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ABSTRACT

The purpose of this investigation is to apply the
Random Decrement Technique to detect induced cracks on
an offshore platform model.

The Random Decrement method analyzes the measured
output of & system subjected to some ambient random in-
put. After analysis a signal results that is the free
vibration response or signature of the mechanical struc-
ture. This signal is independent of the input and
represents the particular structure tested. The abili-
ty to obtain unique response signatures enables one to
detect early damage before overall structural integrity
is affected. Local flaws, such as cracks, too small to
affect the overall structural integrity have a signifi-
cant effect on the signatures of the higher modes. As
a flaw grows, progressively lower modes are affected
until overall failure occurs. Damage is detected by
studying and comparing the signatures of the higher
structural modes.

The tower model is a welded-steel space frame with
four primary legs, braced with horizontal and diagonal
members. It was fixed to a seismic shaking table which
was controlled to provide different loading to the struc-
ture such as random, seismic, ete. The tests were
performed at the Ecole Polytechnique Federale de
Lausanne A systematic study of the effect of structural
damage to the Random Decrement Signature was conducted.
Responses at various positions along the structure sub-
jected to random input were obtained, Thin saw
cuts were induced to a position near the welded
Joint of the structure. An initial crack depth
1/8 inch was made with a saw blade. Nine additional saw
cuts were subsequently made to extend the crack depth
to a total break through of the beam. The response
time histories were recorded and analyzed to obtaim the
Random Decrement signatures. From these signatures
their sensitivity to the induced cracks at various sizes
were correlated. This investigation has shown that the
Random Decrement Technique can be used to detect cracks
in complex offshore structures,

A finite element space frame model of the structure
was developed using the GIFTS and the NASTRAN computer
programs. The horizontal and the diagonal braces were
modeled by beam elements, the top plate was modeled by
a plate element which allows bending and membrane flex-
ibility.

The cracks of the experimental model were
reproduced on the computer model and the changes on
the dynamic response of the model is investigated.

The work reported by this paper is part of a major
effort, which was initiated by the U. S. Office of
Geological Survey and the Office of Naval Research to
develop better and more reliable techniques for the
detection of incipient failure of offshore structures.
As a part of this effort several large size models of
offshore platforms (1:14 scale) and joints (1:2.5)
have been constructed and are being tested. Results of
these tests will be reported in subsequent papers.

This work was also partially supported by the Swiss
National Science Foundation and by the Ecole Poly-
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technique Federale de Lausanne, Switzerland.
1. RANDOM DECREMENT TECHNIQUE

The Random Decrement Technique was originally de-
veloped by Mr. H. A. Cole for the measurement of damping
and for the detection of structural deterioration of
airplane wings subjected to wind flutter excitation
(1, 2). Other applications have then been studied by
various other authors (3, 4, 5).

In this section we present a brief, rather intu-
itive explanation of the principles of Randomdec. A
more extensive mathematical derivation was developed
in (3) and in Appendix A.

Random Decrement Signature
The response x(t) of a linear system is governed
by the following basic equation:

m x(t) + c k(L) + k x(t) = £(t) w

The solution of this differential equation depends on
its initial conditions and the excitation £(t). Since,
for linear systems the superposition law applies, the
response can be decomposed into three parts: response
due to initial displacement xd(t), response due to ini-

tial velocity xf(t) and finally the response due to the
forcing function x (t).

The Randomdec analysis consists of averaging N seg-
ments of the length T of the system response in the

following manner: the starting time ty of each segment
is selected such that x (ti) =X, = constant and the
slope x (t ) is alternating positive and negative. This

process can be represented in mathematical form:

8() = 3% x,(t, + D) 2
i=1

i=1,2,3....
1=1,3,5....
1=2,4,6....

where xi(ti) - X
xi(ti) =>0
xi(ti) =<0

The function §(T) is called the Randomdec signature
and is only defined in the time interval 0 < T< 11.

