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ABSTRACT

The control of high pressure gas encountered while drilling for
hydrocarbon reservoirs is one of the more expensive and potentially
dangerous problems of the oil producing industry. When the control
of high pressure gas is not accomplished flow of gas from the
formation to the wellbore occurs. Once detected, the gas influx is
stopped by shutting-in the well. This is the first measure taken in a
series of operations which are designed to bring back the well under
control. These operations are referred to as well control procedures.

Well control simulators are used both for evaluating well control

‘procedures and for training of drilling personnel. Current well

control simulators assume that the gas enters a wellbore as a
continuous plug and travels at the same wvelocity of the drilling fluid.
Unfortunately, these assumptions often lead to inaccurate results.
This study includes a review of the literature on bubble rise
velocity in both extended and bounded systems, liquid holdup and
flow pattern correlations, and bubble generation. A new method,

obtained by applying the minimum energy dissipation principle, was

. developed to predict the size, shape, concentration, and velocity of gas

‘bubbles within a wellbore during well control operations. The new

method was then integrated into a well control simulator computer
program that was developed as a part of an ongoing research effort
towards the understanding of the behavior of a gas kick for the flow
geometry present on a floating drilling wvessel. Experiments were
performed in a 6000 ft well to determine the accuracy of the
computer program. Excellent agreement was seen between the

observed and computed results.
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CHAPTER 1
INTRODUCTION

One of the more expensive and potentially dangerous problems
associated with the oil producing industry is the control of high
pressure formation fluids encountered while drilling for hydrocarbon
reservoirs. When the control of high pressure formation fluids is not
accomplished a blowout may occur. A blowout is the uncontrolled
flow of formation fluids during drilling operations. When this
uncontrolled flow discharges to the atmosphere or seafloor, it is called
a surface blowout. The uncontrolled flow of fluids from one
subsurface formation, through the wellbore, to a second more
shallow, subsurface formation is called an underground blowout.

Surface blowouts are extremely dangerous, frequently resulting
in injury of drilling personnel, and almost always causing damage of
drilling equipment and the environment. In some cases, additional
wells must be drilled in order to flood the high pressure formation
causing the flow. On the other hand, underground blowouts are not

usually as dangerous as surface blowouts, but they are more

- common because the flow cannot be controlled by surface blowout

prevention equipment. Usually subsurface control can be established
only by sealing off the lower portion of the well. Many expensive
wells have to be redrilled because of this problem.

As the search for petroleum reserves has moved into the
offshore environment, the blowout control problem has continued to
increase in complexity. In addition, the difficulties in confining an
offshore oil spill makes the environmental consequences of a blowout

more important. Most modern blowout prevention equipment was

1



developed for land based drilling operations. With only minor
modifications, this equipment has been applied to bottom-supported
exploratory drilling rigs such as jack ups and development rigs
operating on an offshore platform. However, more significant
modifications in blowout prevention equipment and procedures are
required for floating wvessels, which are used almost exclusively for
deep water operations. The first ma jor modification for deep water
operation was the location of the blowout preventer stack at the
seafloor rather than the surface. The current trend of the oil
industry to much greater water depths (See Figure 1.1) emphasizes
the importance of the blowout control problemn on floating drilling
vessels. )

The schematic presented in Figure 1.2 is based in part on a well
drilled off the coast of Africa in 1978%. In this schematic it was
assumed that an influx of gas into the borehole was experienced
after drilling into a high pressure formation at 11,540 ft. Note that
well closure is accomplished by blowout preventers located at the sea
floor.

A threatened blowout or "kick" starts if the pressure exerted

by the column of drilling fluid in the well is less than the formation

_ pore pressure. The influx of formation fluid into the well can be
-detected at the surface because of the drilling fluid which is displaced

or ‘kicked" from the surface wellbore annulus into the surface
drilling fluid pits. Once detected, the influx of formation fluid f{s
stopped by closing the subsea blowout preventer which seals the
annular space around the drill pipe. Before normal drilling
operations can be resumed, the formation fluids must be removed
from the well and the density of the drilling fluid in the well
increased sufficiently to prevent further influx of formatiuon fluids.

This is accomplished by circulating the well against a back-pressure
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provided by an emergency high pressure flow-line and an ad justable
choke. The operations required to (1) close the well and (2) circulate
the formation fluid from the well and higher density mud into the
well are called well control procedures or pressure control procedures.

Pressure control procedures have been developed by the oil
industry to provide guidance to the field personnel who must
ultimately handle threatened blowouts under a wide variety of
circumstances. Most of these procedures, like the blowout prevention
equipment which must be employed, were largely developed for
land based drilling operations, and modified as required as the search
for oil and gas moved offshore. It is anticipated that further
modifications in pressure control procedures will be needed as drilling
operations are extended to much greater water depths.

Most modern pressure control procedures are evaluated, at
least in part, by computer studies predicting the pressure response of
the well during various phases of the pressure control operations.
Shown in Figure 1.3 are predicted surface choke pressures® for the
example of Figure 1.2 for various assumed initial gas influx volumes.
One major problem predicted in this example is the rapid increase in
choke pressure required when the gas reaches the seafloor and
enters the small diameter choke lines. Computer simulations of well
control operations can give much insight both in predicting
operational conditions and in evaluating alternative pressure control
procedures.

Computer simulations of pressure control operations are also
carried out on a real time, interactive basis to train field personnel
in those pressure control procedures selected for routine applications.
Several pressure control simulators are manufactured specifically for
such training exercises. Two of the commercially available pressure

control training sirnulators are shown in Figure 1.4. These simulator

-,
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facilities are part of the LSU Blowout Prevention Training Center and
are used in industry courses leading to certification in pressure
control operations.

Accurate computer simulation of pressure control operations
require an accurate knowledge of fluid behavior in the well
Preliminary research -at Louisiana State University has already
shown that the assumptions used at present in blowout control
simulations do not always predict actual well behavior when gas Is
present. Two assumptions found to be at fault are (1) that gas influx
enters the wellbore as a continuous slug which occupies the entire
annular cross section of the well and remains in this configuration
during subsequent pressure control operations and (2) that the gas
zone does not migrate upward through the column of drilling fluid
but moves instead at the same velocity as the circulating drilling
fluid.

This study is a part of a large ongoing research effort whose
goal is the development of improved pressure control procedures for
floating drilling operations. The main thrust of this study is aimed
at determining the velocity and concent;ation of gas contaminated
regions during pressure control operations for the flow geometry
present on a floating drilling vessel. Ultimately, it is hoped that a
more complete understanding of the gas "y contaminated zones
behavior will lead to very accurate computer simulations of pressure
control operations.

The primary objectives of the current study are to determine:

(1) The initial concentration of gas during the generation of a
two-phase region in the wellbore due to gas influx from the
formation.

(2) The two-phase flow patterns occuring during pressure

~ control operations.



Figure 1.4 Example of Pressure Control Training
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Center.
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(3) The rise velocity of the gas contaminated zone ‘when the
drilling fluid is not being circulated by a pump.

(4) The velocity of the gas contaminated zone during pump
circulation.

It Is important to point out that the problem of gas influx in
the wellbore during conventional well drilling operations differs from
the classical co-current upwards two-phase flow applied to oil and
gas production. Simultaneous, upward two-phase flow in vertical
pipes implies steady-state flow of gas and liquid. The radial and
axial distribution of gas determine the flow patterns along the pipe
which in turn determine the pressure distribution. This previously
studied co-current two-phase flow condition is generally approached
only in the bottom portion of the borehole during the time prior to
the detection of the gas influx. Upon detection of the gas influx, the
well is shut-in. At this point, the gas contaminated zone will
migrate upwards due to its buoyancy. Finally, the procedures of
well contro! operations call for the circulation or transportation of
the gas kick or gas contaminated region. The gas concentration and
flow pattern can change with time and position during both gas
migration and transportation. The pressures experienced at the
surface and at various critical points within the wellbore depend

.greatly on the gas distribution within the well. _A proper engineering

design of the well equipment and well-control procedures requires a
knowledge of these pressures. Figure 1.5 shows the different phases
of the well control operations which must be modelled. Figure 1.5.a
refers to the generation of a two-phase region by gas flowing from a
porous zone into the borehole while drilling is under way. Here, we
must define the initial flow pattern, bubble size, and gas
concentration. Figure 1.5.b refers to a shut-in period after the gas

influx is detected and the blowout preventers are closed. Figure 1.5.c



\\

{a) Gas Kick

(b) 6as migratiom (c) Transportatioa

Yhile ¥ell Is
Closed

of Bas

S

Figure 15 Processes During Well Control

Operations

10



11

refers to a circulation period where the gas contaminated zone is

transported through the annular geometry towards the choke line.
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CHAPTER II

PREVIOUS INVESTIGATIONS

Two-phase flow is a topic found in many engineering disciplines
and is important in a wide range of engineering problems. Because
of this, a large body of literature is available in many engineering
and scientific journals not normally followed by Petroleum
Engineers. Thus an extensive literature review was the appropriate
starting point for this study.

It was hoped that major improvements in the accuracy of
computer simulations of pressure control operations associated with
gas kicks could be made through the development of more realistic
algorithms for predicting:

(1) The two-phase flow patterns present in the wellbore

annulus.

(2) The upward slip velocity of the contaminated region
relative to the drilling fluid either when circulating the
well or when the well is not being circulated.

(3) The gas concentration in the gas contaminated region.

Thus, the literature review will be presented for these three
important areas.

2.1 FLOW PATTERNS

Previous work on two-phase flow patterns was classified in this
study according to the following four geometries.
(1) Extended liquids

(2) Tubes
12
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(3) Annuli

(4) Complex Geometries

The extended liquid case includes gas rising in a liquid media
which is large enough so that no significant effect of the liquid
boundaries can be observed. The next two cases investigated include
the effect of bounding the liquid in a tube or annulus. The effect of
confining the liquid in a conduit becomes more pronounced as the
size of the individual gas bubbles approaches the size of a given
conduit.

The last case considered previous work which may provide
some insight on the effect of a complex geometry similar to that
present on a floating drilling wvessel. A floating drilling vessel
operating in deep water typically has several long sections of
different size annuli connected in series. The upper annular section
is in turn connected at the sea floor with one or more vertical tubes
which serve as the high pressure choke lines to the surface. Gas is
introduced at the bottom of the well from porous media. Before
pressure cohtrol operations can be accurately modelled, the effect of
such a complex flow geometry and associated end effects on the two
phase flow patterns must also be determined.

2.1.1 Extended Liquids

When gas is released in an infinite liquid media, the resulting
flow pattern is generally described as bubble flow. A qualitative
subclassification of this regime, based on the shape of the bubbles is
generally used. This kind of classification is useful because the
geometry of the bubble is related to the forces controlling the
phenomenon of bubble motion. The bubble shape classification used
in this study includes:

(1) Spherical bubbles

(2) Oblate spheroid bubbles
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(3) Lenticular bubbles
Bubbles of a given gas in a given liquid tend to progress from small
spherical bubbles to oblate spheroid bubbles and finally to large
lenticular bubbles as the bubble volume Is increased. Large
lenticular bubbles can be unstable, breaking into smaller spherical or
oblate spheroid bubbles. Examples of typical air bubble shapes
observed by Haberman and Morton?2 in different liquids are shown
in Figure 2.1. Similar observations for air bubbles rising in water
described by V. G. Levich3 are shown in Figure 2.2.

An excellent summary discussion on bubble behavior in
extended liquids is given by Haberman and Morton2. In addition to
bubble wvolume, the shape of a bubble also depends upon the
interfacfal tensfon between the gaseous and liquid phases, the
densities of the gaseous and liquid phases, and the viscosity of the
gaseous and liquid phases. |
2.1.2 Tubes

Flow conduits having a circular cross sectional area are of
particular interest in this study because the flow pattern in the
subsea choke lines between the blowout preventer stack at the sea
floor and the floating drilling vessel at the surface can have a very
large effect on the observed pressure behavior of the well. In general,

- the description of each flow pattern is characterized by the radial or

axial distribution of liquid and gas. Taitel et a4 in a very recent
summary publication used the following flow pattern descriptions in
conjunction with the classification shown in Figure 2 .3:

Bubble Flow. The gas phase is approximately uniformly

distributed in the form of discrete bubbles in a continuous
liquid phase.

Slug Flow. Most of the gas is located in large bullet shape
bubbles which have a diameter almost equal to the pipe
diameter. They move uniformly upward and are sometimes
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FIGURE 2.l. TYPICAL SHAPES OF AIR BUBBLES OF SEVERAL
VOLUMES IN VARIOUS LIQUIDS (After Haberman and M.orton)
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"FIGURE 2.2. TYPICAL SHAPES OF AR BUBBLES IN WATER
(After Levich)
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designated as "Taylor Bubbles", after one of the first
investigators who studied this flow patterns. Taylor bubbles
are separated by slugs of continuous liquid which bridge the
pipe and contain small gas bubbles. Between the Taylor
bubbles and the pipe wall liquid flows downward in the
form of a thin falling film.

churn Flow. Churn flow is somewhat similar to slug flow.
It is however, much more chaotic, frothy and disordered.
The bullet-shaped Taylor bubble becomes narrow and its
shape is distorted. The continuity of the liquid in the slug
between successive Taylor bubbles is repeatedly destroyed
by a high local gas concentration in the slug. As this
happens and the liquid slug falls, this liquid accumulates,
forms a bridge and is again lifted by the gas. This
oscillatory or alternating direction of motion of the liquid is
typical of churn flow.

Annular Flow, Annular flow is characterized by the
continuity of the gas phase along the pipe in the core. The
liquid phase moves partly as a wavy liquid film and partly
in the form of drops entrained in the gas core.

The annular flow pattern fits the assumption generally made in
computer simulation of pressure control operations closer than the
other three flow patterns described.

Steady state flow pattern prediction relies on a wide variety of
flow pattern correlations. Among the published flow pattern
. correlations are those given by:

' (1) Griffith and Wallis (1961)®
(2) Duns and Ross (1963)7
(3) Sternling (1965)8
(4) Wallis (1969)°
(5) Hewitt and Roberts (1969)10
(6) Govier and Aziz (1972)l1
(7) Gould (1974)12
- (8) Oshinawa and Charles (1974)!3
(9) Chierici, Ciucci, and Schloechi (1974)!14
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(10) Taitel, Bornea, and Dukler (1980)4

A typical approach has been to correlate experimental
observations by | plotting transitional boundary lines on a two
dimensional plot called a flow pattern map. An example of this
approach is shown in Figure 2.4. There has not been uniformity on
the parameters selected for the coordinates of the flow pattern maps
although the abscissa is often directly related to the gas flow rate
and the ordinate is often related to the liquid flow rate.

Usually there is not good agreement in results obtained using
the various flow pattern correlations available. This is not too
surprising since maps prepared from experimental data on one pipe
size and for a limited range of fluid properties are not necessarily
valid for other conditions. For sake of brevity, only the correlations
Judged to have the most promising potential will be presented. The
correlations are classified according to the flow pattern boundaries
which they represent.

Transition to Slug Flow Pattern

Griffith and Wallis were the first to discuss the bubble flow to
slug flow transition. They were not sure that the bubble flow
pattern was a stable pattern in long systems, reasoning that since
different size bubbles travel at different rates, there is a natural
'.tendency for small bubbles to link up and form slugs. However,
based on previous experimental observations by Bailey et alls, they
presented a correlation for the transition from bubble flow to slug
flow when the gas volume fraction, in the column surpasses 0.18 for
a 1" diameter tube. This implies that slug formation is not stable for
gas volume fractions below 0.18.

Taitel et al? in a very recent publication made a similar
recommendation but placed the limiting gas volume fraction at 0.25.
Taitel pointed out that spherical bubbles could be theoretically packed

-
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so as to occupy a maximum of 522 of the wvolume, but bubble
coalescence begins to increase sharply when the spacing between the
bubbles is less than half their radius. This corresponds to a gas
volume fraction of 0.25.

Duns and Ross’ presented the following criteria for the

transition from bubble flow to slug flow:

Ngv 3 Ll + L2 va .......................... (2.1a)

Np=DVv (p8/70)) ..... ... ... ... .. .. (2.1b)

Ngy=(ag / ANV o 7@ 1) ..., (2.1¢)

Ny =@/ AV 7@ ..., (2.10)
where

qs = upward gas volume flow rate at existing conditions

d; = upward liquid volume flow rate at existing conditions
A = Area of tube

D = tube diameter

¢ = liquid density

g = acceleration of gravity

g = interfacial tension

LyLy = parameters defined by Np and Figure 2.5

Use of this correlation does not require prior knowledge or
calculation of the gas volume fraction. The criteria is most sensitive
to the gas flow rate, the liquid flow rate, and the tube diameter,
with the liquid density and interfacial tension being much less
important. The criteria s completely independent of the liquid

viscosity.
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Orkiszewskil® suggested the transition from bubble flow to slug

flow occurs when a parameter Lp becomes greater than the gas

fraction in the output stream of the system, as it is expressed by
the following inequality:

where Lg Is defined by:

[ 0.13 for Ly £ 0.13

LB = { :
LLyforLy>0d3 .. ... ... ... ............... (2.2b)
Ly=1071-02281 V3, /D . ................... (2.2¢)
where

Vsm = the mixture velocity obtained by dividing the total gas

and liquid volume flow rate at the existing conditions by
the tube area, ft/sec

D = the tube diameter, ft

Chierici et al'? used essentially this same criteria with a

- limiting value of 0.18 for Lg rather than 0.13. This criteria is
sensitive only to the gas and liquid flow rates and the tube

diameter.
Govier and Aziz!! predict the onset of a slug flow pattern when
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Nj=051000 Ny 0172 (2.30)
Ny = q/A (8/0.0764)8 [ (720D / (6240 ) 1% .. ... . .. (2.3)
where

dg = gas volume flow rate at existing conditions, fts/sec

qj = liquid volume flow rate, ft3/sec
Pg = gas density, 1b/ft3

P, = liquid density, 1b/1t3

g, = interfacial tension, dynes/cm

This criteria is primarily sensitive to gas flow rate, liquid flow
rate, and tube area and has a weak dependence on liquid density
and interfacial tension.

Transition to Churn Flow Pattern

It is difficult to compare different criteria for predicting the
onset of churn flow because of differences as to the description of
this flow pattern by different investigators. Some identify churn
flow on the basis of froth that appears within the gas region. In this
study, we have adopted the description of Taitel et al? which is
based on an oscillatory motion of the liquid region between gas slugs
~ that are too short to remain stable. ,

Taitel et al provide a convincing argument backed by
experimental observation that churn flow is actually due to entrance
effects and if the system is long enough, eventually a stable slug
flow will be produced. Churn flow is caused when a Taylor bubble
breaks through a short liquid slug to another Taylor bubble above,
resulting in a coalescence of two gas bubbles and two liquid slugs into
one larger gas bubble and one larger liquid slug. Eventually a long

enough liquid slug is created to form a stable bridge between the

”.
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Taylor bubbles. A liquid slug length approximately 16 times the tube
diameter was found to be stable.
For low viscosity liquids and/or tube sizes of several inches or

greater, the length of the system, lg, above the entrance in which

churn flow can exist is given approximately by:

Jg=406D(vgy, / /@) +022) ............... (2.4)

where the tube diameter D, mixture velocity, Vsm- and gravitational

acceleration, g, are defined in any consistent units. For systems of

finite lengths less than lg, churn flow could exist -throughout the

entire system. Since we are dealing with extremely long systems in
pressure control operations, churn flow is probably of significance
only over the bottom several hundred feet of each section of
uniform geometry. |

Transition to Annular Flow Pattern

For high gas flow rates, the flow becomes annular. A liquid
film flows adjacent to the wall and gas travels rapidly upward
carrying entrained liquid droplets. The liquid film tends to be

wavey and liquid droplets tend to be broken off the wave peaks by
‘the upward moving gas core. For this flow pattern to be stable, the

liquid droplets must be carried upward. If they are allowed to fall
and accumulate into a liquid bridge, slug flow or churn flow results.

Duns and Ross’ predict the transition to the annular flow
pattern occurs when

Ngy275+84 N, 075 .. . (2.5)
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where Ng,, and N),, are given by Equations (2.1a) and (2.1d)

respectively. This criteria is most sensitive to gas flow rate, liquid -
flow rate, and tube area, with liquid density and interfacial tension
playing a minor role. The criteria is independent of liquid viscosity.
Orkiszewskil® as well as Chierici et all4 also used this same criteria
for predicting the transition to annular flow.

Govier and Aziz!l predict the onset of annular flow when:

( 7'0/(1001\13,)0-152 for Ny, < 4
Ny 2
| 26.6 for Ny24... ... ... ... (2.6)

where the variables Ny, Ny, g, A, o) and 9 have the same units as

defined for Equation (2.3). This criteria is highly sensitive to gas flow
rate and tube area, with liquid flow rate, liquid density, and
interfacial tension playing a minor role.

Taitel et al4, developed an expression for onset of annular flow
based on the slip velocity of the largest drop size felt to be stable.
The critical drop size is based on a critical Weber number of 30 and

~ a drag coefficient of 0.44 for the liquid drop. The resulting criteria is
given by: "

ag=31aloglp -p 08 /p05 . ... 2.7)

This criteria depends primarily on gas flow rate and tube
area, with liquid density, gas density, and interfacial tension having
a minor role. The criteria is independent of liquid flow rate and
liquid viscosity.

