £lux carried by the turblence
also depends on the dimensionless plume parameters. Details of the dependency will
be published in the future. However, ﬁere we can conclude that for plumes having
the scale of a subsea hydrocarbon well blowout, néarly all of the mean momentum

flux is carried by the mean flow.
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TABLE 2. The Entraimment Coefficients and Plume §roperties at Heights Midway

Between Measurement Heights

The entrainment ccefficients have been evaluated by eguation (2.25) and the
properties b, U, q and S are the averages of the values above and below

the midpoints.
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Numerical Intagrations

~Conditions are as listed below excent for notations on individual curves.
4 g

H=10 m
U =25 m/s
ub=0.35 m/s

7.=0.1 m q=8.81 m?/s 0=0.01 N m/s
or=1.3 Kg/m® ®,~1000 kg/m3 2=0.8 v=1.5

Mean gas speed belew Z_. tazken as u_/2
* £ a

S(2.)=500 Kg/m"

a=(.08
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FIGURE 2.2 Effect of Gas Bubble ST1ip Speed on Soluticn to the Plume Egquaticns

The bubble sTip speeds used in the calculations are shown on each curve.
Jther ccnditions are as given in figure 2.1.
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FIGURE 2.3 Numerical Results for Gas-Velocity Radius Ratios, A, of 0.8 and 0.9
The conditions for the calculations are these given in figure 2.1.
The values for X are shown on the curves.
The aifference in plume radius, b, for the two values of A is
almost undiscernable.
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Tight Cable
to Gantry

Electric Signal Ccbies
to Barge

Loop for Sliding on
Tight Vertical Cable

Vertical Current
Meter

S5cm x Sem Section
Aluminum Beam

4 Legged Bridle

FIGURE 3.2 Current Meter Array Used for
Measuring Radial Profiles of Tight Cable Passes Through

Vertical Velocity. Sheave at Air Qutiet and
Then to Barge
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FIGURE 4.1 Example of a Numerical Integration Used to Estimate Conditions at a Low
Point in the Zone of Established Flow

The conditions of the example correspond tc an airflow rate of 0.118 N m3/s in the
8ugg Spring Experiments. The numerical integration was done with 1=0.8, Z.=0.5 m and
S(ZE)=5OO kg/m?. The best fit to the data was with v=1.1 and «=0.087 =

which is the case that is shown.