The meaning of the Randomdec signature can now be deter-~
mined. If the parts due to initial velocity are
averaged together, they cancel out because alternately
parts with positive and negative initial slopes are
taken and their distribution is random. Furthermore, if
the parts due to the excitation are averaged they also
vanish because, by definition, the excitation is random.
Finally only the parts due to initial displacement are



left and their average is the Randomdec signature rep-
resenting the free vibration decay curve of the system
due to an initial displacement, which corresponds to
the bias level X . (Fig 1)

In reality the Randomdec computer converts each
segment into digital form and adds it to tbe previous
segments (Fig 2); the average is then stored in the
memory and can be displayed on a screen. The number of
segments to be averaged fer the Randomdec signature

depends on the signal shape, usually 400 to 500 averages

are sufficient to produce a repeatable signature.

One particularly interesting characteristic of
Randomdec technique should be mentioned: 1t requires
no knowledge of the excitation f(t) as long as it is
random. Neither the type nor the intensity of the in-
put affect the signature.

Signature Analysis

The procedure for Randomdec analysis of a structure
is to establish a reference signature for the undamged
system and to compare it with signatures from later
recordings.

The response signal x(t) is passed through a broad-
band filter before being Randomdec processed. As soon
as any significant deterioration of the system is devel-
oped the signature will change its shape. The signature
represents, for broad band filters, a superposition of
all the modes inside the filter limits and has a rather
complex shape.

In the case of narrow band filtering with only one
mode inside the filter limits, there are only single
values of frequency and damping need to be considered,
since 8§(1 = 0) = Xy and (T = 0) = 0 always remain the

same. In most cases any structural deterioration af-
fects both frequency and damping and gives little
indication of the type of structural damage.

Typical Randomdec signatures of response signals
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Figure 1:

passed through a wide band filter and a narrow band
filter are shown in Figure 3.

Signature Interpretation .

If a structure is being Randomdec analyzed and a
change in the signature with respect to the original
signature is detected, it is, in many cases, not a
priori clear, what kind of structural variation it has
to be related to. Many reasons can cause a signature
change. We will state only the most significant ones,
that have some practical application:

Many steel structures are exposed to natural en-
vironmental conditions and have to fight against
corrosion, which can be the cause of a considerable
reduction of the cross-section. The resulting loss of
mass and the decreased stiffness will yield in a dif-
ferent vibrational behavior and result in a changed
signature. While the reduced mass will increase the
signature frequency, the smaller stiffness tends to
lower it.

Another structural deterioration occurring to
cyclically loaded structures are the fatigue cracks.
This reduces the stiffness and changes the internal
damping. Consequently the signature frequency will go
down and the internal damping will increase.

Non-welded joints often lose part of their stiff-

* ness with loose bolts or damaged rivets, which, in

effect, gives similar results as a fatigue crack.’

A change in the boundary conditions of a structure
can lead to dramatic changes of the Randomdec signature,
because of its effects on the stiffness values.

Furthermore, an element subjected to a normal
force will also change the bending stiffness (6, 7).

It will, for the compressive forces, reduce the stiff-
ness, while a tensile force will stiffen the member.
Although this effect is rather small for low forces,
it becomes highly important as the load gets close to
the buckling load.

RESPONSE  DUE TO

FORCING  FUNCTION
INITIAL VELOCITY +
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Principles of Randomdec Technique
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Figure 2: Extraction of the Randomdec Signature

Finally, welded elements often have very high
residual stresses, which ¢an reach the yield stress.
Any change in the state of residual stresses will then
also cause a change in the stiffness and can be de-
tected by the Randomdec signature.

This rather incomplete list shows that Randomdec
is very versatile and has many useful applications:; On
the other hand, the analysis is often complicated by the
fact that a structural change affects in most cases
more than one of the three characteristical terms m, ¢,
and k. There is no difficulty to detect the change, but
it can be rather complex to find out what and how much
change has occurred. As far as fatigue cracks are con-
cerned only k and ¢ are affected, where ¢ has in
general a negligible influence on the signature frequen-
¢y. In this case a relation between frequency and
stiffness can be set up, which makes Randomdec especially
useful for crack detection.
2. FAILURE DETECTION
From the foregoing section it was shown that the
Randomdec signature gives a curve which is related to
the free vibration decay of the structure with an initial
displacement. The scale and form of thig curve is always
the same even when the intensity of the ambient random
forces changes in contrast to spectral density and auto-
correlation which vary with changes in the ambient
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random forces. In this section, the hypothesis and
application of the method to failure detection is devel-
oped. ’