.
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2.1.3 Annuli

Vertical two phase flow patterns have not been studied
previously in annuli. The work done in tubes is sometimes extended
to annuli through use of an equivalent hydraulic radius concept, but
this approach has not been verified experimentally.

Zukoskil” in reporting some work on the slip velocity of long
bubbles in tubes mentioned that D. Fluck and J. Gille of North
American Aviation, Downey, California had observed in unpublished
experiments an unsymmetric bubble shape in the emptying of an
annular space between cylinders. These individuals are reported by
Zukoski to have observed that gas moves up one side of the annulus
with liquid falling down the opposite side. For large ratios of the
outer to Inner radius of the annulus, the width of the liquid fluid
flow area near the bubble nose was reported approximately equal to
the diameter of the inner tube. |

Rader, Bourgoyne, and ward!® worked with an annular
geometry on a previous LSU study of gas slip velocity for a wide
variety of tube sizes and fluid properties. However, this previous
work considered only the flow pattern resulting from a very rapid
gas injection into the system, attempting to be as close as possible to
the conventional assumption that the gas enters the well as a

~ continuous plug. It was noted that in all cases, the gas did not

occupy the entire cross sectional area, but instead the gas slug
traveled up on side of the annulus with liquid backflow occupying an
area opposite the bubble. The fractional area of the liquid backflow
was found to increase as the viscosity of the fluid was increased.
The observed bubble shapes are shown in Figure 2.6.
2.1.4. Complex Geometries

Although it is widely recognized that end effects due to

changing geometry are important, little experimental work has been
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reported. An éxample of a change in geometry in the well éontrol
problem would be the change from a large annulus to a small choke
line at the seafloor (See Figure 1.2). Griffith and Wallis® pointed out
that entrance effects can persist over great lengths, and that long
periods of time are often required to achieve steady-state two-phase
flow. Taitel et al4 reported that the churn flow pattern was due
primarily to entrance effects. Flow exit conditions can also affect
upstream flow patterns. For non wvertical tubes, the angle of
deviation has a large effect on the bubble shape and fluid
distribution!8.

Since a gas kick is taken from an open formation, the gas
travels directly from a porous media to the wellbore. A large
number of small streams of gas converging in the wellbore to form a
gas kick may cause different entrance effects than a single stream of
gas from a pipe. It is well known that a porous media is an
excellent bubbler device.

Nicklinl? used a porous plate to generate bubble flow patterns
in a vertical tube having 3.75 in. internal diameter and 6 ft. of
length he injected gas through a porous bronze disk at flow rates up
to about 1.8 ft3/min measured at average test conditions. This
corresponded to a superficial gas velocity of about 0.4 ft/sec. Over

_the short length of pipe used, bubble flow was observed up to a

superficial gas velocity of about 0.2 ft/sec. At higher gas rates, the
formation of gas slugs was noted.

2.2 BUBBLE RISE VELOCITY

Previous work on the velocity at which a gaseous zone moves
upward through a liquid was classified in this study according to the

following three main geometries:

-
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(1) Extended liquids

(2) Tubes

(3) Annuli
The importance of flow pattern on the bubble rise velocity for these
three geometries was also researched. The velocity of a bubble in
such three geometries is reviewed next.
2.2.1 Extended Liquids

The velocity of gas bubbles rising through a relatively infinite
liquid media has been widely studied. Some of the more significant
work done in this area include those of:

1. Hadamard20 - Rybezynski (1911)2!

2. Davies and Taylor (1949)

3. Peebles and Garber (1953)22

4. Haberman and Morton (1956)2

5. Mendelson (1967)23

6. Acharya, Mashelkar and Ulbrecht (1977)24

7. Ishii and Pei (1980)25

In several of these works, experimental bubble slip velocity
measurements were presented in terms of a bubble' drag coefficient
which was correlated with a bubble Reynolds number.
Unfortunately, the correlations of drag coefficients versus bubble

 _Reynolds number lack generality.

Recall from Section 2.1.1 that the injection of gas in an infinite
liquid media results in a bubble flow pattern and that a qualitative
subclassification of this regime, based on the shape of the bubbiles, is
generally used. The same subclasification is also useful in discussing
the upward velocity of the gas bubbles except that the spherical
bubble shape is further subdivided into a rigid sphere and a fluid
sphere case. Very small gas bubbles behave much like a solid
particle and hence the term rigid sphere is applied.
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Thus, the gas bubble rise behavior in extended liquids will be
discussed for the four following sub categories:

(1) rigid spherical bubbles

(2) fluid spherical bubbles

(3) oblate spheroid bubbles

(4) lenticular bubbles
Rigid Spherical Bubbles

Several investigators have shown experimentally that very
small gas bubbles rising in an extended liquid behave much like solid
spherical particles in that the bubbles drag coefficient is predicted by
Stokes' Law. Thus, bubble rise velocity can be developed using the

following relationship for drag force Fpy

Stokes' Law

Fp=(6t /8 MTe Voo - - oo oo i (2.8)

For a bubble rising at its terminal velocity, the drag force, Fp, is also

expressed by:

Fp=Fp-Wp=Vp ¢ ®/8) - Vp pg 8/8¢

~4/3) 1 (/8 e (o =0g) oo 2.9)

where

Fp = buoyancy force
Wp = weight of the spherical bubble

Vp = volume of the spherical bubble

» Pg = liquid and gas density respectively
P Pg
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¥ = fluid viscosity

re = equivalent radius of sphere having the same volume of
the gas bubble
Ve = Velocity of the bubble in an extended liquid

g = gravitational acceleration

gc = conversion factor betwéen mass and force units

From equations (2.8) and (2.9), the terminal velocity can be
expressed by

Ve = (2/9) g re2 (o) - pg) L o (2.10)
By definition, the drag coefficient is

fp=(Fp/Eg JA =6 myre Ve /[( g /2) Va2 nr,2]
=24 / NRQD ......................... (2.11)

where
NRep = 2 e Vo 0 / T . C e e e 2.12)

Peebles and Garber22 following the trend of many investigators
recommended application of Stokes' Law for Npgp < 2. However,

Haberman and Morton proved that the transition to the fluid sphere
region can happen at bubble Reynolds numbers as low as 2 x 1076,
Fluid Spherical Bubbl

The transition to the fluid sphere region is marked by slightly
lower drag coefficients than that predicted for a solid sphere of equal
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volume. This occurs because of circulation patterns taking place
within the gaseous phase.

Peebles and Garber24 presented the following drag correlation
for the fluid spherical bubble region

Also, ID can be expressed as

fp = Fp / (Eg A)

= (4/3) n g red 0y - pg) / (( ) Va2 / 2) mrg2)

From the former two equations, the velocity of the bubble
becomes

Ve =033g 076128 (o £,)052 (¢ - ) (2.14)

Equations (2.13) and (2.14) apply for the following range of bubble

Reynolds numbers;

2 € Npep, $4.03[(g/ wh /() o) 10214

where all variables are defined as above and

o = surface tension

This correlation was based on experimental work done for air bubbles

rising in over 22 different liquids.



34

Haberman and Morton2 also did experimental work in thé fluid
sphere region. They found that a theoretical development by
Hadamard20 and by R*,;rbezw,'rmky21 could be applied. The Hadamard
and Rybezynsky equation is defined by

Fp=d4mmIog Ve /Bo - v oo (2.15)

From Equations (2.15) and (2.19), the terminal velocity for fluid sphere
results to be

Oblate Spheroid Bubbles
The oblate spheroid region is marked by sharply increasing

drag coefficients with increasing Reynolds number. The most
extensive work done in the oblate spheroid region was presented by

" .Peebles and Garber22, They provided the following expressions to

correlate the drag coefficient and the velocity of slightly deformed
bubbles

Vo= 13500 /(o red 0% oL (2.18)

fp=0ddgrfvaiol/od. ... (2.19)
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Equatidns (2.18) and (2.19) apply for the following conditions
16320@uH /(o> 0144 < grdv, 403/ 63 5< 575

Lenticular Bubbles

In 1949, Davies and Taylor5 found that the flow near the front
of large lenticular bubbles in extended liquids was very close to the
theoretical flow near the front of a complete sphere in an inviscid
fluid. Also, they noticed that the angle subtended at the center of
curvature of the stagnation point of a bubble changes during the
growth of the bubble (See Fig. 2.7).

The following expression to calculate the s;lip velocity of
lenticular bubbles was given by Davies and Taylor:

Ve @I, 05 (2.20)
where

Vo = Velocity of the bubble

ro = curvature radius of the top portion of the bubble

g = acceleration of gravity

The curvature radius, r, , was determined from photographed

bubbles.
Davies and Taylor also derived the following relationship
between volume and rate of rise of a bubble.
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where

Vp = volume of bubble, cm®

Vs = bubble velocity, cm/sec

If we define an equivalent radius, r, , as that of one sphere

having the same volume of the lenticular bubble, we can write
Vp=W/3) mrd o (2.22)

Vo =248[ (/3 nr W6 L (2.23)

Dividing Equation (2.20) by Equation (2.23) yields the following
relationship between radius of curvature and equivalent radius

re/ Fe=2275 . . ... (2.24)

In terms of the equivalent radius, the velocity of the flattened-shape
bubbles becomes

Vo= 101Gr®5 . . ... PP .25)

Haberman and Morton found that for lenticular bubbles the drag
coefficient is a constant, e.g., fp = 2.6. Since fp = (8/3) g Io/Ve2 , the

bubble rise velocity is given by the same expression found by Davies
and Taylor, which was reported previously as Equation (2.25).

Harvey D. Mendelson23 found an equation to determine the
terminal velocity of the bubbles in pure liquids of low viscosity.

Based on the work of Haberman and Morton, he observed an analogy
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between the propagation of surface waves over deep water and the
lenticular bubbles rising in pure liquids. By substituting the wave
length, A , for the perimeter of an equivalent circumference in the

wave velocity equation, he arrived at the following expression:
Ve = [ ) Hrep ) +ere PSS, DT (2.26)

where

Ve = Velocity of the bubble

g = surface tension

) = liquid density
g = acceleration of gravity

re = equivalent spherical radius of the bubble

Non-Newtonian Fluids

Fluids that do not exhibit a direct proportionality between
applied shear stress and rate of shear are classified as
non-Newtonian fluids. Among these, pseudoplastic fluids are of
interest to the drillir;g industry. Fortunately some work has been

.done on bubble motion in pseudoplastic fluids.

Rigid Spherical Bubbles
Using variational methods, Wasserman and Slattery26

determined upper and lower bounds on the drag coefficient of a
sphere in a power law-model fluid. The drag coefficient fp was

expressed by:

fD = 24 FS (n) / NRPL ......................... (2.27)
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and Fq(n) is a function of the pseudoplasticity index, n.

Unfortunately, Wasserman and Slattery reported poor
agreement between their calculated drag coefficient and
experimental data.

Recently, A. Acharya et 2127 found the following relationship

between the drag coefficient of a bubble, fp, and the generalized

Reynolds number Npp; for a power law fluid:

fp =24 Fs(n) / NRpL:- - -« v e e (2.29)
where

Fsn) =31(3n-3)/21{33n%-63n%-11n3+97n2+16n)
/(an2 (s (e @nel) ). . .. (2.30)

They reported good agreement between experimental data and

N their theory.

Fluid Spherical Bubbles
T. Hirose and M. Moo-Young28 proposed the following equations

to describe the drag coefficient of a bubble in a power-law fluid:

fD =(16 / NRPL ) Fr n) ........ ... . ... (2.31)
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where the correction factor Fy (n) is a function of the pseudoplasticity
index given as:

Fy (n) = 2071 3(0-D/2 ((1344n-6n2) / [@ns) (e2)] 3 .. ... .. ... (2.32)

Recently, S. M. Bhavaraju et al2? also determined a correction
factor for the drag coefficient for a single bubble moving in a power
law fluid. This result is expressed by previous Equation (2.31), except

that now Fy (n) is given as:
Fg (n) = 300-1/2 onl (1766 (n-1/21 . ... ... .. e (2.33)

Also, they presented the following correction factor, Ffp(NB)

for drag coefficient for a single bubble moving in a Bingham plastic
fluid:

Ff(NR) =1+322Np/2. ... (2.34)

where the Bingham number, N, is defined as

Np = g Ty / (Vo Mp ) v vvveeeee e (2.35)

blate S oid Bubbles an ticular Bubbles
Acharya, Mashelkar, and Ulbrecht?’ reported good agreement
between experimental data and the wvalues of bubble velocity
predicted by Mendelson's equation for bubbles rising in
non-Newtonian fluids. This equation was presented as Equation (2.26)

-
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in the previous section. Note that this equation assumes that bubble
velocity is independent of fluid viscosity.
Fragmentation of Bubbles

Regardless of the rheological fluid classification of the
continuous phase, eventually the bubbles will fragmentate. In
general, as the size of the bubbles increase, the bubbles increase their
velocity until they begin to deform, and finally they become
unstable. At this point the bubbles go into a process of
fragmentation.

Levich® reported fragmentation of gas bubbles to occur at
equivalent radius of around 3 cm (1.18-in). Bryn3° reported that
large air bubbles in water at room temperature assume a lenticular
shape, become very unstable, and finally tend to break easily into
numerous smaller bubbles. Haberman and Morton also reported
bubble rise wvelocities up to 60 cm/sec for lenticular bubbles
(equivalent radius around 3 cm) rising in water at room
temperature.

2.2.2 Tubes

When bubbles rise in a restricted media, the boundary affects

their velocities. The net effect is a lower bubble rise velocity than

that obtained for infinite media. The reduction in bubble rise is not

~ important for small bubble diameters in large tubes. However, as

the size of the bubbles approaches the size of the tube the boundary
effect becomes significant. This phenomenon is {llustrated in Figure
28. Among the first works published on gas bubbles moving in
restricted media was that of O'Brien and Gosline.

O'Brien and Gosline>® made a study of the velocity of large
bubbles in wvertical tubes. Their experimental work was performed
in three tubings having diameters of 1.18-in., 2.24-in., and 6.0-in. The

properties of the fluids covered a range of viscosities from 1 to 96 cp.
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They found that for bubble radius gi'eater than 3 mm ‘the effect of
the pipe walls becomes noticeable. Also they reported a limiting
velocity beyond which no increase resulted from an increase in the
volume of the bubble. They also performed experiments on the
velocity of a stream of bubbles In a stationary liquid. They
observed that the bubble velocities increased linearly with increases
in air flow through the tube. The maximum velocities found for
continuous gas injection was found to be far greater than the
velocity of the largest single bubbles released in the same tube.

In 1943 D. T. Dumitrescu®!, made a theoretical analysis of an
infinitely long bubble in a tube. He arrived to the following equation
for the limiting velocity of a bubble in an inviscid fluid.

Vho =049 gry)®S . ... (2.36)

Also, he supported this equation with experimental investigation.
Using tubes of 0.99 cm, 2 cm, 3.76 cm, and 7 cm in diameter, he
found a value of 0.49 for the constant of proportionality of his
equation. Equation (2.36) is valid for larger diameters where the
surface tension and viscous forces are insignificant.

Later, Davies and Taylor5 also derived an equation for the

‘velocity of slugs rising through perfect fluids contained in cylindrical

tubes. They arrived to the following equation:

Vpo = 0.464 (gre)®5 L (2.37)

They also provided experimental data to support this equation. The
value 0.464 was slightly lower than that obtained by Dumitrescu
(See Equation 2.36).
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Laird and Chisholm32 reported measured velocities of
cylindrical bubbles in vertical tubes. The values obtained were on
the average 103 greater than those obtained from the equations of
Davies and Taylor. Their experiments were conducted in a 2-in.
diameter tube with the upper end open to the atmosphere.

In 1956, Uno and Kintner>> conducted a study to determine the
effect of wall proximity on the velocity of air bubbles rising in a
static liquid. They measured terminal velocities of bubbles rising in
distilled water, 652 gycerine, diethylene glycol, and a surfactant
solution in vertical cylindrical tubes, having internal diameters of
2.09, 3.64, 4.91, 6.90, 9.50 and 15.25 cm. Diethylene glycol, having a
viscosity of 24.5 ¢p was the most viscous fluid included in the study.
They obtained an empirical correlation which s defined by the
following equation:

Voo / Voo = (I/B] (1-1g/ry )30765 L. (2.38)
where

re = the equivalent spherical radius for the given bubble

volume

ry = the tube radius

b = a function of the tube radius and the surface tension

Vpo = actual terminal velocity of the bubble

Vo = Velocity of the bubble in a liquid of infinite extent

Figure 2.9 gives the wvalues of b for the liquids used by Uno and
Kintner. This figure illustrates the importance of the surface tension.
Note that the effect of surface tension decreases for the larger tube

sizes.
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In 1961, Griffith and Wallis® studied experimentally the effect of
water velocity on the rise velocity of large air slugs in vertical tubes
with diameters of 0.5, 0.75 and 1.0-in. They presented their results
in terms of a gas slip velocity defined as

Vb.'. = VD - vSm ......................... (2.39)

where

Vp = the bubble rise velocity with respect to the tube.

Vp+ = the bubble velocity with respect to the liquid ahead of

the bubble, assuming incompressible fluids.
Vsm = the mean mixture velocity due to continuous injection

into the tube.

The bubble velocity was found to be given by

Vp+ = €1 €2 (g rt)o's ........................ (2.40)

where ¢; is a function of the bubble Reynolds number, and ¢; is a

-'function of both the bubble Reynolds number and the liquid

Reynolds number.
The bubble Reynolds number was defined by

Npp = dt Vpe 0] / T (2.41)

and the fluid Reynolds number by
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Npf = dt Vsm 0 / W (2.42)

where
dy = tube diameter
Vp+ = the bubble rise velocity with respect to the liquid ahead
of the bubble

Vem = the mean mixture velocity

0 the liquid density

By the liquid viscosity

The resulting correlation for ¢; and ¢ are shown in Figures 2.10
and 2.11.

Equations (2.39) and (2.40) can be combined to obtain

Vb = Vsm = €1 2 8 rt)O.S

solving for vy, yields

Vp =¢j¢cp (8 rt)o-5 *Vm - e e e (2.43)

For inviscid liquids, large tube diameters, and cylindrical bubbles, <

reaches the value of 0.496 obtained by Dumitrescu to describe the
slug velocity in closed end tubes.

In 1962 Nicklin, Wilkes and Davidson34 performed a study on
cylindrical bubbles flowing through either stagnant liquid or moving
liquid. To prevent the viscous effects from becoming important, they
use__d water as the liquid phase and a 1.02-in. internal diameter
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tubing. They observed that the rising wvelocity of the géé slugs
through stagnant liquid in an open tube increased with the length of
the slugs as it has already been observed by other investigators.
Furthermore, Nicklin et al found that increase in velocity to be
related to the movement of the liquid caused by the expansion of
the bubble itself. The investigators experimentally found that in a
moving liquid stream the velocity of the cylindrical bubbles is given

by the expression

Vp=049%(8ry 05 «Kiy Vg + - - v v v (2.44)

where

Vp = the upward gas slug velocity.
Vsm = the average upward mixture velocity.
Kj, = a coefficient having a value of 1.48 for liquid Reynolds

number below of 2000.

The liquid Reynolds number, NpL , is given by

Npp=d¢ Vem Oy /-« oo oo vve e e (2.45)

where

dt = internal diamer of the tube

Vem = average velocity of the fluid
p) = density of the liquid

i) = viscosity of the liquid
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- The first termm of the right side of the equation is the
Dumitrescu’s equation for cylindrical bubbles in a static liquid. The
second term accounts for the effect of the moving liquid. The factor

Kjy , in front of the liquid velocity is greater than one because the

average liquid velocity in the central core of the tube where the gas
tends to reside is greater than the average liquid velocity in the
complete section of the tube. When both liquid and gas were
continuously injected in the bottom of the tube, the steady state
bubble rise velocity for turbulent flow was found to be predicted by

vp = 0.496 (g rt)o'5 +12(vq ¢ ng) ............... (2.46)
wherev
Vg = the superficial liquid velocity

Vsg = the superficial gas velocity

and the remaining terms are as previously defined. When liquid
was injected in the top of the tube to obtain a countercurrent

process, the factor K;,, was reduced to values lower than one. By

analogy, the authors extended the use of their equation for small
~ bubbles.

Equation (2.44) of Nicklin et al and Equatibn (2.43) of Griffith
and Wallis define the bubble rise velocity in a moving liquid stream.
The expressions differ in the way the effect of liquid velocity on the
velocity of the bubble is taken into account. Griffith and Wallis
chose to take this effect into account using an empirical coefficient
placed in the first term of the right side of equation rather than
through use of a second term.

Also in 1962, White and BeardmoreS® performed experimental
wox:k on large bubbles rising in tubes. They used glass tubes of



52

diameters ranging from 0.5 to 3.87 cm. The fluids used had specific
gravities ranging from 0.997 to 1.40, viscosities ranging from 0.87 to
20, 900.00 cp, and surface tensions ranging from 30.8 to 77.7 dyne/
cm. A correlation for wvelocity of rise of cylindrical bubbles in
vertical tubes was presented using dimensionless groups. Their
correlation is presented in Figure 2.12. The correlation is given in

terms of (1) the diameter number Ny, (2) the Froude number, Npp;

and (3) a property group, or liquid viscosity number, Np
These groups are defined by

Np=(pgdg2 /)05 .. ... ... ... ... ..... (2.47)
Npp =Vpo/ (8dy) . ..o oo (2.48)
Ny = [g u14 / (g 013) P25 (2.49)

where
0 = the density of the liquid
g = gravitational acceleration

dt = internal tube diameter

oy = interfacial tension between fluid and bubble
Vho = terminal velocity of the bubble, relative to undisturbed
liquid

i = viscosity of the liquid

The correlation can be used in the following way.