A typical experimental setup is shown on figure 4.
It should be noted that the spectral analyzer provides
a broad view of the location of structural modes which
may be used as an aid to specifying filtering require-
ments. Let us consider now what happens to the
signature when a fatigue crack develops in a structure.
A fatigue crack introduces additional degrees of freedom
which are excited by the random forces. When the crack
is small, small blips would show up in the hashy, high-
modal density region of the spectral density; in this
form detection would be difficult. As the flaw grows,
the frequency of the failure mode would be expected to
decrease until it approaches the fundamental modes. By
the time a flaw reaches the low-frequency range it would
be imminent. To detect the fafilure mode it needs to be
interepted at a high enough frequency so that correctiv—
action can be taken and complete failure avoided. To
do this the random signal is passed through a band-pass
filter which is set at a high frequency. With the un-
damped structure, standard Randomdec signatures are
established for all loading conditions and environments.
If a failure develops, it will have a powerful effect
on the signature because it will dynamically couple with
structural modes within the bandpass frequencies of the
filter. Some fundamental studies were made by J. C. S.
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Figure 3: Typical Randomdec Signatures of response signals
passed through a wide band filter (above) and a

narrow-band filter (below)
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Hypothesis:

(1) PFlaw introduces additional degree of freedom.

{2) Frequency of flaw mode decreases as flavw size grows.

-{3) Flaw mcde causes change in signature bys

(a) Dynamic coupling with modes in filter
bandwidth.

(b) Nonlinear coupling at subharmonic frequencies.

(c) Friction damping.

Figure &4: Hypothesis on the sensitivity of random decrement signatures to flaws
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Yang (see reference 5, B). For the failure detector,
once the standards have been established only parts of
the signature at peaks need to be recalculated with
warning devices sensitive to voltage changes in the peak
values, '

A procedure for failure detection 18 outlined on
figure 3, which shows only a single peak for {llustra-
tion. The standard signature region is first
established to a confidence level consistent with
percent of false alarms which could be tolerated. For
the 95-percent confidence level shown, of course, false
warnings would occur 5 percent of the time. Detection
would be as shown on the figure. The check on standard
deviation, T, is to prevent false indications due to
extraneous input sources other than the normal random
excitation, i.e., a sinusoidal force or signal in the
electronics. For example, 1f a sinusoidal force was
applied to the structure, the signature would become an
undamped cosine wave and fall outside the standard re~-
gion, but the standard deviation woulf fall to zero.

In this case the amber light would go on.

3. DETECTION OF CRACKS IN AN OIL PLATFORM
Experimental Test

A laboratory experiment was conducted to check the
sensitivity of the Randomdec signature in detecting

"""’"'” ' Ts =l|

0
Standard region Pl ‘ V.
(95% conf,) // — NV,
- \
~ . Signature
v

Green
Light

Figure 5: On-line failure detection at a single point on the signature



structural damage. A model oil platform was constructed.

It is a welded-steel space frame with four primary legs,
braced with horizontal and diagonal members. The pri-

mary legs of the model had a diameter of 25 mm (0.984 inch),
and the horizontal and diagonal members had diameter of 15
mm (0.591 inch). The structure, its design and the dimen-
sions of all the components are shown in figure 6.

The tower model was fixed to a seismic shaking ta-
ble which was controlled to provide different loading to
the structure such as random, seismic, etc. see figure 7.
A systematic study of the effect of structural damage to
the Randomdec signature was conducted. Responses at
various positions along the structure subjected to seis-
mic inputs from tapes of the E1 Centro Earthquake were
obtained with a number of accelerometers at various in-
tervals of loading, see figure 8.

Saw cuts were induced to the welded section of the
structure on the cross beam joining the primary leg of
the platform. An initial crack depth of 1/8 inch was
made with a saw blade which was approximately 0.07874 cm
(0.031 inch) wide. Nine additjonal saw cuts were sub-
sequently made to extend the crack depth to a toal
breakthrough of the beam. At each additional cut, the
depth of the notch was %ncreased approximately by 1/16
inch (1.59 mm).

The response time histories at each saw cut depth
were recorded and analyzed. Randomdec signatures were
obtained for frequency between 4000 Hz and 8000 Hz using
bandpass filters. A number of Randomdec signatures were
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obtained for each saw cut depth in order to confirm
the repeatability of the Randomdec signatures. The
repeatability of the Randomdec signatures were

excellent. This is very essential for the success of
the Random Decrement technique in the detection of
flaws and cracks in structures.

The Randomdec signatures for each crack condition
were shown on figure 9. At a saw cut depth of 1/8 inch,
the Randomdec signature was very similar to the “stan-
dard" signature with no crack, although it is not
shown. Changes in the signatures initiated and became
increasingly obvious when the saw cut became deeper.

As observed from figure 9, at the crack depth of 1/4
inch, the change in the signature is sufficiently large
to be able to use as a warning device utilizing the
voltage of a point on the first peak. This is well
ahead of the complete severance of the cross member.,
Tests have been completed on a 1:14 scale model see
figure 10 of an existing offshore platform in the

Gulf of Mexico. Fatigue cracks were detected by apply-
ing the Random Decrement Technique.

Computer Model
A finite element space frame model of the structure

was developed using the GIFTS and the NASTRAN computer
programs, see figure 11. The horizontal and the diago-
nal braces were modeled by beam elements, the top plate
was modeled by plate elements which allow bending and
membrane flexibility. The total breakthrough of a
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Figure 6: Offshore tower model (dimension)
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Figure 7: Offshore tower model

¥igure 8: Accelerometer measurement set-up

cross member of the tower model was also reproduced on
the finite element computer model. The changes on the
dynamic response of the two models were obtained and
analyzed.

Another model is being investigated using linear
spring elements at the joint in all six directions.

Cracks of varying size were simulated by varying the
stiffness of the springs.

Computer Analysis Results

Table 1 lists the frequencies of the natural modes
of oscillation of the model platform, as they were cal-
culated by the NASTRAN finite element computer program.
The first column corresponds to the natural frequencies
when there is no defect in the structure, while the
second column corresponds to the case where element 28
completely separated at node 9.

One can see that there is a general decrease in the
values of the natural frequencies after the separation
of one of the branches, and a few additional natural
frequencies, which 1s something to be expected since we
now have a less rigid structure.

To get a better understanding of the changes in the
dynamic response one has to examine the corresponding
eigenvectors (mode shapes) as well., Tables 2 and 3
from the same computer model program, list the eigen-
vectors corresponding to natural frequency 1 and 2
before the branch separation. It is clear from those
two tables that modes #1 and #2 are identical flexural
modes of oscillation in the Y and X directions, respec-
tively.

This explains the reason frequency #1 changes from
59.8 Hz to 54.5 Hz after the separation, frequency {#2
remains unchanged at 59.8 Hz. Frequency #1 corresponds
to a flexural mode in the Y direction, which is the one
most significantly affected by the lack of a member
branch on the structural frame of plane ZOY.

Tables 4 and 5 list the eigenvectors for modes #1
and #2 after the separation. Node 100 is the new arti-
ficial node which was created to model the separation
of element 28 at node 9.

From the list of the natural frequencies it is
obvious that new modes have been created which confuse
the picture and make it very difficult to measure the
frequency changes that took place. One could identify
groups of identical frequency pairs representing the
flexural modes and then search for the same groups in
the second column when the member is completely sepa-
rated. One can then see that the fundamental mode of
frequency 59.8 Hz has been shifted downwards by 8.8%,
the mode of frequency 109.6 Hz by 1.5%, the mode
of frequency 327.0 Hz by 0.09%Z, the mode of frequency
695. Hz by .57% the mode of frequency 808.6 Hz by 0.59%,
the mode of frequency 2,099 Hz by 0.47%, the mode of
frequency 4,874 Hz by 0.22%, the mode of frequency
5,440 Hz by .01%, etc. These results then indicate that
a complete severance affects mainly the low frequency
modes and to a lesser degree the higher frequency modes.

Results from the model with the linear spring ele-
ments are being analyzed along with the results from a
much finer model with four times the number of elements.

4. CONCLUSIONS

Several features of Randomdec Analysis should be
pointed out:

- A very important feature is that the random excita-
tion £(t) does not affect the shape of the Randomdec
signature and does not need to be known.

- From this it can be concluded that the natural
excitation can be used for the analysis as long as
it is reasonably random. This has the advantage
that any structure can be tested on-line and does
not have to be taken out of service for inspection.