(1) Calculate the property group, or liquid viscosity number, N“
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and the diameter number, Np, which only are function df the

continuous phase properties and the geometry of the tube. (2) With
these two parameters, determine the maximum of the square root
of the Froude number, from Figure 2.12. Solving this equation, the
velocity of a cylindrical bubble in such a systemn will be determined.

Browns® also published a correlation of large bubbles rising in
vertical tubes. The velocity of the bubble in a stagnant liquid was
expressed as follows:

Vpo =049 @ry®S (- (1+Q+2Nr)®3)/Nrgl ... .. (2.50)

where

N = Dimensional property parameter, ft'l,
= (14.5 g p2 / w20
¢; = liquid density, Ibm/ftS

B, = liquid viscosity, Ibm/(ft sec)

g = gravity acceleration, ft/sec2

ry = tubing radius, ft

The author limited this equation for the following conditions:
1) Surface tension parameter:

(ppgri2/ o) (1-(ry-rg)/ry)>50
2) Viscosity parameter

2Nrt>60
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In these expressions, (ry - ry) is the equilibrium liquid film thickness
falling past the large lenticular bubble of radius r, in a tube of

radius, ry.

Zukoskyﬂ performed a series of experiments in order to
determine the influence of wviscosity, surfacg tension and tube
inclination on motion of long bubbles in closed tubes. He determined
two dimensionless parameters to assure similarity between two

systems. These parameters are given by the following expressions:

v =lerg (o -/ 5 . (2.51)
NRZK =T{ Vzx 0 / Hp «c oo e (2.52)
T=0,/(g(o-pgdrt2)= 4/Np2.............. (2.53)

He concluded that for bubble Reynolds numbers greater than
about 200, the velocities are substantially independent of viscous

effects. He also pointed out that the surface tension parameter 2
~ tended to increase with decreasing bubble Reynolds number so that

'it was difficult to ascertain if £ or Npox Is the controlling factor.
However, Figure 2.13 was presented as evidence that the surface

tension has very large effect for 2 values above 0.1. With respect to
the tube inclination, Zukosky found that the velocity increases with
the angle of inclination (measured from the vertical), and it reaches
a maximum at around 45°. The effect of tube inclination is shown
in Figure 2.14.

In 1967, Collins 37 presented a work dealing with the effect of a
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cylindrical boundary on the velocity of large gas bubbles in a liquid.
The solid lines in Figure 2.8 represent the theoretical solution found
by the author. This theoretical solution is a function of the
curvature radius of the bubble at the forward stagnation point of
the bubble. Using the empirical relation derived by Davies and
Taylor relating the bubble velocity with volume of lenticular bubbles,

he arrived to the semi-empirical line shown in Figure 2.15. Here, Vbo
is the bubble wvelocity in a restricted media and v, is the

Davies-Taylor wvelocity of bubbles in an infinite media, given by
Equation (2.20). The geometry and the volume of the bubble were
correlated by the equation:

ro/ry =071 tanh03 [425 (VB /r2 ... L (2.54)

where

re = the average curvature radius

r{ = the tube radius

An alternate expression for the slip velocity of cylindrical

~ bubbles was found by V. Casariego38:

Vp = 1.27 vbo°-9457 vl+°-°543 FVgrn - cc e (2.55)
where

Vp = the bubble velocity with respect to the tube

V]+ = the velocity of the liquid ahead of the bubble

Vho = the limiting gas slug velocity
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The correlation was obtained in a 32 ft, 6.375-in. internal
diameter tube. Tap water and a 146 cp solution of glycerine were
used as liquid phase. Air was the dispersed phase. The vertical tube
was open ended. Use of the liquid velocity above of the cylindrical
bubble accounts for the departure of the Dumitrescu’'s potential
theory.

2.2.3 Annuli

Only a very limited number of investigators have studied the
rise of gas in an annular geometry. However, since the transversal
section of annuli may be approximately as a rectangle, a review of
bubbles rising in rectangular channels was also included in the
literature review.

Griffith3? determined experimentally that the limiting gas slug

velocity, Vpg g » 15 given by

Vpo o= (023 + 013 L/w) @wW)05 .. ... PR (2.56)

where

w = the channel width
{= the channel length

g = the gravity acceleration

If the channel is thought of as an annulus, (See Figure 2.6) the width
and the thickness of the channel can be approximated by the
following equations:

2(=a, - q

w=n(dy+dp/2

and Equation (2.56) can be expressed by
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Vpog = [ 0.2883 + 0.05186 (dy - dy) / (dy + d) ] [ g (dy + dp 105

In 1965, R. Collins40 derived the velocity of a two-dimensional
gas bubble rising in liquid along the axis of a channel of finite width.

He chose as asymptotes of the two-dimensional solution

Vpeg =05 @05 ... (2.57)

Vpog =0238@WOS . ... .. ... ..., e (2.58)

where
Vhe[ = Velocity of lenticular plane bubbles between infinitely
wide parallel plates
Vpo[} = 82s slug velocity in a rectangular channel of width w
g = acceleration due to gravity
re = curvature radius of a lenticular bubble

w = width of a rectangular channel

Equation (2.58) is the Garabedian solution for the limiting
velocity of a plane bubble. Using these expressions to normalize his
results, Collins obtained the expressions:

vb<,/vbc,|3={(:Sw/(?.:n'c))[:'.w(:iw/(:artr,:))zl}g'S
-(3w/Q@ur IS (2.59)
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Vibod/ Ve =W/ (mre))[3+BGw/nr.) )R 1053
oW/ (2 )R (2.60)

where
re/w s 3/2

Maneri and Mendelson?! wrote a paper in 1968. They used a
wave theory analogy and arrived to the following equation for
bubbles rising in rectangular channels:

Vio / Vpen= {(tanh [n Cz (re w/2)/ @+ L/ 1 105 - .. (2.61)

where

Vel "‘[ﬂol/(zre."‘l)Pl"(8(2re+£)/ﬂP's ....... (2.62)

Co=(@+24/w)/n)tanh! {2 [023+013 {/w
JC2+20/ W) Yo (2.63)

Here, the equivalent radius rp , describes that of one plane
bubble having a length { and a curvature radius, rg . The
transformation from r. to r, given by the authors is illustrated in

Figure 2.16. The relationship between r. and r; is given by Equation

(2.24). The former equations adapted for an annular space limited

by radii r{ and ry , can be expressed:
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Voo / Vpeg ={ tanh [ (2 Cz g+ ) /1) /(4 +2(ry -1y

men={261/((2re+(rg-rl))pl)+g(2re+(r2—rl))/n}0'5

....................................... (2.622)
Cz=2/m+ Q) (rp-1)/(ry+1y
tanh™ { 20 [ (023 + 0130 (ry + 1) / (s (ry + 1) ) 12
*l2+20y-rp/atysrpP)l) .o (2.632)

In 1975, D.W. Rader, A.T. Bourgoyne, and R.W. Ward!®
introduced a correlation to calculate annular bubble rise velocity.
The parameters experimentally studied were (1) annular geometry,
(2) liquid wviscosity, (3) gas and liquid densities, (4) gas expansion, (5)
liquid wvelocity, (6) slanted wells, (7) bubble length, (8) interfacial
tension, and (9) eccentricity of the annulus. They showed that the

first six pararneters affect significantly the rise velocity of a simple

continuous bubble whereas the remaining three parameters have

little or no effect on the slip wvelocity of a “continuous bubble.

Furthermore, they arrived at the following conclusions:

1. A large gas bubble rising in a vertical annulus will travel up
on side of the annulus with liquid backflow occupying an area.
opposite to the bubble.

2. The fractional area of liquid backflow increases as the
viscosity of the fluid increases.

3. The effect of slanted wells on the slug velocity is to increase
the gas slug velocity. This is in agreement with the trend observed



65

by Sukosky17 for circular pipes.
Their experimental work covered annular spaces bounded by

inner diameters, d; , from 0.2 in to 7.94 in and by outer diameters,

dy , from 0.58 in to 9.58 in. Both Newtonian and non-Newtonian

fluids were used as liquid phase. The viscosity range of Newtonian
fluids was from 1 to 1050 cp. Non-Newtonian fluids covered the
following range of rheologic characteristics: (1) yield point from 1.3 to
129 1b/100 ftz, and (2) plastic viscosity from 11 to 111 cp.

Rader, Bourgoyne and Ward arrived at the following correlation

for gas slug velocity, expressed in field units:

Vpe = { 0.163 + 0.0920 log Ny, } (dy + do)5

[ -0 /0 0° o (2.64)

1% NRB £ 100 000

Npp=[928pyvp  (dp-dp 3/, ... ...l (2.65)

where

Vp+ = velocity of the slug with respect to the tube, ft/sec
d; = outside diameter of the inner tube of the annulus, in.

dy = inside diameter of the outer tube of the annulus, in.
¢ = liquid density, Ib/gal

Pg = 8as density, 1b/gal

i = liquid viscosity, cp
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In 1981, V. Casariego38 extended the above discussed work to
large diameter tubes. He used a 32 ft. length 6.625-in. of internal
diameter model. In order to obtain annular geometry, a 2.375 inch
diameter tube of PCV could be placed inside the 6.625-in. pipe. The
upper end of the apparatus was open. Tap water, 80 and 146 cp.
glycerin solution was used as liquid phase. He arrived at the
following expression for the velocity of a gas slug with respect to the
tube:

Vp Vg + 122 vp, 09712 y, 00287 (2.66)

where

V}+ = the average velocity of the liquid ahead of the bubble

_ H.V. Nikens4? did a theoretical study on the rising veloCity of
gas slugs in closed vertical rectangular channels. He presented
approximate theoretical solutions for both two dimensional channels
and three dimensional channels. Also, he made experimental
measurements of the velocity of gas slugs in water for channels of

7.62 cm. of length and of various widths. Nikens found that for large

- diameter numbers, the slug velocity can be expressed as:

Vpop = 033728 (L+w) /) ... ... ... (2.67)

where
{ = length of the channel

w = width of the channel
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2.3 LIQUID HOLDUP CORRELATIONS

An important parameter needed in the quantitative
characterization of two phase flow patterns is the average fractional

volume of the conduit which is occupied by gas, &, or conversely, the

fractional volume occupied by liquid, H;.

The fractional liquid wvolume is commonly called the liquid
holdup. Many previous investigators who pave presented empirical
correlations for determining flow patterns also have presented liquid
holdup correlations.

The liquid holdup can be related to the average slip velocity of
the gas bubbles relative to the liquid. The averagé slip velocity is
defined by

The average upward gas flux called the gas superficial velocity if

given by

The true upward average gas velocity is given by the gas volume

flow rate divided by the average area available to the gas. Thus

Vg=ag /A% =veg /% =veg /(U-H) .. ... ... .. (2.70)

Similarly, the upward liquid superficial velocity is given by



68

by

Employing Equations (2.61) - (2.66) it can be shown that:

Hj = { Vg - Vo) + ¥ (Vg - Vo2 + 4 Vg Vsl‘} /(2vg) . ... (2.74)

It must be remembered in employing Equation (2.74) that an upward
direction was assumed for both the gas and liquid flow.

Hagedorn and Brown?® published a correlation to find a
theoretical liquid holdup. Their correlation requires the calculation of

four dimensionless numbers. These numbers depend on the liquid

- phase properties, the geometry of the tube and the superficial

velocity of the fluids. Three of the dimensionless numbers are

defined by Equations (2.1b), (2.1¢), and (2.1d); the fourth number, Ny .

is defined

No=w@/ o) ... (2.75)

where

u = viscosity of the liquid
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g = surface tension of the liquid

¢} = liquid density

g = gravity acceleration

The holdup in Hagedorn and Brown's correlation was determined as
that required to make the calculated pressure losses agree with the
measured pressure losses. The measured pressure losses were
obtained from tests performed in small diameter tubings of 1500 ft of
length.

Duns and Ross’ measured directly the liquid holdup. They

published correlations of dimensionless functions against the wviscosity

number, N“ , defined by Equation (2.75). The dimensionless functions

determine the slip velocity number, Ng , which is defined

N = v ( 6/ 08 a3 (2.76)

The slip velocity obtained from this equation is substituted in
Equation (2.74) to obtain the liquid fraction.
Griffith and Wallis® defined the gas fraction as

where « , Vsg and vg, are defined as above, and vy, is the bubble

rise velocity with respect to the liquid. This wvelocity includes a

correction factor to take into account the compressibility of the gas
phase. The expression to obtain vy, is Equation (2.40) which was

already discussed.
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Nicklin, Wilkes and Davidson34 derived the following expression
to determine the "equivalent” length of liquid around a gas slug:

Loy =0.495(dg LO3 . ... (2.78)

where

dy = tube diameter.
Lg = gas slug length.

Lg) = equivalent length of liquid around a slug.

The equivalent length of liquid is the volume of liquid around a slug
divided by the area of the tube. Clearly, the voidage can be
obtained In terms of the pipe diameter and the slug length. The
authors showed experimentally that Equation (2.78) holds for short
slugs.

Some investigators have worked out theoretical calc_ulations for a

single flow pattern. They relate the liquid holdup and single bubble
velocity to the average velocity of a swarm of bubbles. These will
be discussed next.
‘ Marrucci44 proposed an expression relating the wvelocity of rise
‘of a swarm of shperical bubbles to the velocity of a single bubble.
Based in an analysis of a cellular spherical model, he derived the
following equation

Vew = Vo (H1)2 /-« 5/3 ) (2.79)
1< NRb < 300

where

Vgw = Velocity of a swarm of bubbles with respect to the liquid



71

Vo = Velocity of a single bubble in an extended liquid

« = volume fraction occupied by the gas

Hl =]l-«
Equation (2.76) is restricted to the range of high but subcritical
Reynolds numbers, and pure, ideal fluids.

Bhatia?® derived a method to predict the gas holdup or gas
fraction of a swarm of bubbles based on the bubble wvelocity in a
restricted media as developed by Mendelson and Maneri4!,
Therefore, this method is applicable to pure inviscid liquids. The
relationship between volumetric gas fraction and -bubble velocity
given by Bhatia is:

Vew * Vo / tanh (025 (1 /c)®). .. ... ... .. ....... (2.80)

where

Vsw = Velocity of a swarm of bubbles in a stagnant liquid

Vo = Velocity of the bubble in an infinite media as defined by

Equation (2.26)

« = volumetric gas fraction

Non-Newtonian Fluids

Bhavara ju, Mashelkar and Blanch46 made a theoretical study on
the motion of a swarm of bubbles in a power law fluid. In the case
of fluid spheres, they presented the following equation:

~ Vew = Va LFfn) / Fygmy WR (2.81)
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where

Fen) = [13 + 4n - 8 n2] / [ 2n + 1) (n+2)]

Ff,sw(n) =a [bAl - CAz +12 Ay + eglh

a=1/01-a¥ Pl
b=4n(2n + 1)

c=202n+1)/n
e=(n-1/-a®
g=1/n+[g=>2n)]/[2(+2n)
h=1/(n+2)

Aj={lénm-D1/M4nn+12 (1 -a® 1)
(1 -a2/3) /(1 -c-@n+3)/3)

Az={lénn-D1/[Cn+DU-a®2])

{0-®™/ns)+ B-5 «¥) /24
v «?3712 - @Pma®/2
v [0-a23-a2V3) )/ 4n @n +) (1 - @33y )
e neEn a3 -aB/3)-1/120-a¥]

Ag= [én(n-1D1a?3 (1 - @3 /[ 12 @nep) (1 - )
(1 a2n3Y/3) | |

and for rigid spheres they proposed the following relationship:

Vew = Ve [Fsm IR/ Fogmd ..o (2.82)
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where Fg(n) and Fggq(n) are correction factors defined by

Wasserman and Slattery and by Mohan and Raghukaman,
respectively. '

Equations (2.81) and (2.82) indicate that the bubble swarm
velocity increases as the pseudoplasticity of the fluid increases for a
given gas holdup. This is opposite to the trend for single bubble
velocity where the bubble velocity decreases as the pseudoplasticity
of the fluid increases (See Equations 2.29-2.32).

From all the literature reviewed on liquid holdup correlation, it
appears that the determination of the individual size (or average
size) of the bubbles is needed for obtaining the wvelocity and
concentration of the gas contaminated region.

2.4 BUBBLE GENERATION

Gas kicks are taken from open formations where the gas enters
the wellbore directly from a porous media. A large number of small
streams of gas converging in the wellbore to form a gas kick may
cause different entrance effects than a single stream of gas from a
pipe. Nicklin used a porous plate to generate bubble flow patterns in

a vertical tube having 3.75-in. internal diameter and 6 ft. of length.

"He injected gas through a porous bronze disk at flow rates up to

about 1.8 ft5/min measured at average test conditions (vSg = 0.4

ft/sec). Over the short length of pipe used, bubble flow was observed
up to a superficial gas velocity of about 0.2 ft/sec. At higher gas
rates the formation of gas slugs was noted.

A porous media may be represented by a large number of
small diameter tubes closely packed. Some investigators have

worked on the prediction of the volume of the bubbles released from
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a nozzle. Acharya et al?’ performed a review of the available
models of’ bubble formation in Newtonian fluids. They found that
the models for inviscid fluids may be simplified to the form of

where

Vp = volume of the bubble

dgN = volumetric gas flow rate per nozzle

¢ = 0976

Also, they found that this equation could be safely extended to
predict the bubble sizes in highly viscous non-Newtonian fluids
provided the flow rates were in the order to 106 m3/sec. (35.3 x 1076
ft3/sec) per nozzle opening.

Bhatia chose Patrick's correlation for determining the average

bubble diameter dg,,, in cocurrent two phase flow. The average

bubble diameter is expressed in terms of the liquid velocity v;.

Vg = superficial liquid velocity, ft/sec
Hy = liquid volume fraction
deay = average bubble diameter, cm

vy = liquid velocity with respect to the tube
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Apparently, this correlation works for inviscid fluids only.
Ramakrishnan, Kumar and Kuloor4” worked out a model based
on a two step mechanism of bubble formation. The model considered
an expansion stage and a detachment stage. During the first stage
the bubble expands and it s attached to the tip of the orifice.
During the second stage the bubble base moves away from the tip
but it remains in contact with the orifice through a gas neck. The
final volume of the bubble is expressed as the sum of the gas
volumes delivered through the orifice in each step. The first step is
obtained by a balance of forces. It includes forces of buoyancy,
viscous drag, surface tension, and inertia. The second step is
obtained by expressing the bubble-movement by Newton's second

law of motion. They obtained the following equations:

Vb15/3 = [47.4 x 10-3/g) q8N2 +{[2.42 l.ll] /(g 91] } CIgN Vbll/3

+lndyo )/ @ep V3. o (2.86)
Fep = B (Vg - Vi) / agA*D ) - ¢ (Viyg - Vi) / (Adgy)

- 36 (Vipg?/S - Vi 2/3) / Cagn(a-13)) . ... [V (2.87)
‘where ’

Vp = volume of the bubble at the end of the first stage, cm’

g = acceleration due to gravity, cm/sec2

ggN = Volumetric flow rate of afr, cm®/sec

© = contact angle, deg

y = viscosity of the liquid, g/cm-sec

¢; = density of the liquid, g/cm3
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dy = nozzle diameter, cm
o] = surface tension, dyne/cm

ey = radius of the bubble at the end of the first stage, cm

Vp¢ = final volume of the bubble, cm>
A=1+146 Vp® w /111/16) o) qgy
B = 16g / (liqgy)

C=16n dy o; cos &/ (ll p qu)

G =352/ ¢

Their model was tested with experitnental work. The range of
variables covered by the authors was:

(1) Liquid viscosity of 1 to 552 cp

(2) Surface tension of 41.1 to 71.7 dyne/cm

(3) Density of 0.987 to 1.257 g/cm3

(4) Air flow rate of 1 to 80 cm3/sec

(5) Orifice diameter of 0.1378 to 0.7042 cm

Their model explains most of the discrepancies existing in the

literature regarding the influence of viscosity, surface tension, and

‘density on bubble formation. They reported that calculated values

and experimental values were in good agreement.

Recently, Tsuge and Hibino48 proposed a two-stage model to
determine the size of bubbles formed at a single orifice. Their model
takes into account fluctuations of gas pressure on the gas chamber.
However, the solution of this model is a numerical one.

Also, Takahashy and Miyahara49 worked out a correlation to
determine the volume of a bubble at a single orifice. Their model is
also a two-stage model. It takes into account the effect of the gas
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chamber volume, liquid physical properties, gas flow rates and orifice
diameters. Their equations are:

a) Low gas flow rates

Vp1=[4 6/ Vep] /[ 1.41dy Paygl - oo ... SR (2.88)
b) High gas flow rates:
Vi3 = 47.4 105 qon/g + 161y agn Vit /@ ep .. ... ... (2.89)

dey = B(Vpy? - Vi) / [ 2qgp(A+) ]

- 36 (Vip® - vy ® ) S l2ggnA- WL (2.90)
be = Vbl + Vb2 ............................. (291)
1¢ NCh $g

where
Vp1 = bubble volume either in region of low gas flow rates or

in first stage of high flow rates, cm3

Vh2 = bubble volume in region of high gas flow 'rates, cm?
Ven = chamber volume, cm3

Nch =4 Ven 8 (8 p) / d?y payg

80 = ;- ¢g

pg = gas density at average operating conditions, g/cm3

Payg = average pressure, dyne/cm?