~ Randomdec examines the structure in its entire in-
tegrity and can therefore detect surface cracks
as well as inside defects.

- Randomdec is applicable for both laboratory and
field tests. The simple equipment used for the
recordings of the response signal make it feasible
in many surroundings.
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The recording of response signal takes usually a
very short time and can be performed even by un-
trained people. The main part of the analysis can
be done in the laboratory under constant favorable
conditions.

The Randomdec signatures obtained from a fixed crack
depth introduced in a structure (model oil platform)
is consistent and repeatable. Signatures obtained
from each crack depth agreed reasonably well with
each other.

Change in the crack depth as small as 1/16 inch
(1.59 mm) in a cross beam of the model structure
can be detected with the Randomdec technique.

The Randomdec signatures demonstrated a marked
change in their patterns when the crack depth
reached 1/4 inch, which is considerably far ahead
from the complete failure of the structure.

1t appeared to be feasible to use the random decre-
mert technique for early detection of incipient
flaws and cracks in structures.
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7. APPENDIX A

1t is often convenient to idealize real, continu-
ous systems with multi-degrees of freedom spring-mass-
damper systems, which are, in many cases, simpler to
treat in a theoretical manner. Nevertheless, they give
a deeper insight of the vibrational behavior that is
valuable for discrete as well as for continuous systems.

A spring-mass-damper system of m degrees of free-
dom, subjected to a random input £(t), is under
consideration, for which the Randomdec signatgre of the
ith mass has to be extracted. During the kth time seg-
ment, the governing equations describing the motion of
the system are, using matrix notation,

[L] &}, = (£} eV

where L is a8 m by m operator matrix, which is defined by

1] - ] 2 + [ & + ) @

where M, C and K represent the system mass, damping and
stiffness matrices, respectively.
Expanding equation (1) gives, for the ith jine:

[Lil xl('r) +oub Ly x, (1) Foot Limxm('r)]k = [fi('r)]k &)

in order to get the Randomdec signature for the mass 1
of the system, these time samples have to be averaged
with the following initial conditions

xi(O) k™ % k=1,2, 3 ....
x,(0) , >0 k=1, 3, 5 ....
x,(0) <0 k=2,4,6 ...
. X
N 2 [Lil xl('[) +.. 0t Lii xi('t) +...4 Lim xm(‘r)]k
k=1
- k.ltfimlk *

The coefficients of the linear operator are independent
of time; the summation can therefore be interchanged to
give for example

N N
L R R D NS I L o O
k=1 =

where the term in brackets on the right hand side of
equation (5) is identical to the definition of the
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Figure 11: Offshore platform model (NASTRAN)

Randomdec signature 8§ (1). Furthermore the right hand
sides of equation (4) represent the ensemble averaged
random variables, which goes to zero for a large number
of N. Equation (4) becomes then, for the ith row,

Ly [61] +Li, [62] +...t Lim[ém] =0 (6)

or simply, in matrix form,
[L] {6} =0 &)

which is identical to the equations governing the free
vibration of the system. In order to define unique
solutions, initial conditions haxe to be set up for
each mass m,, J ¥ 1. For the 1™ nass, they are

3

?1(0) - xs
61(0) =0

The remaining initial conditions for the other
masses can be determined by an energy approach. In a
holonomic system lagrange's equation can be applied
(6), giving

8 (sT) _sr . &v | g
&t (65(1) & o, " e ®

where T and V are the kinetic and potential energy ex-
pressions, while an denomincates the nonconservative

forces of the system. Furthermore the following re-
lations are valid for a spring mass damper system:

2 .2 .2

T= T(xl, Xys oee xm) 9)
ég__. §$— (il, iz. eos im) (10}
Gxi 6x1

——




§T
) 0 (11)
. vl 2 2 '
v /(xl, Xys oo Xos XXy oo xixj) (12)
LS (xys Xps veve X)) (13)
i 1

The term on the right hand side of equation (8),
the non-conservative forces, come from the damping alone
and are, by definition, proportional to the velocities:

- . . . 14)
% an(xl‘ Xgr oo xm) (
For T = 0 the average initial velocities 61(0) of

the remaining masses can be taken to zero, sincé their
mean value is zero and they are sampled at T = 0 where
ii(O) is both positive and negative. This can be in-

cluded in the 1agrangg equation (8), where, for T = 0,
all terms drop out except the potential energy ex-

pression:
ov_
<5xi

which means that, for T = 0, V is minimal and therefore
all the masses m_, are in a position of static equilib-

=0 (15)
T=0

rium. The signature, therefore, has the same shape
as the free vibration response of the system due to an
initial displacement of the mass m, and all the other

i
masses mj in their respective equilibrium position.
Table 1
Real Eigenvalues
Uncracked Cracked
Mode No. Cycles/s Cycles/s
1 5.985427401 5.455365401
2 5.985434401 5.982981+01
3 7.378253+01 7.178627+01
4 1.096753+02 1.079195+02
5 1.096753+02 1.095503+02
6 1.401590+02 1.378930402
7 2.656457+02 2.374263402
8 3.020945+02 2.748728+02
9 3.205365+02 2.9664854+02
10 3.270113402 3.031506402
11 3.270117+402 3.032749+02
12 3.414802402 3.269990+02
13 4.644798+02 3.273253+02
14 6.476650+02 3.363414402
15 6.4766504+02 3.422305+02
16 6.950135+02 4.645995+02
17 6.950135+02 6.4964904+02
18 6.958005+02 6.557123402
19 7.797218+02 6.910069402
20 7.813911402 6.955249+02
21 7.9193914+02 6.996401+02
22 8.088028+02 7.733953402
23 8.088033+02 7.872478402
24 8.341894+402 7.915182+02
25 8.370232+02 8.038068+02
26 8.370232+402 8.086494+402
27 8.817422402 8.350940+02
28 9.642078+02 8.355844402
29 1.036857403 8.381134+02
30 1.109549403 8.8498774+02
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1.109549403
1.142433403
1.154169+03
1.167893+03
1.297294+03
1.297294+03
1.3372024+03
1.440242403
1.440242403
1.507570+03
1.647827+03
1.6499514+03
1.649951+03
1.686638+03
1.693084+03
2.075295+03
2.099964+403
2.099964+03
2.226976+03
2.286140+03
2.3632734+03
2.363273403
2.606871+03
2,606871+03
2.989672+03
3.222953+03
3.282000+403
3.282000+03
3.350284+03
3.557201+03
3.566257+03
3.566257403
3.584918403
3.587878+03
4.605922403
4.858828+03
4.874586+03
4.874586+03
4.899032+03
4.964329+03
5.259325+03
5.259325403
5.348680+03
5.348680+03
5.440220+03
5.440220+03
5.486620+03
5.725430+03
6.046908+03
6.109739+03
8.091969+03
8.358225+03
B.358225+03
8.358356+03
8.358811+03
8.386183+03
8.386183+03
8.765246+03
1.064645+04
1.085508+04
1.094631+04
1.094631+04
1.179240+04
1.179336+04
1.179336+04
1.179412+04
1.211822+04
1.286380+04
1.2863804+04

9.870237402
1.044649403
1.110238+03
1.131118403
1.152613403
1.160173+03
1.2751004+03
1.301650+03
1.337754+03
1.401835403 °
1.442093+03
1.505987+03
1.638476+403
1.648700+03
1.650189+03
1.670505+03
1.692517+03
1.975913+03
2.078267+03
2.099548+03
2.109878+03
2.226212403
2.327376403
2.363253+03
2,363656+03
2.6129098+03
2.654583+03
2.988340+03
3.227629403
3.286070+03
3.291030403
3.361859+03
3.561822+03
3.5773644+03
3.584951+03
3.728487403
4.374977403
4.607465+03
4.863201+03
4.874673+03
4.890971+03
4.591822+03
5.094332+03
5.303557+03
5.344952+03
5.352518+03
5.439886+03
5.440242+403
5.465077403
5,725145403
6.046908+03
6.109734+03
8.091968+03
8.241454+03
8.358280+03
8.358463+03
8.359567+03
8.360433+03
8.386185+03
8.386189+03
8.765246+03
1.064645+04
1.089508+04
1.0946314+04
1.094631404
1.179266+04
1.179334404
1.179389+04
1.211822404
1.249050404
1.286380404
1.286380+04
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Table 2

Uncracked Model

Real Eigenvector No. 1

Eigenvalue = 59.8 Cycles/Sec

Point 1ID.