78

A=014+780 V™ 1 1/ 1 (1/16) o) qgy ]
B = 16 g/ 11qgy
G =672 w/ p

and the remaining variables are defined as the previous
Ramakrishnan et al model.

In 1981, Pinczewski®© developed a numerical model to describe
the formation and growth of bubbles at a submerged orifice. The
model describes the effect of gas momentum by assuming that the
flow field inside the bubble is a circulating toroidal vortex. The
author reported good agreement between computed bubble growth
rates, formatfon times and chamber pressure fluctuations with
experimental data. Also, the predicted bubble shapes were similar to
those observed experimentally.

In 1955, J. 0. Hinze®! derived a formula to determine the
maximum drop size for emulsification in a turbulent flow. From

dimensional analysis he obtained:
dgsg ( pl/ o )3/5 E12/5 =C

Using a value of 0.725 for the constant C; the 95% cut point

Adiameter of the dispersed phase is then:

dgsg = 0725 (o /oy OO C/EO4 ... ..., (2.92)

=0725 (606/ 00 (1 /ERO4. .. ... ... (2.92a)

where

dgsg = Globule diameter for which 952 of drops measured have

a diameter less than dgsg
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o) = interfacial tension

¢ = density

E; = Energy input per time for a liquid unit of mass, or power

~ dissipation per unit of liquid mass

Epy = Energy input per unit of volume and time, or power

dissipation per unit of liquid mass

Bhavaraju et a14é found a similar expression to Equation (2.92)

for determining the main bubble diameter d,,,, in turbulent flow.

deav = €1 (0.6 61 / (02 0) ) WENO4 Gy /g2 . ... ... (2.93)

I deayy 2 0.45 cm for pure liquids

The constants ¢; and ¢y were evaluated with experimental

data, and they were found to be 0.7 and 0.1, respectively. The

viscosity ratio term accounts for the influence of viscosity on bubble

fragmentation. These authors also proposed the following design

equation to determine the bubble diameter for moderately high gas
-_rates in both low and high viscosity liquids:

de =323dy Npgn O Npp©25. ... .. ... ... ...... (2.94)

where

dp = bubble diameter in region near the nozzle, m
dN = nozzle diameter, m

NRN = 4 P} 9gN / ¢t dN ) = modified Reynolds number at the

discharge of a nozzle
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NppN = qu2/ dn° 8 = nozzle Froude number
¢) = liquid density, kg/m>

dgN = 8as rate per nozzle, m3/sec

i = liquid viscosity, N.sec/m?2

g = acceleration due to gravity, m/sec?

From all the previous review on bubble formation, it appears
that there are not correlations on bubble behavior at high gas rates
in high viscosity liquids.

Eizo Sada et al®®> worked on the phenomenon of bubble
formation in flowing liquids. They found that the bubble size formed
in flowing liquids decreases with the superficial liquid velocity. Three
types of bubble formation were observed: (a) single bubbles, (b)
coalescent bubbles, and (c) gas jets. These types depend on the fluid
flow rates. The bubble sizes in the region of single bubbles and
coalescent bubbles were correlated by the following empirical

equations:

Single bubbles
dpi /AN =155 N2 ..o P (2.95)

Coalescent bubbles

dpi / AN =25 Npr22dNOt 7 dpyg =35 ... (2.96)

where
NErm = vgn/g dpi + 0.33 V312

dp; = diameter of the bubble just after leaving the nozzle, cm
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djy = nozzle diameter, cm
dno = 0.086 cm
VgN * 8as velocity through nozzle, cm/sec

Vg = superficial liquid velocity, cm/sec

g = gravitational acceleration, cm/sec2

The region of single bubbles is determined by

dpi2 Nprm ¢ 6

Their experimental work was performed in a 100 cm in height
and 5 cm inside diameter pipe made of acrylic. A calming section
was installed at the bottom pipe for the purpose of obtaining a
uniform distribution of liquid wvelocity. Two nozzle sparger were
used; one was 0.036 cm inside diameter and 0.130 cm outside
diameter and the other was 0.305 cm and 0.400 cm. The nozzle
submergence was 91 cm. Air or nitrogén was used as dispersed
phase. Tap water was the liquid phase. Bubbles were generated
under constant flow rate conditions. Gas flow rates ranged from 0.33
cmS/sec to 36.2 cm3/sec. Liquid flow rates ranged from O cm3/sec to
3040 cmS/sec. Dimensions of the bubbles were determined Jjust after
leaving the nozzle and at 7 c above the nozzle tip.

When the nozzle of 0.305 cm. internal diameter was used, most
of the data belonged to the regifon of single bubbles. The authors
reported that after the superficial liquid velocity reached a value of
around 90 cm/sec (3.0 ft/sec), the bubbles were no longer formed at
the nozzle tip but at the crest of a gas jet flowing into the liquid.

Equations such as that of Ramakrishnan et al4? are useful for
determining the bubble size produced for various fluid-orifice
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systemns. However, this deterministic models are restricted to bubble
generation under Stokes regime. Gas flow rates investigated were
limited up to 80 cm3/sec. Higher gas flow rates will result in gas Jet
formation at the tip of the nozzle where continuity could be satisfied
either by the formation of single bubbles at a given frequency, or by
the formation of multiple bubbles from the body of the gas ,jetg.

2.5 BUBBLE SIZE DISTRIBUTION FOR BUBBLE FLOW PATTERN

It has been shown analytically and experimentally that the
size of bubbles generated at an orifice depends on the fluid properties
and on the gas flow rates. However, non uniform bubble sizes have
been observed in the process of intensive bubbling where forced gas
convection is obtained by injecting gas into liquid through transverse
porous plates or distributor grids with holes of the same diameter.
Researchers®>24. have measured average bubble diameters in the
range of 0.12 cm to 0.6 cm in this process. Particularly, for bubbling
in water under various gas flow rates, an average bubble diameter
of around 0.60 cm has been reported54. The associated minimum
and maximum measured diameters were 02 cm and 1 cm,
respectively. This indicates that all of the bubbles were derormed}

- bubbles.

Assuming that the bubble size is 'a random variable, some
investigators®334 have found that in an intensive bubbling process,
the bubble diameter distribution fits closely to a Gaussian curve.
This fact has been used to estimate the specific (phase contact)
surface area for some chemical processesf’s. While some workers
reported a relatively constant average diameter and bubble size
distribution®4 for bubbling in water for different water depths, other

authors? reported that the average void fraction changes with the
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depth of water for a constant gas flow rate injected through a given
gas distributor. Apparently, additional work is required for
determining bubble size distribution in systems with larger water
depths.

2.6 APPARENT MIGRATION RATES FOR GAS KICKS

Previous experimental work conducted in two 6000 ft wells at
Louisiana State University has shed considerable light on the gas
migration rates for gas kicks. Simulated well control operations
conducted by Rader, Bourgoyne and Ward!® indicated apparent gas
slip velocities of 1440 to 5040 ft/hour. Gas migration experiments
conducted by Mathews and Bourgoyne®® showed Clearly that
pressure increases, due to upward gas migration, occurred up to 2.5
hours after gas was injected in the bottom of a 6000 ft well. This
gives apparent slip velocities of 2400 ft/hour.

Comparison of the apparent gas migration rates observed to
the velocity of gas slugs shows that the flow pattern existing in the
well could not be slug flow or plug flow. Casariego38 determined
experimentally, in a 30 ft model wellbore, the relationship shown in
Figure 2.17 between bubble velocity and bubble equivalent diameter

~in a 6.375-in. by 2.375-in. annulus. This geometry is close to that

present in the 6000 ft wells used by the Rader, Bourgoyne, and
Ward, and by Mathews and Bourgoyne. Figure 2.18 indicates that
for the apparent gas migration velocities determined in the full scale
well experiments, diameter bubble sizes below about 1l-in. were
present. This diameter is smaller than that of Taylor bubbles, and
well below the equivalent diameter required to obtain completely
developed gas slugs.
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CHAPTER III
ANALYTICAL AND EXPERIMENTAL APPROACH

From a study of the previous literature in this area, it was
concluded that the ruling flow pattern encountered in well control
operations is bubble flow. Also, it was found that the average size of
the bubbles is needed for obtaining the velocity and concentration of
the gas in the two phase region. Therefore, an extended analytical
model for predicting the size of bubbles generated in a non-Stokes
regime through submerged orifices or porous media was needed. In
order to accomplish this, knowledge of the relationship between
bubble volume, bubble shape, and bubble velocity or drag is required.

The general approach in this study was first to define the
relationship between the volume of a bubble and its associated drag
and shape. Next, a method was developed for determining the initial
size of bubbles formed during a gas kick. The method developed was
then verified with experimental data obtained in a tank. These
contributions are presented in Chapter V.

Chapter VI, contains topics related to the drag law between a
'.single bubble and a swarm of bubbles, together with the review of
pressure losses in two-phase flow as an introduction for the use of
the minimum energy dissipation theorem:.

From the work reported in Chapter V, the size of bubbles
generated at the discharge of submerged orifices at high flow rates
was found to be in the range of large lenticular bubbles. Moreover,
the relationships presented in Chapter IV point out that for common
well diameters, the large bubbles are unstable. This implies that

regardless of the initial bubble size, an equilibrium bubble size exists
.. 85
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for a given well condition. This subject is deVeloped in Chapter VI,
where the minimum energy dissipation principle is applied
recursively to obtain an average equilibrium bubble size and an
average equilibrium gas fraction.

Chapter VIII discusses the application of this work to the
computer simulation of well control operations. The new methods
developed in previous chapters are used to improve an existing well
control simulator program. Experiments are then conducted in a
6000 ft well to determine the accuracy of the improved computer

prograrmi.



CHAPTER IV
TRANSITIONAL BOUNDARY LINES FOR BUBBLE GEOMETRIES

In Chapter II, previous work on the gas bubble rise behavior
was discussed for the following ma jor regions: rigid spherical bubbles,
fluid spherical bubbles, oblate spheroid bubbles, and lenticular
bubbles. In addition, the relationship between volume and shape of
the bubbles with the dynamic forces acting over them was also
discussed. In this chapter, the techniques adopted for describing
bubbles rising in extended liquids will be presented.

4.1 THEORETICAL DEVELOPMENT

A simple approach to find the relationship between size and
deformation of the bubbles can be done with a Force-Momentum
Balance. Consider a spherical bubble to be rising in an extended

liquid with a terminal velocity, v, , under Stokes Law. Assume that

we overimpose a velocity v equal in magnitud but opposite to v, as

» _it fs shown in Figure 4.1. Considering an ideal liquid, there should be

a force balancing the momentum acting over ‘the spherical control
volume. For the bubble to remain spherical, the surface forces
should be able to withstand this force acting over its projected area;

therefore, we can write:

40’1A/de=VprA ...................... (41)

87
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Bubble Rising at its Terminal Stationary Bubble in a
Velocity in an Extended Liquid Fluid Which is Moving
at avelocity v = - v,

RN
Sontrod volume —/ / N\
F = [[9(p VedA)

N\ /
N

Spherical Bubble if
401/de > plv2

Figure 4.1 Relationship Between Surface Tension
and Inertia Forces for the Stability of
Spherical Bubbles.
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de=d40 /v ... (4.2)

Recall that for rigid spherical bubbles, rising at its terminal velocity,
the drag and buoyancy forces are in balance, and the terminal
velocity is expressed:

Vol =(4/3) 880 do /oy D) . (4.3)
particularly, for Stokes r egime

Vo= 88002/ (B g .. .. ... ... ..., AU (4.4)

From equations (4.2) and (4.4).

This equation describes the critical bubble diameter' or the
diameter at which a rigid spherical bubble starts to be deformed
when it is rising in an extended liquid. The bubble Reynolds number

“.associated to this critical bubble diameter, (NReb)s is found from

Equations (4.2}, (4.4), and (4.5) to be

Equation (4.6) shows that the critical Reynolds number is a
function of a dimensionless viscosity number or the viscosity

number, Nu . Note that this term is the same as that previously
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presented as Equations (2.49) and (2.75) except that the numerator
contains a density difference. At low pressures, the density of the
gas phase can be neglected and the density difference is
approximately equal to the liquid density. Equation (4.6) gives the
Reynolds number up to which a spherical bubble is stable. It is
worthy to point out that similar dependence of the critical Reyriolds
number on the viscosity number has been observed in phenomena
related to the stability of interphases. For example, Stephen
Whitaker found that the critical Reynolds number for the stability
of a falling liquid film is proportional to the viscosity number raised
to the -4/5 power. The expression that he found differs from
Equation (4.6) only by a constant.

Unfortunately, the relatfonship between volume, shape and
velocity for oblate spheroid bubbles becomes too complex for a
theoretical analysis similar to the one already done for spherical
bubbles. However, the above discussion suggests that a criteria to
predict the stability of the bubbles may be obtained by analyzing
experimental data. A logarithmic plot of bubble Reynolds number
against viscosity number of the liquid should display a straight line
if an exponential relationship exists. Fortunately, data on bubbles
rising in varfous liguids has already been published® 22,

4.2 ANALYSIS OF EXPERIMENTAL DATA

Haberman and Morton? did an extensive experimental work on
the velocity of bubbles rising in extended liquids. Their work,
alredy reviewed in Chapter I, covered a range of viscosity numbers
of the liquids from 10> to 1. These researchers also reported the
range of bubble Reynolds numbers where a given geometrical shape
of the bubble was observed. Their data, togefher with some points
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obtained from other work22 will be analyzed.

The selected data is represented by the points plotted in Figure
4.2. This figure, with logarithmic scales, displays in the vertical axis
the bubble Reynolds number, and in the horizontal axis the viscosity
number of the liquid raised to the fourth power. The points in the
plot represent the conditions where a given geometrical shape of the
bubble vanishes in the process of adopting a new geometrical shape
in response to the dynamic forces acting over the bubble. For
example, for water, the viscosity number raised to the fourth power
is 2.63 x 1071, The critical (maximum) Reynolds number for spherical
bubbles, rising in water, is 800. Above of this Reynolds number, the
shape of the bubble starts to change to oblate-spheroid bubble. The
aspect ratio of this bubble (the ratio of its vertical dimension to its
horizontal dimension) decreases as the bubble Reynolds number
increases until a Reynolds number of about 7000 is reached. At this
point, the bubble is completely deformed and becomes a lenticular or
Taylor bubble. This shape will remain unchanged as the bubble
Reynolds number increases, until bubble fragmentation occurs at
about a Reynolds number of 30,000.

The points mentioned above lay in the vertical line at the
viscosity number of water, raised to the fourth power. The lines

‘»,joining the points where a similar change occurs for bubbles rising in

liquids with different viscosity numbers are here called transitional
boundary lines.
Iransitional line between spherical bubbles and oblate spheroid

bubbles

The points in the lower half of Figure 4.2 represent the value

of Reynolds numbers up to which a spherical shape was observed for
bubbles rising in liquids with various viscosity numbers. Haberman

and Morton's data shows: a cluster of points around a Reynolds
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number of 250 for bubbles rising in liquids with low viscosity
number; and a cluster of points around a Reynolds number of 0.5 for
liquids with high viscosity number. The scattered data does not
show a clear trend for defining an exponential relationship as that of
Equation (4.6). However, by adding points from data of Peebles and
Garber22 for liquids with intermediate viscosity numbers to Figure
4.2, a trend is defined. This trend is shown by the lower straight
line on the mentioned figure. The line defines the following
exponential relationship between the viscosity number of the liquid

and the critical spherical bubble Reynolds number, (NReb)s-

(Npepls = 4673 (N, V5 ... PP (4.7)

Equation (4.7) confirms that the bubble Reynolds number
depends on the -4/5 power of the viscosity number of the liquid,
already obtained in section 4.1. This equation differs from the
theoretical value given by Equation (4.6), only by a factor of 1.I2.
This relationship gives a range of critical bubble Reynolds number
from 900 to 9 for the range of viscosity numbers shown in Figure
4.2

- Transitional line between oblate spheroid bubbles and lenticular
bubbles ‘ '

The next step was to look for a similar dependence of the
Reynolds number on the viscosity number of the liquid for oblate
spheroid bubbles. In this case, only five points for liquids with low
viscosity number and three points for high viscosity numbers were
available. However, they display a exponential relationship which
runs approximately parallel to that obtained for spherical bubbles in
Figure 4.2. The expression for the critical Reynolds number for
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oblate spheroid bubbles, (Ngep), , in terms of the viscosity number is

(NReblo = 6.232 (NRep)s = 285 (N5 . . (4.8)

This correlation gives a range of critical oblate spheroid bubble
Reynolds number from 800 to 80 for the range of viscosity numbers
covered in Figure 4.2.

Transitional line between lenticular bubbles and multiple bubbles. or
bubble fragmentation '

The next step was to determine a correlation for the stability
of lenticular bubbles. Unfortunately, the only availal_sle data point is
that of waterS, This point is in the left upper corner of the plot. By
analogy, we assumed that the critical lenticular bubble Reynolds

number, (Npep);, depends also on the -4/5 power of the viscosity

number. A constant was determined to satisfy the only data point,
and the following expression was obtained

(Npep)) = 62322 (Npop)s = 177.6 (NVS . | (4.9)

In an attempt to confirm this correlation an experiment was

-~performed in a 2 ft width, 1 ft long, 2 1t high acrylic tank. The

following steps describe this experiment: First, the tank was filled
with 78 cp glycerine; second, cups filled with air were immersed into
the bottom of the tank; third, the cups were suddenly inverted to
liberate the gas; fourth, the bubbles rising through the tank were
recorded with a video camera. A maximum diameter of the base of
lenticular bubbles in the range of 5-in. to 6-in. was obtained.

The average value of the base of these lenticular bubbles,

5.5-In. was used to determine its average equivalent diameter. The
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value of this average equivalent diameter, obtained by geometrical
relationships, is 3.16-in. The associated bubble Reynolds number for
this particular bubble was 670 and the viscosity number of the
liquid 0.18. These values give a point with coordinates (104 x 10'3,
670) in Figure 4.2. This point falls close to the proposed correlation
represented by the dashed line in the upper part of Figure 4.2.

In short, the two boundary lines as given by Equations (4.7)
and (4.8) are proposed for determining: the transition of the
geometrical shape of the bubbles from rigid spherical bubbles to
oblate spheroid bubbles, and from oblate spheroid bubbles to
lenticular bubbles, respectively. In addition, Equation (4.9) is
proposed as the boundary line where bubble fragmentation in an

extended liquid occurs.
4.3 SIGNIFICANCE OF THE PROPOSED CORRELATIONS

The proposed correlations give parameters which define the
zone of bubble Reynolds numbers where a determined type of bubble
can exist in an extended liquid. For a given liquid, the viscosity
number is defined. This viscosity number defines three critical

Reynolds numbers: one for rigid spherical bubbles, a second number

for oblate spheroid bubbles and a third number for lenticular

bubbles. ;
Analysis of previous work indicates that the oblate spheroid
bubbles region is most important for well control modelling. This

region starts at a bubble Reynolds number, (NRep)s: and ends at the
bubble Reynolds number, (Npep)o- The drag for spherical bubbles can
be obtained from the conventional experimental, fp, versus, Npe,

correlation for solid spheres (see Figure 4.3) until (NReb)s is reached.
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The associated drag for this Reynolds number is fpg. The drag for

lenticular bubbles is 2.66 and this value is associated to (NReblo: AN

additional problem that must be solved is to determine the drag law
for bubbles which are changing its aspect ratio in response to the
dynamic conditions and the fluid properties. Note from Figure 4.4
that bubbles may start to deform under Stokes-transition regime as
in the case of the mineral oil, or they may start to deform under
turbulent regime, as in the case of the varsol. Also, note that the
starting point of bubble defornﬁation, for both liquids, lies in the rigid
sphere drag law, and the final point of deformation lies at the
constant drag line 2.66.

An approximation of the drag for oblate sphex;oid bubbles can
be obtained, regardless of the aspect ratio of the bubble, by using a

modified Karman number, Ng, defined as fDV" times Npep. It is well
known that a plot of the Karman number versus particle Reynolds
number can approximately be described by an exponential

relationship for reasonable intervals of Reynolds nurmnbers. Such is

the case for our correlations, where:
(NReb)o / (NReb)S = 6232

For example, Figure (4.5) displays the Karman number against the

bubble Reynolds number obtained from experimental data for varsol

and for mineral oil. A particular exponential law between Ny and

NRep can be determined either for deformed bubbles rising in

mineral oil or for deformed bubbles rising in varsol by Jjoining the
extreme points of the oblate spheroid bubbles. These straight lines

closely fit the actual data for varsol and for mineral oil, respectively.
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Ih short, in this chapter, a method was developed for obtaining
the drag coefficient for any single bubble from the fluid properties
where the bubble is rising. This method applies for rigid spherical
bubbles, oblate spheroid bubbles, and lenticular bubbles rising in
extended liquids. The method could be of practical importance if a
representative bubble size can be defined for the bubble flow pattern
which is predominant in well control operations, as it was discussed
in Chapter I, section 2.6.
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CHAPTER V

BUBBLE GENERATION

In Chapter IV, it was mentioned that one approach to solve the
velocity of a swarm of bubbles is to find the effect of the
concentration of the dispersed phase on the velocity of one of its
elements rising in an infinite liquid. In turn, determination of the
velocity of a single bubble rising in an infinite media requires that
the average size of the individual bubbles be known. Also, it was said
that gas issuing from a porous media can be thought of as gas
Issuing from a bundle of orifices. Furthermore, some models and
correlations on bubble generation were reviewed. Unfortunately,
these reviewed models are either limited to Stokes flow regime or
they are valid only for inviscid liquids.

Since a method to predict the drag coefficient for any bubble
rising in an infinite media had been developed in previous chapter,
it was then practical to obtain a generalized mode! to predict the size
of the bubbles generated under constant gas injection throughout an
orifice, The analytical model that was obtained, as well as
experimental data, gathered from a tank, for verifying this model
are presented in this chapter.

5.1 SIMULATION OF BUBBLE FORMATION AT AN ORIFICE UNDER
STEADY STATE GAS FLOW RATE

A Force Momentum Balance will be used to analyze the
formation of gas bubbles at an orifice immersed in liquid. A theory

to describe bubble formation is based on a two stage model. The
101
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first stage consists of the expansion of the bubble while its base
remains attached to the orifice. The second stage, or detachment
stage, considers the interval while the bubble base moves away from
the orifice but still continues its expansion due to indirect contact
with the orifice through a gas stream protruding from the orifice.
This second stage finishes when the bubble has drifted away of the
orifice a distance equal to half of the diameter of the bubble obtained
in the first stage. A sketch of these stages is given in Figure 5.1.
First Stage or Expansion Stage

Body Forces:

>4 Vb Ap / S T (5.1

Surface Forces:

fp oy vi2nd2/Bg) ... (5.2)

Inertial Forces:

d/dt (myp v) = myp d/dt (vp) + vy d/dt (myy) . ... . .. (5.4)

'where the virtual mass of the bubble is given by

mvb = Vb ( pg + (11/16) Pl)

=ant(eg +U1O) o) . ... (5.42)

The average velocity of the bubble, vy is given by the velocity

of the bubble center
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(b) Second Stage, or Detachment Stage

Figure 5.1 Two Stage Model of Bubble Formation
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vy = % d/dt (dp)
but d(Vp) =d {(1/6 = d3) = qy dt

which implies d/dt (dg) = 2 qy / (n dg2)

and the average velocity becomes:
vi=qyn/ (n dez) ........................... (5.4b)

Now we can evaluate the elements of the r.h.s. terms of Equation
(5.4). From Equation (5.4b)

d/dt (vp) = [qy / =] [ - 2 d/dt (dp) / d,5]

= -aq/ eSSy (5.4¢)

Also,

d/dt (my,p) = ( pgtlilgp/18)ay ................ (5.44)
We can recast the inertial forces as:

da/dt (mypvy) = myp { - 4 an2 /7 (6573 o v 579 )
clan / (1 dg?)) (pg + 11 g / 16) ay

= Cog + 11 ¢y / 16) an? / (3 = (6/70%) (/v )
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From Newton Second Law, we can write from Equations (5.1), (5.2),
(5.3) and (5.5}

VI3 = (pg + l1py/16) AN/ [3ng (6/m* ap) + (/6)F o) fp a2 / (B Ap)

+gemdN O VBN . (5.6)

This equation satisfies the force momentum balance during the

first stage of the bubble formation. V| represents the volume

obtained by the bubble at the end of this stage. Clearly, a trial and
error procedure is required to evaluate the volume of the bubble.
Second Stage

In this stage the base of the bubble drifts away from the tip of
the orifice due to the dominant effect of the buoyancy.

Body Forces

Surface Forces

g Lip ey (va+ vy /21 (nd/a). . .......... ... (5.8)

ANy 6)COSO2mdNG . ..., (5.9)

Inertial Forces

d/dt [ myp (vo + voo) 1= myyp [d/dt vy + d/dt (vop) ]
+ (V2 + V2e) d/dt ( mvb) ...... (5.10)
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where

Va5 = bubble velocity

Vae = average bubble velocity due to expansion of the bubble as

a result the gas injected to the rising bubble through its
connecting "neck",

again, the expansion velocity is given by
Vae=(%) d/dt (dp)=qn/(ed,) .................... (5.10D)
Now we can evaluate the local acceleration due to gas injection:

d (Vae)/at = (qy / =) (d/dt) (1 / d,2)

=4 q /eSSBS (5.10¢)

d/dt (myp) =Geg + ey /16D AN - o oo (5.10d)

The drag force given by Equation (5.8) can be expressed as
follows:

[ 6%t 0) V¥ vp2 1/ (8 89 + I1p o) ay Vol / (4g0)

tligpaydl/8 edaBv¥). . (5.11)

From Newton Second Law, and upon grouping the terms

containing vy and dividing by ( Pg * 11 p) / 16) V we obtain:
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d/dt(v2)+[qN+(poqu)/(4(pg+ll91/16))]v2/V
*LEP B ip o) /18 (pg+ 110y /16)13 w2/ VB =g 80 / (g
+1p /16) -Up o an? /[ 6% x¥ 8 (p, + 11 g/ 16) VS

~(ndy o) /[(pg+1lp/16)V ]+ 4qy?/ (65 a¥ V5

—an2 /(SRS (5.12)
Since
V=qgyt
dV=qndt =dt=dV/an ................... . (5.13)
N N

We can recast Equation (5.12) in terms of the variation of
velocity with respect to volume; i.e. the first term of the left hand

side of Equation (5.12) can be expressed as
d/idt (vy) =aqnld/av(va) ). ... ... .. ... .. ... . (5.14)

Also, recasting Mendelson's2> Equation (2.26) in terms of the
' vbubble volume:

Ve VE =/ e Qo /VH) + gle/n /2 L. (5.15)

We are going to restrict our generalized solution to non-Stokes
regime by using Equation (5.15) in the third term of the Lh.s. of
Equation (5.13). Use of Equations (5.14) and (5.15) in Equation (5.13)
gives:
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d/dV (v)) +Avy /V=B+CVSB_-Evl_gv%_§
<B-H+cV3B-gEvi-gv® . (5.16)

where

A=[1+pol/(4(pg+upl/16)]
B=gAp/[(pg+llpl/l6) an?
C={4 /(6 aB)-1/06% a%) -t} 9)

/18 6% n¥ (o + 110 /16)ay])
E=(ndyo)/[(pg+lip/16)ay]
G = (6% n"’)’\fD 0] 2(n/6)“3a,)/[8(pg+u g/ 16)ay ]

H=% % 1tp ¢ 6/ m% ) /8oy +11p /16 qy]

where fp is an average drag factor acting during the second stage.

Note:
div . VA)  =vAdy +v A VAlgy
d/dV (v.VA) = VA 4/av (v) + v A VAl
= VA (4/dV (v) + A v/V)

We can complete the differential in Equation (5.16)
dlva VA) = [(B-H) VA

+ CVAS3 g yA-l_gvA-% g v

Integrating between the appropriate limits:
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U=vy BH c - E G Us
vay | - UA+l , UA-% - yA._ UA+ ]
u=0 A+l A-% A Avk U=V,
1 (B-H) c
Dy = [ I | VA*I - VIA"'I) + (vA-% - le_% )
vA A A-%
E G
- (VA-vA) - (VAK Ly Aty ] (5.18)
A A+t
)

- we can write the distance from the orifice as:

dz = v dV/ay

- S0 that Equation (5.18) becomes:

1 B-H C E G
dz = [ YV + v-$H-__ - vh jav
ay A+ A-2% A Ak
-1 B-H c E , G av
— (—yvA VAL v - vAYs )

o an A+l A-% A A+t VA
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but at z = 0, the volume of the bubble is Vi
Z = ry, the volume of the bubble is V,

Upon integration between the appropriate limits, we obtain:

1 B-H k{0 E
r1=_( )(V22—V12)+____(V2“~"-V1"5)-___.(Vz-vl)
2qN A+l CIN(A-’/S) aNA

3a 4/3 4/3 B-H C A-25
- (Vo -Vy I-[(—)vAle v

4qy (A+15) A+l (A-35)

A (A+¥) ay  (-A)

This equation satisfies the force momentum balance during the
second stage of the bubble formation. V3 represents the final
- volume of the bubble. Again a trial and error procedure is required

to evaluate the volume of the bubble because we obtained an
implicit equation for the final volume of the bubble.

Procedure of Calculation:
1. The determination of the volume of the bubble at the first
stage, V|, given by Equation (5.6) requires an iterative method. The
(‘} second and third terms of the r.h.s. of Equation (5.6) depend on the

volume of the bubble. In the second term the dependence on the
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volume is hidden in the drag factor which is a function of the
velocity of the bubble. (Recall that the velocity of the bubble is due
to its expansion.) Therefore, we have to assume a volume in order to
calculate these two r.h.s. terms of the equation to start a trial and
error method of solution until Equation (5.6) is satisfied. Once this
volume is determined, we proceed to the seolution of the equatién for
the detachment stage of the bubble.

2. The determination of the volume of the bubble at the second
stage, given by Equation (5.19) also requires an iterative method of

solution. Once that V, is calculated from Equation (5.6), we have to

assume a final bubble wvolume V2 , to define the r.h.s. terms of

Equation (5.19) and proceed with the trial and error method of
solutfon.

Equations (5.6) and (5.19) describe the formation of bubbles at
immersed nozzles or orifices. Equation (5.6) describes an expansion
process where the body of the bubble is directly attached to the
orifice and Equation (5.19) describes a detachment process where the
bubble goes away from the orifices due to the buoyancy effects, but
still it continues expanding due to an “umbilical cord-like" gas feeding
line to the nozzle. When the gas flow rates injected through the
- nozzle approach zero, the volume of the bubble during the first stage
‘becomes mainly a function of the buoyancy and interfacial tension.
Note that in this case, the first two terms of Equation (5.6) will
vanish due to the low gas flow rates. Also the vanishing gas flow
rates will result in a neglectable volume added during the second
stage so that the final volume of the bubble is practically that
obtained in the expansion stage. On the other hand, for high gas
flow rates, the volume of the bubble during the first stage becomes a
strong function of both the inertia and drag terms, and they

overshadow the effect of the surface tension term. The model
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presented predicts that the volume of the bubble will increase with
increasing gas flow rates. This model should describe the size of the
bubbles as long as continuity is satisfied by the formation of single
bubbles. To validate this meodel, it is required to obtain experimental
data for moderate to high gas flow rates. To accomplish this task,
the experimental equipment described in the following section was

constructed.
5.2 EXPERIMENTAL APPARATUS

A set up as it is shown in Fig. 5.2a was used to measure the
volume of the bubbles formed at the tip of the orifices. The next
paragraph describes the main parts of such apparatus.

A compressed N, cylinder was the source (A) of gas. The

pressure of the gas was reduced with the pressure regulator (B) to a
desired working pressure indicated by the pressure gauge (C). The
gas flow was regulated with a needle valve (D). The gas was
discharged through a tubing (E) into the fluid (F). The fluid was
contained in a transparent tank whose dimensions are also shown in
Figure 5.2a.

The stream of bubbles was recorded with a video cassette

‘recorder (G). The frequency of bubble formation was determined by

the number of bubbles formed in a given time interval by replaying
the tape at low velocity.

5.3 ACTUAL AND THEORETICAL VOLUME OF THE BUBBLES
A series of runs were formed in the apparatus described in

section 5.2. The properties of the fluids used in the experimental

runs are given in Table 5.2. The diameter of tubings used as gas



Figure 5.2a Experimental Apparatus to
Generate Bubbles. i

Epoxy resin sealant \lq—————— 24 mm —P|
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Figure 5.2b Schematic of Porous Media Used
to Generate Bubbles.
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TABLE 5.1 DIAMETER OF TUBINGS

0.D.[in] 1/8 1/4 3/8 1/2
1.D.[in] 0.055 0.1800 0.305 0.430
I.D.[cm] 0.1397 0.4572 0.7747 1.0922

TABLE 5.2 FLUID PROPERTIES

Specific Viscosity Surface Tension
Gravity [cp) [dyne/cm]
5% (wt) NaCl Solution  1.034 0.9639 77.52
- Glycerine Solution 1.21 500. A 66.4
-Glycerine Solution 1.19 250, 67.6
Glycerine Solution 1.17 162. 68.3
Glycerine Solution 1.15 78. 69.5
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spargers is shown in Table 5.. The description of porous cyhnders
used to analyze the effects of gas dispersion in bubble formation are
given in the following section. '
Porous Cvlinders

Two porous cylinders, made from bounded glass beads, were
obtained for this work. These cylinders were acquired from Kordon,
a division of Novalek, Inc. in Hayward, CA. The cylinders are
avallable in three grades: 62501, 62502, and 62503. These grades
correspond to coarse glass beads, medium glass beads and fine glass
beads, respectively. The coarse and the fine grade cylinders were
purchased. The dimensions of the cylinders are 12mm diameter by
24.4mm height. The porous cylinders are attached to a 22 cm glass
tubing of émm external diameter. The cylindrical surface and the
annular surface where the tubing is attached, were sealed with a
thin film of epoxy resin so that gas injected into the porous material
through the tubing is forced to exit through the remaining unsealed
circular face, as it is shown in Figure 5.2b.

Before discussing the effect of the nozzles, porous media, and
fluid properties on the size of the bubbles, some remarks on
phenomena such as liquid backflow and formation of gas jets are
presented.

- Backflow

During calibration runs, circulation of liquid or backflow was
noticed to occur due to density differences between the gas
contaminated region and the rest of the fluid. No attempt was
made to obtain a calm section near the gas spargers. It was felt
that providing a calming section would lead to an unrealistic
situation. The circulation phenomenon increased with the gas flow
rates. At high flow rates, the liquid backflow becomes strong enough

to trap small lenticular bubbles.
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The former observation appears to point out that the size of
the bubbles generated could be different from the size of the bubbles
generated without the “circulation" or backflow effect.

The observed circulation provides an upward frictional drag on
the bubbles; due to the velocity of the fluid. This could lead to the
formation of smaller bubbles. On the other hand, the generated
streams of fluid may also result in bubble coalescence.

Formation of Gas Jet

Also, during calibration runs, the formation of gas jet at high
flow rates was noticed. Under this situation, bubble formation
occured at the tip of the gas jet. However, the bubble formation
phenomenon appears to be the same regardless of the point where
the bubbles are actually formed. In other words, apparently the gas
Jet has the effect of a translation of the point where bubble
generation actually starts, as if it were a prolongation of the tubing
or orifice. At some high flow rates issuing through small diameter
tubing, an additional phenomenon was observed: secondary bubbles
were generated along the jet stream. This situation was never

reached for the range of flow rates used in actual data acquisition.

5.3.1.Discussion of Experimental Data.

Effect of porous media,

A series of tests were performed to analize the effect of
dispersion of the gas on the bubble formation. Sofne tests, for low gas
flow rates, were done in order to check qualitatively if the grades of
the porous media could duplicate some already reported effects on
bubble size®3;, among these effects are that: (1) bubble formation
through gas diffusors gives smaller gas bubbles for finer porous
media; and (2) bubble formation, under a given gas flow rate,
produces smaller bubbles in  solutions containing higher

concentrations of inorganic electrolytes.
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Qualitative observations

The coarse and fine porous media, already described, were used
to bubble the gas into the liquid. A swarm of bubbles was obtained
at flow rates lower than 900 x 10°® SCF/s. Spherical bubbles were
obtained at low gas flow rates and the size of the individual bubbles
increased with the gas flow rates. The bubble geometry also changed
when the gas flow rates increased beyond of a certain value. At low
gas flow rates, the bubbles produced through the fine porous media,
were smaller than those produced through the course porous media,
as it has already been reported by some researcher553; also, bubbles
produced in solutions containing inorganic electrolytes appear to
increase the range of gas flow rates where small spherical bubbles
are produced. For gas flow rates higher than 900 x 10“6SCF/s, the
following quantitative data was obtained.

Quantitative observations

At flow rates above 1000 x 1076 SCF/s, the porous media
delivered the gas into the liquid as if it were a tubing of
approximately %" diameter. Figure 5.3 illustrates the fact that
above of a level of gas flow rates, the bubble formation is
independent from the porous media. Figure 5.11 shows the same
effect mentioned above, but in viscous fluid. Also, runs of bubble
~ formation in NaCl solutions were performed. The same observations
mentioned above apply for this experiment. In fact, Figure 5.3
includes the results obtained by gas injection through porous media
into both distilled water and 5% NaCl solution.

The conclusion is that bubbles formed using porous materials
are not noticeably different from bubbles formed from a tube once a
critical flow rate is exceeded. Moreover, for the range of flow rates
studied, the bubble formation falls in the trend of that obtained by

injecting the gas through a vertical tubing of %" diameter, as it is
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Figure 5.3 Yolume of Bubble Formed as a Function
of Gas Injection Rate When Gas is Injected

through Porous Media
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FLUID:
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INJECTION DEYICE:
CPt{ = coarse porous wedia
FPif = fine porous media
IMJECTION DEVICE ORIENTATIOX:
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showh in Figure 5.4.
Effect of Tubing Inclinati

Figure 5.5 shows that the orientation of the orifice or tubing
inclinations does not play an important role in bubble formation. As
predicted by the theoretical derivations, the phenomenon is
dominated by gas injection rate, buoyancy, and interfacial tension.
Effect of Gas |

Nitrogen gas, and Methane gas were injected through orifices
into both NaC(l solution and distilled water. As it was expected, no
effect of the type of gas was observed on the bubble formation
phenomenon. Figure 5.6 displays the data obtained for distilled water
only. For clarity purposes, the data obtained in salty water was not

included, since they overlaped with the data exhibited in Figure 5.6.
Effect of Salt Content

As mentioned above, NaCl did not influence the size of the gas
bubbles generated for the combination of orifice sizes and gas flow
rates covered in our experiment, as it is displayed in Figure 5.7.
Effect of Tubing Diameter

Figures 5.8 and 5.10 show that the size of the bubbles increases
with the size of the orifice for a given gas flow rate. However, this
effect vanishes as the gas flow rate increases.

- Effect of Viscosity ‘

For the range of gas flow rates and ofifices used in this
experimental work, the size of the bubbles was not strongly affected
by the viscosity of the fluid. Apparently, only at low gas flow rates,
there is some increase of bubble size with viscosity. For the data of
Figure 5.9, the glycerine allows bigger bubbles to be formed below
approximately 300 x 1076 SCF/s.

ect of Surfac s

No data was obtained to determine particularly the effect of
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Figure 5.4 Comparison of Bubble Yolumes Formed
from Porous Media and from 0.25-in. Tubing
as a Function of Gas Injection Rate. Data

Obtained in Low Viscosity Fluids
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FLUID:
¥ = distilled water
S¥MaCl = solution of 5¥ sodium chloride by weight
Tap¥ = tap water
IRJECTION DEVICE:
CPif = coarse porous wedia
FPif = fine porous media
1/4T = tubing of 1/4" outer diameter
INJECTION DEYICE ORIENTATION:

H = horizontal
¥ = vertical
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Figure 5.5 Comparison of Bubble Yolumes (Gfmimesd
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FLUID:
¥ = distilled water
Tap¥ = tap water
IRJECTION DEYICE:

1/47 = tubing of 1/4" outer diameter

IBJECTION DEVICE ORTERTATION:

H = borizontal
Y = vertical



Bubble Yolume ouFt+E-6

10“g

] o ¥ 1/4T H g2
'03% ¢ W 1/4T H M
102 4 -gj

gl

1 [ ]
10 — 15"

10! 102 103 104 - 10°

6as Flow,scfs*E-6
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¥ = distilled water
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TJECTION DEVICE ORIENTATION:
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Figure 5.7 Comparison of Bubble Yolumes Obtained
in ¥ater and in a Solution Containing 5%

Sodium Chloride
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FLUID:
¥ = distilled water .
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IRJECTION DEYICE:
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Figure 5.8 Comparison of Bubble Yolumes Obtained
in Water by Injecting Gas Through Tubings

of Yarious Diameters
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FLUID:

¥ = distilled water

INJECTION DEVICE:

1/8T = tubing of 1/8" outer diameter
1/4T = tubing of 1/4" outer diameter
3/8T = tubing of 3/8" outer diameter
1/27 = tubing of 1/2° outer diameter

IMJECTION DEVICE ORIENTATION:

H = bhorizontal

124



Bubble Yolume, cuFt+*E-6

104 -
1031 B SPely 1/41 H _ o2
i ¢ wis4r H A
] ag§e
02 ;ﬂ!‘p‘
107 - "
4 EB!&
10! 4 9,
.*
100 10! 102 10°% 104 10°

Bas Flow Rate, scfs+E-6

Figure 5.9 Comparison of Bubble Volumes Obtained
in Vater and in a 5 Poise Glycerine
Solution by Injecting Gas through a

0.25-in. Tubing
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IXJECTION DEYICE:
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IXJECTION DEYICE ORIENTATION:
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Figure 5.10 Comparison of Bubble Yolumes Obtained
in Glycerine by Injecting Gas through
Tubings of VYarious Diameters
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FLUID:

5P Gly = Blycerine solution of 5 poise

INJECTION DEVICE:

1747
1727

tubing of 1/4™ outer diameter
tubing of 1/2° outer diameter

INJECTION DEVICE ORIENTATION:

H = borizontal
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Figure 5.11 Comparison of Bubble Yolumes Obtained
in Glycerine by Injecting Gas Through a Porous
Hedia, and Through Tubings of Various Diameters
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FLUID _ IKJECTION DEVICE _ INJECTION DEVICE ORTENTATION

FLUID:
SP Fly = Glycerine solution of 5 poise

INJECTION DEVICE:
1/4T = tubing of 1/4" outer diameter
1727 = tubing of 1/2" outer diameter
FPMM = fine porous media
ISJECTION DEVICE ORIENTATION:

H = borizontal
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this parameter. All the fluids used in this experimental work fall in
the range of 70 cp.
Effect of Density

Table 5.2 shows that for the fluids used in this experimental
work, an increase of the density of the fluid s associated with a
much larger increase in fluid viscosity. The observed bubble size
difference under similar conditions were attributed to wviscosity
effects rather than to density effects. However, from Equation (5.6),
it is expected that an increase in density will reduce the size of the
bubbles due to the increased buoyancy.
5.3.2 Discussion of Theoretical Data

Except for the porous media that was not considered in our
theoretical runs, all the applicable remarks of the previous section
were reproduced by the mathematical model. The model predicted:
the effect of gas flow rate, the effect of the fluid properties, and the
effect of tubing diameter on the formation of bubbles issuing through
a tubing immersed in a given fluid. Particular examples on the
effects on tubing diameter and viscosity are presented.
Effect of Tubing Diameter

Figure 5.12 shows the generation of bubbles through %" and %*
tubings in water. The %" diameter tubing produced larger bubbles
~ than those produced by the %" diameter tubing in the region of low
gas rates; from 80 to 1000 x 106 SCF/s. Beyond of this point the
data converges to a single exponential curve. Figure 5.13 exhibits the
same trend for tubings in 500 cp glycerine.
Effect of Vi it

Figure 5.14 displays theoretical points obtained to compare
bubble formation in a low viscosity fluid (water) and a high viscosity
fluid (500 cp glycerine). Larger bubbles were formed in the fluid

with larger viscosity at all flow rates.
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Figure 5.12 Theoretical Bubble Volumes Obtained
for 0.25-in., and 0.50-in. Diameter Tubings

in Water
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Prefix. FLUID _ IRJECTIOR DEYICE

Prefix:
Th. = theoretical data
Default = actval data

FLUID:
¥ = distilled water

IRJECTIOR DEVICE:
1/4T = tubing of 1/4" outer diameter
1/2T = tubing of 172" outer diameter
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5.3.3 Comparison of Actual and Theoretical Bubble Size

Bubble formation through %" diameter tubing in water was
chosen as representative of the theoretical versus actual trends, in
both low viscosity and high viscosity liquids.