(V- RN RV I VR S

Table 3

T1(X)

6.389189-01
6.390413-01
6.389189~01
6.390413-01
4,475486-01
4,472708-01
4,475486~01
4,472708-01

. 3.550190-01

3.518110-01
3.544854-01
3.521490-01
3.550190-01
3.518110~01
3.544854-01
3.521490-01
3.539709-01
3.522461-01
3.539709-01
3.522461-01
3.652303-01
3.652555-01
3.650087-01
3.654366~01
3.652303-01
3.652555-01
3.650087-01
3.654366-01
.0

.0
.0
.0

6.391255-01
6.390473-01
6.391255-01
6.390473-01
6.391404-01

T2(Y)

-9.997100-01
-9.997883-01
~9,997100-01
-9.997883-01
-7.001066-01
-6.999291-01
-7.001066-01
-~6,999291-01
-5.552163-01
~5.509728-01
~5.548752-01
-5.504440-01
~5,552163-01
-5.509728-01
~5.548752-01
-5.504440-01
-5.530252-01
-5.519229-01
~5.530252-01
-5.519229-01
-5.713373-01
-5.717626-01
-5.711956-01
~5.714793-01
~5.713373-01
-5.717628-01
-5.711958-01
-5,714793-01
.0

.0

.0

.0

~9,998543-01
-9.999766~-01
~9.998543-01
-9.999766-01
-1.000000+00

Uncracked Model

Real Eigenvector No. 2

Eigenvalue = 59.8

Point 1ID.
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Ti(X)

9.997883-01
9.997100-01
9.997883-01
9.997100-01
6.999291-01
7.001066-01
6.999291-01
7.001066-01
5.548752-01
5.504440-01
5.552163-01
5.509728-01
5.548752-01
5.504440-01
5.552163-01
5.509728-01
5.519229-01

T2(Y)

6,390413-01
6.389189-01
6.390413-01
6.389189-01
4,472708-01
4,475488-01
4.,472708-01
4.475488-01
3.544854-01
3,521490-01
3.550190-01
3.518110-01
3.544854-01
3.521490-01
3.550190-01
3.518110-01
3,522461-01

T3(2)

1.222257-02
5.551883-02
-1,222257-02
-5.551883-02
1.265031-02
5.746180-02
-1.265031-02
-5.746180-02
1.286317-02
3.742287-02
5.842865~02
2.391847-02
-1.286317-02
-3.742287-02
-5.842865-02
-2.391847-02
1.299645-02
5.903404-02
~1.299645-02
-5.903404-02
1.404212-02
3.958115~02
6.378381-02
2.529791-02
-1.404212-02
-3.958115-02
-6.378381-02
-2.529791-02
.0
.0
.0
-2.076362-02
3.248679-02
2.076362-02
-3.248679-02
-1.551409-17

T3(2)

-5.551883-02
1.222257-02
5.551883-02

~1.222257-02

-5.746180-02
1.265031-02
5,746180-02

-1.265031-02

-5.842865-02

-2,391847-02
1.286317-02
3,742287-02
5.842865-02
2.391847-02

-1.286317-02

-3.742287~02

-5,903404-02

Table

18
19
20
21
22
23
24
25
26
27
28
29
30
K}
32
33

34

35
36
37

4

5.530252-01
5.519229-01
5.530252-01
5.711956-01
5.714793-01
5.713373-01
5.717626-01
5.711956-01
5.714793-01
5.713373-01
$.717626-01
.0

.0

.0

.0
9.999766-01
9.998543-01
9.999766-01
9.998543-01
1.00000040

3.539709-01
3.522461-01
3.539709-01
3.650087-01
3.654366-01
3.652303-01
3.652555-01
3.650087~01
3.654366-01
3.652303-01
3.652555-01
.0

.0

.0

.0

6.390473-01
6.391255-01
6.390473-01
6.391255-01

6.391404-01

Cracked Model

Real Eigenvector No. 1

Eigenvalue = 54.5 Cycles/Sec

Point ID.
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T1(X)