Low Viscosity

The model predicts a slightly high bubble volume for low gas
flow rates and underpredicts the bubble volume for high flow rates
(Fig.5.15). The drag factor was taken as a constant for all the formed
bubble sizes, so that the model does not follow the shift that results

in the form drag imprinted in the individual bubble diagram of fp

vs. size of the bubble.

High Vi it
The fit between the experimental and computed bubble size
was better for the high viscosity liquid (Figure 5.16). However, Figure
5.16 shows again the effects of the shift in drag due to changes in the
shape of the bubble. Recall (See Chapter IV), that the change of drag
is less severe for a high viscosity number of fluid than that of a low
viscosity fluid.
Discussion of the Theoretical vs Actual Data

As was mentioned in section 5.3.3, the friction factor was

~assumed to be a constant for all the gas flow rates for a given fluid.

‘Since the meodel gave an acceptable description of the bubble

formation phenomena, no attempt was made to obtain the drag
factor that corresponds to each specific bubble size. To do this will
result in three nested iterative procedures needed (1) to calculate the
initial volume of the bubble, (2) to calculate the final volume of the
bubble, and (3) to determine the drag factor of the bubble.

The bubble volume data also supports the bubble shape map
developed in Chapter IV. (learly, the actual data for water shown in
Fig\_lre 5.15 changes its trend at around 15 x 107® ft3 of bubble
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volume. This bubble has a Reynolds number of around 1100 which is
in the neighborhood of the critical Reynolds number for spherical
bubbles. At higher gas flow rates the volume of the bubbles start to
fall in the oblate spheroid bubble region (as defined by Figure 4.2)
and the drag factor increases due to its change of shape. According to
Equation (5.6), an increased drag factor results in a larger bubble
volume, especially due to the increased influence of the second term
of the r.h.s. of Equation (5.6). The steeper slope from gas flow rates
from 150 x 10°® to 800 x 1076 SCF/s is the result of such increasing
drag factor. At 800 x 107® SCF/s the measured bubble volume is 85 x
1076, This gives a Reynolds number of around 4700 which is in the
neighborhood of the critical Reynolds number for -oblate spheroid
bubbles. At higher gas flow rates the volume of the bubbles start to
fall in the lenticular bubble region (Figure 4.2) and the drag factor
becomes 2.6, the characteristic drag factor for lenticular bubbles. A
less steep slope above of gas flow rates of 800 x 106 SCF/s is the
result of such a constant drag factor.

A similar explanation applies to the data obtained in the 500
cp fluid (Figure 5.16) except that now the changes discussed above
should happen at bubble Reynolds numbers of 4.1 and 25.5. This
indicates that the theoretical prediction can be improved to forecast
 this discussed change in slope. -

As a first approximation, it can be assumed that the initial size
of individual bubbles is predicted by the analytical model discussed
in this chapter. Furthermore, a lower upper bound and a tentative
upper lower bound can be set for the predicted initial size. However,
2 remaining problem to be solved is how the bubble size and
concentration will change to reflect the existing fluid environment in
the well.

Before pursuing the subject on bubble size, the relationships
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between the parameters ruling the rising of a swarm of bubbles
with the parameters ruling the rising of a representative bubble of
the swarm, will be presented in the following chapter. Also, an
overview of the conventional solution for the pressure losses in two
phase flow through vertical pipes will be presented.



CHAPTER VI
ON THE VELOCITY OF A SWARM OF BUBBLES

A correlation and a model were developed to predict the shape
and size of an individual bubble. Once that the shape and size of a
bubble are known, it is possible to find the rising velocity of the
bubble. It is required to predict the rising velocity of a swarm of
bubbles and this can be accomplished by applying an analysis of
forces acting on an individual particle of a swarm of bubbles. Figure

6.1 shows such a bubble in dark color, surrounded by- similar bubbles

represented by white bubbles. The effective buoyancy force, Feg »

and the drag force, Fy, , are given by Equations (6.1) and (6.2),

respectively. The relationship between gas and liquid concentration
is given by Equation (6.3).

Assume that constant flow rates are entering and leaving the
control volume shown in Figure 6.1. Mass conservation allows us to
write Equation (6.4).

FoB = (8 /80 (o - pg) (ma®/6) . . ... .. e (6.1)
Fp=(/gd (fppyvRe/ 20 dg2/4) ................. (6.2)
Pmo +Hp oo (6.3)
Vsm = Vsg * Vsl = @ vg+(l- vy ... (6.4)

137
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Figure 6.1 Individual Bubble Rising in a Swarm
. "of Bubbles.
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where
Pm = Mmixture density
pg = gas density
¢ = liquid density
de = bubble diameter
fp = drag factor
Vg = effective gas velocity
V) = effective liquid velocity
VR = Vg - V]
Vsm = volumetric superficial mixture velocity
M = mixture viscosity

Vsg = volumetric superficial gas velocity

Vg] = volumetric superficial liquid velocity

o«

gas fraction
H} = liquid fraction
Ap = projected area of the bubble in a plane normal to the
velocity direction
Vp = volume of the bubble
t = time
From Equations (6.1), (6.2), and (6.3) we can write:

fp=0/3)@apde) / (vl o)1y ) .. ... (6.5)
where
Ap = pl - pg
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and fp is a drag that takes into account the effect of the ensemble of

bubbles.
For a single bubble in an extended liquid we can write

fpo=[(4/3) (880 de) / Vo2 0y ) . . oo (6.6)

Where fp, and v, are the drag factor and the relative velocity

single sphere rising in an extended liquid. From Equations (6.5) and

(6.6) we can write:

(fD/ fDoo) = ( Voo /VR)2 Hl ................ o (6.7)

Equatioh (6.7) allows us to use theoretical relationships(27)

between fp and fpe. In this way we can solve for the relative

velocity of an individual particle. Furthermore, the Karman number,

Ng for an element of a swarm of bubbles is

Ng=(4/3g @ 0d% /up20-))05 . . (6.8)

Again we can express Ny of the swarm in terms of the

Karman number for a single bubble rising in an infinite, Nge , ie.

Ng / Ngew = Wy /b 0 -05 00 (6.9)

‘where M is the yapparent mixture viscosity as defined by rheologists
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to account for the increased resistance of the mixture to flow due to
the presence of the dispersed phase.

6.1 RELATIONSHIPS BETWEEN PARAMETER OF SINGLE BUBBLES
AND SWARM OF BUBBLES

Richardson and Zaki°’ determined the following correlation
between the velocity of a single solid sphere in an infinite liquid and
the velocity of a swarm of spheres:

where
Vg1= superficial liquid velocity needed to balance the velocity
of the swarm of spherical particles
Ve = velocity of a single element of the swarm of particles

n(R)= exponent whose values are in the range of 2.39 to 4.65
aproximately for Newton region and Stokes region,

respectively

We can write

VR/ Ve =(1-ay®)-t (6.10a)

fD / fDq, =(1- ¢)-2n(R) +3

Different functions of voidage for the drag ratio can be obtained
from theoretical analysis and correlations. These analyses and

correlations have been carried out by wvarious researchers34,45,
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Pressure gradient correlations for bubble flow in a vertical pipé have
been published in two-phase flow papers. Recall that bubble flow is
one of the flow patterns included in /the typical correlations that use
transitional boundary lines on a so called flow pattern map. These
correlations are used to solve the total pressure gradient, and they
have been reviewed in Chapter IL An overview of the total

pressure gradient is presented in the next section.
6.2 THEORY OF TWO-PHASE BUBBLE FLOW

It is well known that the mechanical energy balance for two-
phase flow in vertical pipes can be obtained either from Newton's
second law, or from an energy balance!®. In this way, an equation
for the total pressure gradient is obtained.

Momentum Balance.- Suppose a homogeneous dispersion of bubbles,
as it is shown in Figure 6.1, flows upwards in a vertical pipe. From a
force momenturmn balance, and assuming that the fluids can be

treated as incompressible fluids, we can write

dp/dz =g/ 8Py *APg/ Az . .. ... ... (6.11)

. where

fm is the mixture density given by

Equations (6.11) and (6.12) show that the pressure gradient is
composed by the hydrostatic gradient, (g / g.) ©rn » Plus the pressure

gradient, dps / dz, due to shear stresses on the interphases and on

the vertical surface of the control volume.
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Energy Balance.- It is well known®? that an energy balance will
yvield the following expression for the total pressure gradient of a
single phase flowing in a vertical pipe:

dp/dz=(g/gde+tevdv/g.+dp/dz.......... (6.13)

If this equation is applied to Figure 6.1, and it is assurmed that

the fluid is an incompressible fluid, we can write:

dp/dz=(8/8)em*dps/dz ... ... ... ..., (6.14)

which shows the same dependence of the total pressure gradient on
the gas concentration given by the momentum balance analysis.

The energy equations and the momentum equation show that
the gradient of pressure is a function of the voidage. To solve any of
these equations for the pressure losses information on the voidage is
needed.

Prediction of Gas Concentration
Equation (6.14) in the above section, requires the knowledge of

the gas concentration and the average bubble size. Traditionally, the

~ solution of the pressure gradient equation for two-phase flow is based

on correlations. A review of this subject is presented by Beggs and
Brills®8. The correlations are obtained for steady state conditions as it
was discussed in previous chapter. Recall that it is needed to find
the length and pdsition of the gas contaminated zone for a series of
processes in which there is not gas throughout the well. There are
two ways to attack the task of the prediction of length and position
of a gas contaminated zone: (a) to develop a correlation based in

experimental data, or (b) to develop a theoretical model. The second
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alternative was chosen because a correlation 'on the drag coefficients
of bubbles rising in any liquid has already been developed in
Chapter IV. A model based on the already known relationships
between drag, volume and shape of a single bubble will be developed.
i r issipati

Equation (6.14) alone does not provide a solution for the
problem encountered in well control operations, so the theorem on
minimum energy dissipation will be used to develop an equilibrium
bubble diameter correlation. Also, the theorem will be applied to

obtain the gas concentration associated with a given bubble
diameter.



CHAPTER VII
PRINCIPLE OF MINIMUM ENERGY DISSIPATION

H. Lamb®? presents a short discussion of general theorems and
Helmholtz and Korteweg theorems on the dissipation of energy in the
steady state motion of viscous liquids under the action of external
forces. In a simplified way the principle of minimum energy
dissipation states that in any viscous, incompressible liquid moving
under steady state conditions, the velocity distribution is such that a
minimum of dissipative energy is obtained.

The principle has been extended and applied successfully to
systerns with free interfaces such as intensive bubbling in liquids for
vessels of small length.

Appendix A gives more detail about this principle. It will be
applied recursively to obtain an equation for two-phase flow
mixtures encountered during well control operations.

7.1 SPECIFIC ENERGY OF A SWARM OF BUBBLES

An equation of the energy of a swarm of bubbles, as a function
of the characteristics of an individual bubble is required to apply the
theorem of minimum energy dissipation. The required expression
can be obtained by applying a momentum balance on an individual
bubble of a swai'm of bubbles rising in a wvertical vessel. With

reference to Figure 6.1, we can write:

Body Forces

@ /¢ (o - Pg YV o oo (7.1)



146

Surface Forces

(fD f1 VR Ab) /(2 gc) .......................... (7.2a)

Inertia Forces

A/t (Mg VR -+« o v oot e e e e (7.3)

Also, from material balance and from mass conservation, we

can write:
1 =0 4 Hl ................................. (7 4)
Vern S Veg * Vsl - - - v v (7.5)
where
P = mixture density

pg = 8as density

P = liquid density

de = bubble diameter

fp = drag factor

vg = effective gas velocity

V] = effective liquid velocity

VR = Vg - Vl

Vgm = Volumetric superficial mixture velocity

Hm = mixture viscosity
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ng = volumetric superficial gas velocity
Vg = volumetric superficial liquid velocity
« = gas fraction

Hj = liquid fraction

Ap = projected area of the bubble in a plane normal to the
velocity of the bubble

Vp = volume of the bubble

myp = Vp (pg + ¢y / 2) = virtual mass of the bubble

t= time

From Newton's second law:
(E/BC) ( Pm - pg ) Vp - (%2 SC) fp 0 VR2 Ap - (mvb / gc)

where my,, is the virtual mass of the bubble and the upper dot

means derivative w.r. to time.
From Equations (7.4) and (7.5)

Pm-Pg=(l-=)8p ... (7.7)
where
Ap:p]'pg

Inserting this wvalue in Equation (7.6) and multiplying by the
velocity vp, we obtain the change in bubble energy, Ej, , to be:
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Ep=(gdheoVpU-z

- (% 89 fp p; Ap VR? £ - (o, / &) Vb VR VR
=(g/8)dp Vp (1 - =) Z - (% g) fp p; Ap VR? Z

“ oy 728 VDIVRY - o o e (7.8)

where
(\:’Rz) = d/dt (VR2)

Z=V
Then the total energy of an individual bubble, Ej, in a swarm of

bubbles can be written as

Ep = (8/80) 8 p Vp (1 - =) z¢ - (% g0) fp ) Ap VR? Zc

"(va/(z SC))VD VRQ*(‘! ollgC)Ab ............ (7.9)

where ] is the interfacial tension.

Now, we can recast this equation as

Ep =3/ 80 8 Vp (1) 7¢ - (% 80) Ip oy (3/2) (Vy, / dg) VR? 2

- (pyp / 2 89 ) Vp vR2

+60 /8dadVp .. ........ (7.10)
where d, is the diameter of a sphere having the same volume of the
bubble.

For a unitary area, dV is numerically equal to dz. , and we

can define the energy dE of this volume as
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dE = (g / go) 8¢ = (1-«) Z dz, - (3/(4 g) fp ¢ VR2 = 2 dz / dp
~oyp /R8N VR? «dze+(6/8. )0/ dexdzs . .. .. (7.11)
The energy per unit of height, E, will be given by
E=(8/280) 8p (1 -<«)dy +(6/g0) { 0)/dp) =
-leoyp /(28 )] «vp2-(3/88)fpppVR2 . . . . ... ... (7.12)
where we approximate the product of the dimension of the cell, z. ,
times the fraction of gas with the characteristic dimension of the
bubble, d,.
e If we use Equation (6.10b) into the above equation, we get

E=(g/(280))8p (1 - =) dg + (6/80 ( 0/dy) =

-Loyp 7 (28:) ) = vp2 - (3/ (8gY)) (fpe / (1-=YT ) gy vp2 . . . (7.13)

where
m=2n-3
‘and n is defined as in Equation (6.10b)

Let B =(g/28.) Ap d,
S = (3/ 8g0) fpe 0

I= pvb / (280)

.
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Equation (7.13) can be written in terms of these coefficients as |

E=BQ-«)+Teae-SU-«)Mvp2-Tavp2............... (7.15)

This equation shows that E is a function of the fraction of the
dispersed phase, «. Recall that VR, the relative velocity between the
dispersed and the continuous phase, depends also on the voidage.

The swarm of bubbles will tend to a concentration or voidage
such that the dissipated energy due to the movement of the bubbles
is at a minimum. Therefore, the more probable gas concentration
will be the one that provides an extreme for the Equation (7.15).

For a cocurrent two-phase flow process, the gas concentration
will be given by the root of

Ee =B+ T e -3 4 5 ([2-(m+2) «]1(1- 2 vg,?
-l2-20m+ 2) « ]« N-w) vy vg) - <3 (m +2) vg2 )
+1{ = (1-)M#3 ng2 + Qe (1-e)M+1 Veg Vsl

) &S Qe w230 (7.16)

- and for migration of a gas contaminated region, the gas
concentration will be given by the root of

Ee = (-B + T) «3 (1-<)M*3 _ 5 (m4+2) v82 -1 v82 (1+) (1=<)M = 0 . . (7.17)

where

vg = the average, absolute gas velocity, or bubble velocity with

respect to the tube
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E. = d/d= = derivative of E with respect to «

For the circulation of a gas contaminated region, the gas

concentration will be given by the root of

Ep =(-B+T) (1-<YT*3 - g (m + 2)( vg2 + V512 -2 Vg Vsl )

IV evg?-2vgvg ) el -aM =0 .. ... .. (7.18)

which includes the particular case of gas migration.
Equations (7.17) and (7.18) can be solved if the characteristics of

the bubbles and the exponent m are known.
7.2 EQUILIBRIUM BUBBLE SIZE

It has been seen in Chapter V, that the size of the bubbles
generéted throughout orifices depends on inertia, drag forces and
surface tension. The equation developed and the experimental work
show that large initial sizes of bubbles in the range of 4 cm of
equivalent diameter can be obtained. On the other hand, small

initial sizes of bubbles in the range of 0.5 cm of equivalent diameter

can also be obtained. Smaller sizes are reported elsewhere in the

literature.

Most of the work on bubbles has been carried out in vessel
with relatively short dimensions. The question that arises is what
would be, if any, the equilibrium size of the bubbles if they were far
away of the end effects of a vertical vessel.

From experimental work, Hinze°! proposed a correlation to
obtain a critical size for drops dispersed in a liquid under forced

convection. For gas in water systems, his formula gives an

-
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equivalent diameter of 0.45 to 0.54 cm. The terminal velocity of
such a bubble in water is 24 cm/sec (7.9 ft/sec) approximately. Also,
a survey of bubbly flow, shows this to be the diameter-velocity
reported more frequently in experimental works with a number of
different devices (sinterized plates, spargers) to generate bubbles in
water23,60,61 Larger bubbles in cocurrent two-phase flow has been
observed to occur at the gas distributor or at some distance above
it%% and Lockett and Kirkpatrick say: “Little iIs known about the
formation of large bubbles in the main part of the bubble column,
well away from the distributor, and indeed it is not clear whether
they form there at all.Y These researchers also found the above
mentioned diameter and velocity of the bubbles in water for a
countercurrent process.

This ubiquitous equivalent diameter for bubbles in water, has
been Aexplained to be the size where the bubble balances the
mechanisms of fragmentation and coalescence. Some authors®® use
the minimum energy dissipation theorem to justify this
"equilibrium" bubble diameter, as it follows.

The energy dissipation of a single bubble rising in an infinite

liquid is expressed by

for a bubble rising at its terminal velocity, v,, under the action of a

constant force Fp. The velocity of the bubbles in pure water is given

by Equation (2.26), and from this equation we can write

dve/drg=(0p r,2+g)/(2¢( oo regl+gr05) . .. .(7.20)

-
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which shows that we will have a minimum velocity at an

equivalent bubble radius

re={G@e)le05. . ... (7.21)

It follows that the energy dissipation of the bubble will be minimum
at an equivalent diameter of 0.54 cm.

Unfortunately, there is not such a minimum in the velocity-
diameter diagram for bubbles in liquids with a high liquid viscosity
number. )

To make some progress, we will assume that a specific
equilibrium diameter exists for any gas-liquid system. Moreover, we
will assume as a first approximation that a relationship exists

between the viscosity number and the Reynolds number of the

equilibrium bubble, (Npep)e , following the trend of the transitional

lines given in Chapter Il i.e.

‘where (Npep)s Is the transitional boundary line between spherical

bubbles and oblate spheroid bubbles as given in Equation (4.8). From
the water data, the constant C is calculated to be 1.468
approximately.

This correlation is expected to work at least for bubbles in
liquids with liquid viscosity number, raised to the fourth power, less
than or equal to 1076, As we already mentioned, the
velocity-diameter relationship of the bubbles do not show a

minimum in the deformed bubble region, but rather a transition
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between the curve characteristic of bubbles in laminar flow and the
curve characteristic of deformed bubbles at high viscosity numbers?.

We will extend Equation (7.22) for liquids with any viscosity
number. In other words, it is proposed that, even when there is not
2 minimum in the relationship between velocity and bubble radius
for the deformed bubbles for some liquids, physically an equilibrium
bubble size exists, and it is approximately the size given by the
intersection between bubbles following deformed bubble drag law and
bubbles following spherical drag law.

With this correlation, the size of the bubble can be estimated,
and the drag associated to these bubbles is obtained with the method
proposed in Chapter IV. All of the coefficients of Eqﬁations (7.16) -
(7.18) can now be evaluated.

7.3 DRAG LAW FOR A SWARM OF BUBBLES

We will adapt the correlation between the velocity of a single
sphere and the velocity of a set of spheres found by Richardson and
Zaki®/ and given by Equation (6.10b). They determined the value of
n to be a function of the sphere Reynolds number from a series of
experiments on fluidization and sedimentation of spherical particles.

This empirical equation has been already applied in bubbly
flow by Lockett and Kirkpatrick®©. They compared various equations
with their experimental data on countercurrent bubbly flow.
Richardson and Zaki's equation gave a good fit of the data of Lockett
and Kirkpatrick. | These authors proposed a correction factor to
improve the fit of the empirical equation with their data in the
region of high wvoidages (308 to 65%). The deviation of the correlation,
In the high voidage range, was attributed to bubble deformation and
mobility of the bubble interface.

”.
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From the Richardson and Zaki's correlation57, the exponent m
of Equation (7.16) and (7.18), lies in the range
178 £ m s 63

where m is a function of the bubble Reynolds number, Ngp, given by

NReb = deVQ pl / pl ...................... (7.23)
where

de = equivalent bubble diameter

Vo = Vvelocity of a single bubble in an extended liquid
¢, = liquid density

My = viscosity of the liquid

The left side limit is for spheres in the Newton flow region, and the
right side limit is for spheres in Stokes flow region57.

Equations (7.17) and (7.18) can now be evaluated to find the
more probable gas concentration for é given process.

7.4 THEORETICAL GAS CONCENTRATION

'Gas In jection

Figure 7.1 displays the results obtained with the use of
Equation (7.22) and Equation (7.16). The predicted gas concentration
for a high viscosity fluid is lower than that predicted for a low
viscosity fluid. At high superficial gas velocities, both of them
converge to a limiting wvalue, in the range of 35% and 53,
respectively.

The same results as displayed in Figure 7.2 with the axis inter-

changed . This plot can be directly compared with a typical curve
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obtained with Richardson and Zaki's correlation®’ (Figure 7;3) and

- with representative vertical two-phase flow experimental data,

(Figure 7.4).

The high viscosity fluid follows a path of increasing gas
concentration with increasing superficial gas velocity and reaches a
maximum value of gas concentration (Figure 7.2). This is in
agreement with the low velocity trend seen in Figure 7.4. On the
other hand, the low viscosity fluid follows a path of decreasing gas
concentration with increasing superficial gas velocity and reaches a
maximum value of gas concentration (Figure 7.2). This is in
agreement with the path from left to right of Figure 7.3. Exhibit 7.3
shows that continuity can be satisfied in a steady state bubbly
process by two points: one at low gas concentration, and another at
high gas concentration. This is true until 2 maximum flow rate is
reached, known as the flooding point. In experimental work, this
flooding point has not been achieved when a path of increasing gas
flow rate is followed (Figure 7.4). The departure from the theoretical
concentration curve at points below of the flooding point is attributed
to entrance phenomenon in the experimental apparatus.

The previous theoretical results should apply to the process of
taking a gas kick under zero liquid circulation. The case of taking a

~ kick under liquid circulation is also covered by Equation (7.18), but

the gas concentration predicted converges to the non-slip voidage.
Once a gas kick from the formation has entered the well, the process
changes to either gas migration or gas circulation.
Gas Migration |

Equation (7.18) predicts the theoretical relation between gas
concentration and the average upward swarm velocity obtained
during the migration of a gas contaminated zone. Figure 7.5 exhibits

an example gas concentration-superficial gas velocity relationship
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obtainéd for a typical well geometry and drilling fluid. Sinée gas
velocity increases with decreasing gas concentration, this will cause
dispersion of the leading edge of the gas contaminated region.
Circulation of a Gas Contaminated Zone

The theoretical results for circulation of a gas kick are also
represented by Figure 7.5. However, in the actual flow in a pipe,
there is going to be a wvelocity distribution. In laminar and
transitional liquid flow regime, the gas will tend to concentrate
towards the central core of the flow area. This difference in
concentration may, in turn, cause bubble coalescence and liquid
circulation. In developed turbulent flow, the theory of Hinze>! applies
and the average size of the bubbles would be known.- However, there
Is not an agreement in regard to the effect of turbulence of the
liquid on the bubble swarm velocity.

The previous explanations can be enlighted by the Rietema and
Ottengraf(’2 analysis of their experimental results in a liquid-solid
system. They feed a cylindrical reservoir with spheres falling at the
liquid free surface with a constant frequency. They observed that
the spheres remained dispersed homogeneously in the column and
therefore, no overall liquid circulation occurred. They explained this

phenomenon to be in accordance with the principle of minimum

A -energy dissipation as follows:

Let the energy dissipation rate be expressed by

E=0/8cVeg AZlpog-bppp! - - o (7.24)

where

Vgdq = Superficial dispersed phase velocity

A = flow area
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P4 = dispersed phase density

Papp = @apparent density of the fluid column

Z = height of the fluid column

For the energy dissipation rate to be minimum, it is required
Papp to tend towards a maximum. This is achieved in a

homogeneous dispersion, where no liquid circulation will occur. The
same argument should hold for uniformed size bubbles, since this will
be a mirror image of this experiment. In this case, the upper part
of the pipe is closed. Note, however, that if there is a velocity
profile, or if the column departs from the vertiéal, the former
statement ceases to apply. Then there can be liquid circulation.
Restrictions of the Equations

The assumptions done in the development of our equations are
that:

(1) there is an average or representative bubble diameter

(2) there is a homogeneous dispersion of bubbles

(3) the empirical drag law for an ensemble of spherical

particle357 applies for a swarm of bubbles

(4) the velocity profile corresponds to that of an ideal liquid

The rheology of the fluid is taken into account in calculating
the drag of a single bubble, regardless of the bubble Reynolds
number, or the flow pattern of the liquid around the bubble. Also,
the deformation of the bubble is taken into account into our
correlation.
Use of Developed Equations and Correlations

Equations and correlations developed in this work, were
programmed as subroutines which in turn were used by a

subroutine called ABSVEL. This subroutine requires: mud properties
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(density, plastic viscosity, yield point and surface tension), gas
density and gas flow rates at operating conditions, liquid flow rate,
flow area, pipe Reynolds Number, fanning friction factor associated
with the pipe Reynolds Number and a flag to select the output of the
subroutine. The output can be either the gas fraction or the gas
velocity with respect to the pipe. The ABSVEL subroutine was
programmed to be integrated in a numerical model to simulate well
control operations



CHAPTER VIII
MODELLING OF WELL CONTROL OPERATIONS

Previous work by Bourgoyne, Holden and Langlinais64 has
demonstrated the inaccuracies of existing well control simulators.
Shown in Figure 8.1 is a typical comparison of computed and
observed results for a training exercise conducted using an actual
well. Note that the increase in casing pressure due to arrival of gas
at the sea floor occurred much earlier than predicted and was less
severe than predicted. Such inaccuracies limit the usefulness of
these simulators.

The correlations given by Equations (4.7), (4.8), (4.9), (7.22)
together with theoretical Equations (7.16), (7.17) and (7.18) were
programmed and integrated to create the subroutine ABSVEL,
described at the end of the previous chapter. The subroutine was
incorporated in a numerical model to simulate well control
operations. This numerical model was developed as part of the
ongoing research effort towards the development of improved

pressure control procedures for floating drilling operations. The

'~ ABSVEL subroutine is called by the numerical model for predicting

the initial gas concentration and the wvelocity of the gas
contaminated regions. When the gas concentration is calculated by
the model, the subroutine returns the wvelocity of the gas with
respect to the bipe, otherwise it returns the gas concentration
associated to liquid and gas flow rates.

The numerical model was applied to simulate three

experimental runs performed in the LSU-Goldking No.l well. Two
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types of experiments were conducted. gas migration in a shut-in well
and gas kick circulations.

8.1 EXPERIMENTAL APPARATUS AND PROCEDURE

The LSU-Goldking No.l, (schematic presented in Figure 8.2), is a
6000-ft research well modelling the well-control flow geometry
present on a floating drilling vessel operating in 3000 ft of water®4.
The gas kicks were simulated by the injection of nitrogen gas into
the bottom of the well. The gas was compressed to a predetermined
pressure in the gas storage énd compression wells, and then injected
through the valve shown as "Formation and productivity simulator
control” in Figure 8.2.

The bottom hole pressure was monitored with a pressure
sensor located at the bottomm of the nitrogen-injection line and
transmitted to the surface either through a 0.125-in. capillary tubing
strapped to the 1.315 tubing or through the gas injection line once
that the formation productivity simulator control value was closed.
This last procedure was used in the gas circulation runs. Mud to
circulate the gas Kkicks was pumped to the bottom of the well
- through the annular space formed between the gas injection line and
the 2-7/8* tubing. The mud circulated towardé the surface through
the annular space formed between the 2-7/8" tubing and the 7-5/8*
casing and then through the 2-3/8" tubings.

The bottom hole pressure, casing (choke line) pressure, drill pipe
pressure, strokes per minute of the pump, choke position and gas
production rate were recorded for the gas kick circulation exercises.
For the gas migration run, the mud gain was also measured. The gas

flow rate was determined as follows:
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a) Gas Migration Run.- For this run, the gas flow rate was
obtained by recording mud gain against time. The total recorded
mud gain was 14.8 bbl in approximately 20 minutes of gas injection.

b) Gas Kick Circulation Runs.- For these runs, the gas injected
was determined by material balance. The total gas injected was
around 11.18 bbl at bottom hole conditions during an interval of 6
minutes for the first run, and around 11.16 bbl at BHC during an
interval of 7.6 minutes for the second run.

The bottom hole pressure monitored in the above described
runs was given as data and the casing pressure was calculated with
the numerical well control simulator. The input data used in the

numerical program is given in Appendix B.
8.2 COMPARISON OF ACTUAL AND THEORETICAL CASING PRESSURE

The theoretical casing pressure as a function of time predicted
by the numerical model was plotted together with the actual data
for each of the experimental runs. Figures 8.3, 8.4 and 8.5 display
th.e actual data on the theoretical casing pressure.

Figure 8.3 shows that for the gas migration experiment the
actual casing pressure is closely predicted by _the numerical model.

' The maximum difference between the actual and the predicted

casing pressure is 150 psi. This represents a maximum error of 73.
This plot exhibits five intervals that are characterized by different
slopes of the casing pressure versus time plots. These slopes
represent (a) gas migration in the annulus until a time of around 60
minutes is reached, (b) gas migration in both the annular space and
the choke line until a time of around 150 minutes is reached, {c) gas
migration dominated by the choke line until a time of around 220

minutes is reached, (at this point the slope decreases continuously



169

C

AITY 69D Tqq 8T ®© JO
uoT3eabIR €9 103 SITTI01d eInesaid Lurse)d
PRINSVI]] pUS TLITIa109Yy], Jo uostaedmo) £'g eanbry

MTW’ SWEY
o0oZi 0001} 008 009 cob 1374 0
L_o
P
0& s
[
3
+» 0001
o
ax0sSeIg DUTSS) TeOTIRIOS] o ¥
’ o
v \ aoooo
:K mea 000Z
d++t300?
ETFTITRELER LRRAAA W
.
anssaxd furse)
—a- 9 oooe
5
B r
JINSSIXI STOH wO3308 o8
o)
mmmmmnammaaLm npoopoBEo®®
DEpoBg 000b

2rsd ‘oamssaag



170

my UOTISTNIITY XOTY €eD Tqq 8T 'TT 8Y3l 10} &8TTjoxd
2INese13 BUTEE)H pPOINCBI] DUe TeITIex0ey] Jo uwostiedwo) g eanbra

aTw ‘swryl

0ol 08 09 ob o< : 0
1 " o
p

m _ _ _
Jmssexd HUTSE) TOTISIOAYL

000t

000z

SINSSHII STOH w0304

000t

sysd ‘amssaixg



171

umy WOTIBTNOITD HOTA €8H TAQ 9T 'TT °Yl 0] €@1Tjoad

sanscerd buree) peInces)] pus TROTIeI0ey], o wostavdwod g'g sanbry

aTw ' AwTy
00! 08 09 oy oz 0
i | : =} 0
anssdx] DUTSE) THOTINI0OATL

/w\ s

aﬂa\ 0004
aInecaxg Hurse)

0002

20581 STOH wWORjod

000P

srsd ‘amssaxg



172

due to the formation of a gas cap), (d) after the gas reaches the
surface the formation of a gas cap occurs and the slope decreases
continuously until a time of around 800 minutes is reached, (e) the
fluids are essentially gravitationally segregated and the slope tends
to zero.

Figure 8.4 shows that for the 11.18 bbl gas kick, the actual
casing pressure is closely predicted by the numerical model during
the first stages, and then the casing pressures are slightly
underpredicted. The maximum difference between theoretical and
measured casing pressure is 200 psi. This wvalue represents a
maximum error of 23%2. Due to the adjustments made in the choke
size by the operator, there are not clear regions as those described in
the migration experiment. However, it appears fhat gas migration
occured in the annulus until a time of 37 minutes was reached.
Then the gas migration took place in both the annulus and the choke
line until a time of 47 minutes was obtained. At around this time
the gas reaches the surface and the casing pressure peaks and
remains relatively constant due to the fact that the choke line is
continuously filled by gas contaminated mud. At around 70 minutes
the tail of the main body of the gas contaminated mud reaches the

seafloor and the casing pressure tends to decrease as a result of the

- increased weight of the mud displacing the gas contaminated region.

In the interval from 80 to 90 minutes apparently more gas invades
the choke line which is reflected by an increase in the casing
pressure. The numerical model does not show this increase in casing
pressure. This was probably caused by an inability to model the
expansion of gas from the gas injection string during the well control
cperation. It was not felt to be important to model this phenomenon
since it would not apply in an actual field situation.

Figure 8.5 shows the 11.16 bbl gas kick circulation pressures as a
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function of time. This figure exhibits practically the same trends
described in the previous paragraph. As in the former case, the
meodel slightly underpredicts the casing pressure during the last
stages. In this case the maximum pressure difference between
predicted and actual casing pressure is 300 psi which represents a
maximum error of 208.

The numerical model using the ABSVEL subroutine closely
predicts the casing pressure which indicates that the model correctly
forecasts the migration of gas. This points out that the assumption
of an equilibrium bubble size may be indeed true for pipes of large
length to area ratio. Moreover, the observed dispersion of the gas
contaminated zones are predicted as a consequence of the computed
dependence of the gas velocity on the gas concentration. This
dependence of the velocity of the gas on the concentration of bubbles
is in agreement with both the theoretical and experimental evidence
found in the literature review. The prediction of pressure of the
circulation of gas kicks also shows an agreement with the actual
data which confirms the validity of the approach used to predict the

concentration of gas and, the velocity of the gas contaminated zones.
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CHAPTER IX
SUMMARY AND CONCLUSIONS

Our understanding of the behavior of mixtures of gas and
drilling fluid in wellbores have been increased in the following areas:

(1) Stability of the bubbles.

(2) Generation of bubbles through orifices.

(3) Drag factors of oblate spheroid bubbles.

(4) Equilibrium or critical bubble size of bubbles under dynamic

conditions.

(5) Generation of gas contaminated 2zones under forced

convection.
- (6) Bubble migration in vertical geometries.

The knowledge of the drag factor of deformed bubbles and the
stability of the bubbles allow the prediction of the size of bubbles
generated in a typical borehole. The knowledge of the equilibrium
bubble size under dynamic conditions allow the prediction of the
properties and migration rates of gas contaminated zones under

forced convection.

The models and the correlations developed in this work can be
applied in the solution of other practical problems, in addition to
improved modélling of gas Kkick behavior. For example, the
correlations would apply to the development of a model for:

(a) Design of a subsea gas diverter in deep water off-shore wells

(b) The prediction of a "gas plume" generated by a blow-out in

V' off-shore wells

(c) Design of gas risers
174
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As a result kof the work presented on this dissertation, the

following conclusions are drawn:

1.

The condition for which the bubble shape changes from
spherical to oblate spheroids, then to lenticular bubbles
can be predicted. In addition, the condition under which
bubble fragmentation occurs can be estimated.

The friction drag of oblate spheroid bubbles can be obtained
from the developed correlatfons.

. The size of bubbles generated at the discharge of orifices,

under constant gas injection, is predicted by the generalized
model developed in this work.

. The mathematical model and the correlations mentioned

above were successfully used in the estimation of the size
of bubbles generated in the experimental apparatus
described in section 5.2.

A model for predicting the concentration of a gas

contaminated zone was developed.

. A correlation to estimate the equilibrium bubble size was

developed.

. An improved computer program for modelling of generation,

migration and transportation of gas Kkicks has been

developed.

As a result of this study, it is recommended that additional

work should be done to:

1

Study the effect of the velocity distribution on the size
and distribution of the bubbles.

Study the effect of tube inclination on the liquid wvelocity
and on the gas velocity.

Design laboratory equipment to study if the formation of

large bubbles is possible in regions not influenced by end
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effects in vertical gas migration and circulation.

. Evaluate dispersion coefficients, for bubble migration and

bubble transportation.

. Develop a theoretical model for predicting bubble dispersion

in the processes encountered in well control operations.