2.256729-01
2.257286-01
-1.039019-01
-1.037968-01
1.286834-01
1.236920-01
-5,370587-02
-5.382929-02
7.775391-02
7.669615-02
7.726533-02
~1.157327-02
-2.856505-02
-2.812149-02
-2,871493-02
6.016503-02
7.451042-02
7.015273-02
-2.342802-02
-2.588566~02
8.195456-02
8.199097-02
8.153223-02
2.794881-02
~3.171204-02
-3.218699-02
~3.200155-02
2,162405-02
.0
.0
.0
.0
6.091636-02
2.257161-01
6.090577-02
~-1.038692-01
6.090467-02
1.106762~01

T2(Y)

-1.000000+00
-6.702547-01
-6.702576-01
-9,998061-01
~9.200148-01
-4,491532-01
-4,485168-01
~6.270659-01
-8.153091-01
-4,264953-01
-3.402974-01
-3.374111-01
-3.403585-01
-3.537061-01
~4 ., 445427-01
-4,399361-01
~7.202766-01
-3,304531-01
-3,317048-01
-4,242756-01
-4,664983-01
-4.036171-01
-3.484576-01
-3.488713-01
-3.486015-01
-4.099303-01
-4.632268-01
-4 .646502-01
.0

.0
.0

.0

-9.999728-01
-8.352498-01
-6.703316-01
-8.352228~01
-8.352522-01
-4,399579-01

1.299645-02

5.903404-02
-1.299645-02
~-6.378381-02
-2.529791-02

1.404212-02

3.958115-02

6.378381-02

2.529791-02
-1.404212-02
-3.958115-02
.0
.0
.0
.0
-3.248679-02
-2.076362~02

3.248679-02

2.076362-02

7.873543-17

T3(2)

5.406098-02
2.499385-02
-2,216022-02
-2,574997-02
5.482133-02.
2.598915-02
~2.304104-02
-2,664056~02
5.519783-02
3.000532-02
2.648506-02
-1.222330-03
~2,347991-02
-2,384857-02
-2.,708407-02
-5.829691-03
4,796040-02
2.564225~02
-2.282405-02
-2.613719-02
2.691140-02
2.674195-02
2.922586-02
3.132349-03
-2,590492-02
-2.697526-02
-2.988059-02
3.410681-02
0

.0

.0

.0
-5.173192-03
3.979212-02
-5.897067-04
-2.209736-02
2.098019-03
7.847411-02




Table 5

Cracked Model

Real Eigenvector No. 2

Eigenvalue = 59.8

Point ID.

T1(X)

9.999002-01
9.998901-01
9.979109~01
$.979021~01
7.001428-01
6.992555-01
6.985066-01
6.983632-01
5.536276-01
5.491473~01
5.537673-01
5.482484-01
5.536470-01
5.490798-01
5.536691-01
5.512085-01
5.501215-01
5.509838-01
5.509687-01
5.512146-01
5.698690-01
5.700895-01
5.698854-01
5.704374-01
5.697959~-01
5.700188-01
5.698263-01
5.702253-01
.0

.0

.0

.0

9.991280-01
1.000000+00
9.991278-01
9.980115-01
9.991513-01
6.787433-01

T2(Y)

6.813270-02
6.999780-02
7.012020-02
6.801050-02
4.788021-02
4.876294-02
4.848744-02
4.801909-02
3.798001-02
3.649809-02
3.847473-02
3.789892-02
3.795860-02
3.933625-02
3.835653-02
3.776422-02
3.684260~-02
3.878721-02
3.699378-02
3.879627-02
3.906043-02
3.937784-02
3.939135-02
3.929008~-02
3.916164-02
3.916578-02
3.930689-02
3.920364~-02
.0

.0

.0

.0

6.807875-02
6.908123-02
7.006651-02
6.908128-02
6.908294-02
3.776647-02

T3(2)

-3.610747-02
3.146085-~02
3.609367-02

~3.144064-02

-3.737256-02
3.256191-02
3.736192-02

~3.254495-02

-3.800209-02

-2.460452-03
3.310981-02
3.722437-02
3.799304-02

2.716887-03-

-3.309448-02
-3.750900-02
-3.829341-02
3.344017-02
3.836787-02
-3.344470-02
-4 .148242-02
-2.753983-03
3.614390-02
3.945165-02
4.147681-02
2.669998-03
-3.613831-02
-3.938356-02
.0
.0
.0
.0
-3.238372-02
-2.129885-03
3.239193-02
2.223126-03
2.994066-05
-4.650651-02
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