NOMENCLATURE

English Upper Case

A Transversal area of a tube, or projected area of a body in
a plane normal to its velocity

Ap Projected area of a bubble in a plane normal to its velocity

C Constant
Internal tube diameter

E Specific energy of a swarm of bubbles

Ee Derivative of E with respect to «

E; Energy input

Ex Kinetic energy

Erv Specific energy input

Eq Energy dissipation associated to M,

Ey Energy dissipation associated to M;

Fp Buoyancy force

Fp Drag force

AFQB Effective buoyancy force, given by Eq;.xation (6.1)

Fg(n) Function of the pseudoplasticity index for fluid spheres

Ff,sw(n) Function of the pseudoplasticity index for a swarm of
fluid sphere

Fe(Ng) Function of the Bingham number

Fq(n) Function of the pseudoplasticity index for rigid spheres

177
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Function of the pseudoplasticity index for a swarm of

rigid spheres
Liquid fraction, or liquid hold-up

Factor that depends on pipe Reynolds number
Factor defined by Equation (2.48)

Parameter defined by Equation (2.2a)

Equivalent liquid length defined by Equation (2.78)

Gas slug length

Parameter defined by Equation (2.2c)

Parameters defined by Figure 2.5

Mode of liquid flow in a bubble column in steady state

Mode of liquid flow such that M; = M,

Dimensional property parameter defined by Equation (2.50)

Bingharm number defined by Equation (2.35)

Diameter number defined by Equation (2.1b)

Chamber number

Froude number defined by Equation (2.48)

Modiffed Froude number defined in Equation (2.96)
Froude number at the discharge of a nozzle

Gas velocity number defined by Equation (2.1a)

Karman number of the bubble defined as rD"z times Np.p
Karman number for a bubble rising in an infinite liquid
Liquid velocity number defined by Equation (2.1d)

Bubble Reynolds number defined by Equation (2.65)



NReb
(NReb)e

(Ngeph

(Ngeblo

(Ngep)s

Bubble Reynolds number
Equilibrium bubble Reynolds number, Equation (7.22)

Critical bubble Reynolds number up to which lenticular

bubbles can exist, defined by Equation (4.9)
Critical bubble Reynolds number up to which oblate

spheroid bubbles can exist, defined by Equation (4.8)

Critical bubble Reynolds number up to which spherical

bubbles can exist, defined by Equation (4.7)
Modified Reynolds number at the discharge of a nozzle

Generalized bubble Reynolds number

Reynolds number defined by Equation (2.52)
Slip velocity number defined by Equation (2.76)
Parameter defined by Equation (2.3b)
Parameter defined by Equation (2.3d)
Parameter defined by Equation (2.3c)

Fluid viscosity number defined by Equation (2.52)
Volume

Bubble volume

Bubble volume defined either by Equation (2.86) or by
Equation (2.89)
Bubble volume defined by Equation (2.90)

Final bubble volume
Chamber volume

Volume of the bubble at the end of its first stage of

formation
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Vo Volume of the bubble at the end of its second stage of

formation
Wp Bubble weight
Z Height of fluid column
English Lower Case
b Number defined in Figure 2.9, Bubble
c Concentration of transported mass

€, Cp Numbers defined in Figure 2.10

dp Bubble diameter

dp; Initial bubble diameter

de Equivalent spherical diameter of a bubble

deg Bubble diameter defined by Equation (2.90)

deav Average bubble diameter defined by Equation (2.84)
dy Nozzle diameter

dx' , dy  Diameters defining a concentric, annular area

dgsg Bubble diameter defined by Equation (2.92a)
e Dissipation per unit of volume
1p Drag factor
fDeo Drag factor for a bubble rising in an extended liquid
IDsw Drag factor for a swarm of bubbles rising in an extended
liquid
M Moody friction factor
g Acceleration due to gravity

gc Conversion factor between mass and force units
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Equivalent poise of a Power law fluid

Coefficient defined by Equation (2.44)

Channel length
Length defined by Equation (2.4)

Exponent

Virtual mass of a bubble

Pseudoplasticity index
Exponent defined in Equations (6.10)

Pressure

Pressure loss

Volumetric gas flow rate

Volumetric gas flow rate per nozzle

Volumetric liquid flow rate

Volumetric rate per nozzle

Curvature radius of the leading edge of the bubble
Equivalent spherical radius of a bubble

Equivalent bubble radius defined by Equation (2.87)
Internal radius of a pipe

Equivalent bubble radius defined by Equation (5.19)

Average velocity with respect to the tube

Bubble velocity with respect to the tube
Bubble velocity in a stagnant liquid

Bubble velocity in a stagnant liquid contained in a vessel

of rectangular cross section
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Vbl

Vbp+

 vio)

Vi

V2

Vae

Velocity of a lenticular plane bubble rising in infinitely

wide parallel plates

Velocity of a bubble with respect to the velocity of the
fluid ahead of the bubble

Average gas velocity with respect to the tube
Average liquid velocity with respect to the tube

Average velocity of the liquid ahead of the leading edge of
a bubble

Gas velocity through a nozzle

Superficial dispersed phase velocity

Superficial gas velocity

Superficial liquid wvelocity

Superficial velocity of the mixture

Velocity of a swarm of bubbles in a stagnant liquid
Velocity of a bubble rising in an extended liquid
Relative velocity between gas and liquid

Velocity defined by Equation (2.51)

Fluid velocity at the axis of a pipe

Expansion velocity of the bubble during its first stage of
formation

Bubble veldcity during its second stage of formation

Expansion velocity of the bubble during its second stage of

formation
Time
Width of a channel
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Vertical coordinate

Thickness of a layer of bubbles, or vertical dimension of a

two-phase cell

Greek Upper Case

bp
b

Density of the liquid minus density of the gas
Number defined by Equation (2.53)

Greek Lower case

ac

Average volumetric gas fraction

Total dispersion coefficient

Contact angle

Liquid viscosity
Plastic viscosity

Apparent viscosity of the mixture
Density

Apparent or equivalent density of the fluid column
Dispersed phase density

Gas density

Mixture density

Dens!ty that corresponds to the virtual mass of the bubble

Interfacial tension of the liquid

Shear stress

Yield stress of a Bingham fluid



SUBSCRIPTS

English Upper 'Case

B
D
E
Fr

K
M
N
R

Re
RPL

Buovyancy, Bingham

Drag

Equivalent

Froude

Kinetic, Karman

Moody

Nozzle

Relative

Reynolds

Reynolds for a power law

English Lower Case

av
b

w o 3

Average

Bubble

Curvature

Chamber

Dispersed phase

Equivalent, effective, equilibrium
Fluid, final

Gas

Initial

Liquid

Modified

Stagnant media, oblate spheroid
Solid, slug, slip, spherical
Swarm

Tubing or pipe

184
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v Virtual
zk As defined by Zukosky

Greek lLower case

o« Derivative with respect to gas concentration

o In infinite media

Other Symbols

1 First

2 Second

2 Expansion in second

+ Ahead of the leading edge

D Rectangular cross section geometry
U Velocity field

U, Velocity field that characterizes M,
Uy Velocity field that characterizes M;
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APPENDIX A

RIETEMA AND OTTENGRAF'S PROOF OF THE THEOREM OF
MINIMUM ENERGY DISSIPATION FOR CIRCULATING BUBBLE
COLUMNS

Let: M, be the mode of liquid flow in a bubble column in steady
state.
E, be the total energy dissipation associated to M,
U, liquid velocity field that characterizes the mode M,.
M; be another mode of liquid flow such that M is different
from M.
- | E; be the total energy dissipation associated to M;.

Uy velocity fleld that characterizes the mode M;.

e dissipation per unit of volume.

g gravitational constant.
T shear stress.

p density.

(a). Suppose that Up = Uy - U, = 0 at all fixed boundaries and

at the surfaces where the energy is introduced.
(b). Define:

‘tD = ‘tl - ‘to
UD = Ul - Uo
I For E, to be the minimum energy dissipation of the system, it has
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to be proved that E;| > E,.

We can write:
Eq = f[] e dV =- [[[ {(v-[1,-U,1)

WUl DY aAv.. (A-1)

B = IIf epav=- JIf (v lq -u D)

U LYy DY ave (A-2)
Ep=JIf epav=-[ff ((v:[1y-up)
-(UpelY: p)) av.. .. (A-3)
From (b), we can write; -

T =Tp+ T, and Uy =Ug + Uy .. oo (A-4)

Taking in account Equations (A-4), the total energy dissipation
associated to Mj is

Ey=-J[J ((9-Tapet,)-Up+ U]

“Up+r U e[V lipery)lYav............. .. (A-5)
Recall that dot multiplication is distributive over addition:

By == JIJ (o Ly Up)eln, - Uy + (r U

H U 1) - U L 9e 1, 1- Uy [ ¥+ 1)
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-UD'[V.“CD]‘UD'[?'IOI}CIV ............. (A-6)
and from Equations (A-2) and (A-3), we can write

Ey=Ep«Eo- [Jf {(Velty* Uy )) - (U, [9° 1p)) ) av

I 9 Lty Upl) -(Upl¥ 1, 1)0aAV.... (A7)

Ej = Ep+Ey -2 [f] (9[- Up1)-Op lv-t)))dv... (a-8)

Now,
[l et - up)y-(UpL9-1 1)} av

=[[J(v-Tr,-uphyav -f[f (up-[v-1,1) av.. (a-9)

Applying the Gauss theorem to the left integral of the r.h.s of

Equation (A.9) we obtain

Hi(v-tr,-uplrav= [f [t - Upl-ds=0....(A10)

‘where (a) has been applied, and also the fact that T, = O at the free

surface and at the free surfaces of the bubbles.
Ej=Eg+Ep+2 [[[ (Up-lv-tdav................ .. (A-11)

In vector notation, the momentum Equation63 for a steady state

process is
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(Vr1,)=-9Prpg/a. ..................... (A-12)

Equation (A-11) becomes

Ej=Eq+Ep+2{ [[Up (P-pgn/g. ) ds-[[fI(P-pgh/g.)

But Up = 0 perpendicular to the normal of the surface, and for an

fncompressible fluid ¢ * Up = 0. So, the energy dissipation associated
to M, is: )

As E; and Ep are positive:

Rietema and Ottengraff®2 also proved the theorem for the case
- that the inertia term cannot be neglected. Also, they said: "When
.the column is long enough it might be expeéted that the wvolume
integral in equation A-7 can be neglected also, and so for columns
long enough the principle of minimum energy dissipation would hold

under any condition." Note that this is the case encountered in well

control operations.
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F e e e e e eecraccccccremmmmccmccececcccccccceecmme———————— *
N2 GAS MIGRATION IN W.B. MUD; OFFSHORE GEOM. LSU 0.48
He e e mee e cccccccccccdcecmces;cceamcccescccmemee——————— *
Fededddriciokiok sk 5 % WELL GEOMETRY #¥diiddiididddddirdiidiitisrt
* DRILL STRING GEOMETRY (TOP TO BOTTOM) *
%* *
* ENTER NO OF SECTIONS ( UP TO A MAXIMUM OF 10 ): *
Keocea *
1
L I _ *
* COMPLETE TABLE BELOW FOR EACH SECTION OF PIPE HAVING A DIFFERENT ID: #*
* (START AT TOP OF DRILL STRING AND USE A MAXIMUM OF 10 SECTIONS) *
* *
* INJ STRING OD DRILL STRING ID LENGTH *
* (INCHES) (INCHES) (FEET) *
H cemecmmccccccance | meecmccccscmcee ecceeme—- *
1.315 2.441 6000.0
K emmeemccemccccncce cdccemescsc;ece ceceeea- *
% - *
* NO OF CHOKE LINES CHOKE LINE DIAMETER VERTICAL LENGTH *
* (INTEGER NUMBER) (INCHES) (FT) *
A cmmmcmccmcccecccs mmcmmcccemmammceess eccmmmeace-man- %
1 1.995 3000.0
H cmmececmeamesmeccs cmccmmcesccmseammes ececeememeemm—— *
*
* ANNULAR GEOMETRY (TOP TO BOTTOM) *
*
* ENTER NUMBER OF SECTIONS HAVING DIFFERENT SIZE: *
. *
1
A comm *
* *
* COMPLETE THE TABLE BELOW STARTING AT TOP OF ANNULUS AND USING A *
* MAXIMUM OF 10 SECTIONS: *
% *
* PIPE OD CASING OR HOLE ID LENGTH *
* (INCHES) (INCHES) : (FEET) *
X cmmcccce eeeccesccccccace cmmmaa *
2.875 6.875 3000.0
* ecccacce eecmcccscccccee ememee- *
* *
* *
* ENTER TOTAL FLOW AREA OF BIT: *
* (SQ INCHES ) *
* *
1.914
* eecemeecmeeaa *
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FikRi R Rk kR ki kdiihddokd MUD PROPERTIES #8fbibiddbkkhd bt ke ek
* *
* ENTER PROPERTIES OF MUD IN WELL AT TIME OF KICK, FOLLOWED BY *
* PROPERTIES OF MUD USED TO CIRCULATE KICK FROM WELL: *
* (VALUE ENTERED FOR WATER FRACTION MUST INCLUDE SWELLING DUE TO *
* DISSOLVED SALTS.) *
%* *
* MUD PLASTIC YIELD WATER WATER OIL *
* DENSITY VISCOSITY POINT FRACTION DENSITY FRACTION *
* (PPG) (Cp) (#/SQFT) (PPG) *
K mmmmmce  mercemeee mmcmeee memmcccme memcce  emmmmmeee *
8.650 24.0 6.0 0.9775 8.338 0.000
8.650 24.0 6.0 0.9775 8.338 0.000
K e e, cecccnee cmmcmccce semmecr e *
* *
* ENTER MUD TEMPERATURE PROFILE: *
* %*
* SURFACE GEOTHERMAL *
* TEMPERATURE GRADIENT *
* (DEG F) (DEG F/100 FT) *
¥ ceecmmemccce eccccccmanen %*
83 1.300
* emcrccceecs cmcmmmmeceea *
*
Fdkikkdkdicddkik COMPOSITION OF KICK FLUIDS #idiiiiadiidnaiddds
* %
* ENTER VOLUME FRACTION AND SALINITY OF FORMATION WATER IN KICK: *
* ) . *
* VOLUME WATER *
* FRACTION SALINITY *
* OF BRINE (PPM EQ NACL) *
K mecmececcccae dcccceameea *
0.000 0.0
X ceecmccsccce cdcccemenen *
* , *
- * ENTER MOLE FRACTION FOR EACH COMPONENT OF NON-WATER PORTION OF KICK: *
*( THE MOLE FRACTIONS ENTERED BELOW SHOULD SUM TO 1.000 ) *
* *
* C1 c2 C3 N-C& I-C4 C5+ co2 H2S N2 *
b i T *
0 0 0 0 0 0 0. 0 1.0000
K e e e e e meiicn cemmeme e emmme mmmmmmm e *
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| FhEERdhikikiikidkdhkht%  NUMERICAL MODEL PARAMETERS #%d#ddidiididisdssd

* NUMBER OF CELLS (50 TO 500) *
F cececcmemmmececcccc————— *
300
¥ ecccmceessmcseccccmam——— *
* ENTER: 1 TO PRINTOUT THE DESCRIBED PARAMETER; O OTHERWISE *
* PRESSURE OIL WATER GAS SOLIDS *
¥ emercee emece demee eaeme mmeem *
1 0 0 0 0
* eeecec meems ademe memee cceea *
%*
Fhiddnkikddihdx%  WELL CONTROL OPERATING CONDITIONS #iiidddiidikidiiids
* . . *
* SPECIFY THE WELL CONTROL OPERATING CONDITIONS BY COMPLETING THE ¥*
* TABLES BELOW: *
%* *
* ENTER LOCATION OF SPECIFIED PRESSURE (1= PUMP, 2=BH, 3= CHOKE ) *
* *
* LOCATION i *
* ccceecaa %*
2
* cmmemae- *
* *
* ENTER NUMBER OF TIME PERIODS NEEDED (MAXIMUM OF 120): *
F ommmo-- %*
32
L *
* COMPLETE THE TABLE BELOW FOR THE SPECIFIED NUMBER OF TIME PERIODS: *
* %*
* GAS RATE SPECIFIED MUD SNAPSHOT *
* TIME PUMP RATE ON BOTTOM PRESSURE 1=0LD DESIRED? *
* (MIN) (BBL/MIN) (BBL/MIN) (PSIA) 2=NEW (1= YES) ¥
F  eemceee e cdcmdedae emecmmccen  comee cmmeaa *
0.0 0.3748 0.7400 2924.0 1 0
1.0 0.3748 0.7400 3047.0 1 0
2.0 0.3748 0.7400 2998.0 1 0
3.0 0.3748 0.7400 3001.0 1 0
4.0 0.3748 0.7400 2994.0 1 0
5.0 0.3748 0.7400 2988.0 1 0
6.0 0.3748 0.7400 2981.0 1 0
7.0 0.3748 0.7400 2975.0 1 0
8.0 0.3748 0.7400 2968.0 1 0
9.0 0.3748 0.7400 2962.0 1 0
10.0 0.3748 0.7400 2955.0 1 0
11.0 0.3748 0.7400 2948.0 1 0
12.0 0.3748 0.7400 2942.0 1 0
13.0 0.3748 0.7400 2935.0 1 0
14.0 0.3748 0.7400 2928.0 1 0
15.0 0.3748 0.7400 2920.0 1 0
16.0 0.3748 0.7400 2914.0 1 0



* GAS RATE S
* TIME PUMP RATE ON BOTTOM P
* (MIN) (BBL/MIN) (BBL/MIN)

380

Ficiokdkohdkdiikhhhddokihiiiix® END OF DATA
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PECIFIED MUD SNAPSHOT *
RESSURE 1=0LD DESIRED? *
(PSIA) 2=NEW (1= YES) *
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R i *
N2 KICK IN W.B. MUD; OFFSH GEOM. LSU 8.95PPG 11BBL 0.5.1
e e e e e e e e e e e e e mma e e —— e . o e o e e o e e e e *
Fhikdkdiihhhkk DRILL STRING GEOMETRY (TOP TO BOTTOM) #&addichidiididkss
* *
* ENTER NO OF SECTIONS ( UP TO A MAXIMUM OF 10 ): *
R *
1
Keowma *
* COMPLETE TABLE BELOW FOR EACH SECTION OF PIPE HAVING A DIFFERENT ID: *
* (START AT TOP OF DRILL STRING AND USE A MAXIMUM OF 10 SECTIONS) *
* *
* INJ STRING OD DRILL STRING ID LENGTH *
* (INCHES) (INCHES) (FEET) *
H eccrecemcccccme—- e em e —-——- cenmm——— *
1.315 2.441 6000.0
H ccmmccncmeccccccae  mdcecccccmemmeme mmmmm—en *
* . *
* NO OF CHOKE LINES CHOKE LINE DIAMETER VERTICAL LENGTH *
* (INTEGER NUMBER) (INCHES) (FT) *
I it *
2 1.995 3000.0
K e cmm e e e e rcccmcasecn e eecmem——— e *
*
* ANNULAR GEOMETRY (TOP TO BOTTOM) *
*
* ENTER NUMBER OF SECTIONS HAVING DIFFERENT SIZE: *
K emee *
1
cm—— *
*
COMPLETE THE TABLE BELOW STARTING AT TOP OF ANNULUS AND USING A *
MAXTMUM OF 10 SECTIONS: *
*
PIPE OD CASING OR HOLE ID _ LENGTH *
(INCHES) (INCHES) (FEET) *
............................... *
2.875 6.875 3000.0
K cmmmcecne memdeeccccomees ceeemen *
* *
* *
* ENTER TOTAL FLOW AREA OF BIT: *
* (SQ INCHES ) *
* *
1.914
K ccccnmem———— *
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TldAdhhdkk bk kb *&%% MUD PROPERTIES ®*#aidaditidtdttihdhdishiiiik
* *
* ENTER PROPERTIES OF MUD IN WELL AT TIME OF KICK, FOLLOWED BY *
* PROPERTIES OF MUD USED TO CIRCULATE KICK FROM WELL: *
* (VALUE ENTERED FOR WATER FRACTION MUST INCLUDE SWELLING DUE TO *
* DISSOLVED SALTS.) *
* *
*  MUD PLASTIC YIELD  WATER WATER OIL *
* DENSITY VISCOSITY POINT FRACTION DENSITY FRACTION *
* (PPG) (CP) (#/8QFT) (PPG) *
* emcmcce ccecccccn mcccceac c;ceememe emeemes  cmcmm———- %
8.950 5.0 2.0 0.9541 8.338 0.000
8.950 5.0 2.0 0.9541 8.338 0.000
¥ cemecen  memmccece crcmccca cmceecewe sememes ccemceeee *
* *
* ENTER MUD TEMPERATURE PROFILE: *
* *
* SURFACE GEOTHERMAL *
*  TEMPERATURE GRADIENT *
* (DEG F) (DEG F/100 FT) *
*  ccmeea @ecmee ceeesesessece *
83 1.300
*  ccmeemememe emmmecccceee- *
* *
Fdddickikkiddihkihdk  COMPOSITION OF KICK FLUIDS ##sividididhitiiiitsis
* *
* ENTER VOLUME FRACTION AND SALINITY OF FORMATION WATER IN KICK: *
* . *
* VOLUME WATER *
* - FRACTION SALINITY *
* OF BRINE (PPM EQ NACL) *
*  amcmccme;emoce mcecemeeem—a *
0.000 0.0

¥  cccmmmecmmes ceeeeee——-- *
* *

ENTER MOLE FRACTION FOR EACH COMPONENT OF NON-WATER PORTION OF KICK: *
*( THE MOLE FRACTIONS ENTERED BELOW SHOULD SUM TO 1.000 ) *
* *
* Cl1 c2 Cc3 N-C& I-C4  C5+ co2 H2S N2 *
Hemeoee cecmcee ccmemcn mceeeas mmseese seeee cmmemee memmem. mm————— *

0 0 0 0 0 0. 0. 0 1.0000
Kecmeee cecccmn meccccn eeeccme meememe cacmcce mecemcm mmmm——— —————— *
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* % % % % ¥

FhAdEdA kA Rdh b Ak A kA% NUMERICAL MODEL PARAMETERS #risciididdaddhdddddis
* *
? ENTER NUMERICAL MODEL PARAMETERS CONTROLLING ACCURACY, RUN-TIME, %*
* AND PRINTER PAPER CONSUMPTION BY COMPLETING TABLE BELOW: *
* *
* NUMBER OF CELLS (50 TO 500) *
* e eeseecseamccacecccmanm—- %
300

| aeacsceccacseeerccaeenae. *
* ) *
* ENTER: 1 TO PRINTOUT THE DESCRIBED PARAMETER; O OTHERWISE *
* *
* PRESSURE OIL WATER GAS SOLIDS *
O *

1 0 0 0 0
F emmese | emase T amcees memmee mcmaw *
* *
Fiekdckickidekidiooi® WELL CONTROL OPERATING CONDITIONS #iwiaividickidkiick
* *
* SPECIFY THE WELL CONTROL OPERATING CONDITIONS BY COMPLETING THE *
* TABLES BELOW: *
* %
* ENTER LOCATION OF SPECIFIED PRESSURE (1= PUMP, 2=BH, 3= CHOKE ) *
* *
* LOCATION *
K mmcemmoo *

2
K cemmccaa *
* *
* ENTER NUMBER OF TIME PERIODS NEEDED (MAXIMUM OF 140): *
X cocmmaa *
100

K cemmm- %
COMPLETE THE TABLE BELOW FOR THE SPECIFIED NUMBER OF TIME PERIODS: *
/ *
GAS RATE SPECIFIED - MUD SNAPSHOT *
TIME PUMP RATE ON BOTTOM PRESSURE 1=0LD DESIRED? *
(MIN) (BBL/MIN) (BBL/MIN) (PSIA) 2=NEW (1= YES) *
.............................................. *

0.00 2.166 0.0 2953.0 1 0

1.00 2.166 1.998 3104.0 1 0

2.90 2.1512 2.091 3067.0 1 0

3.20 0.0000 2.103 2941.0 1 0

4.00 0.2244 2.139 2878.0 1 0

4.40 0.0 2.160 2850.0 1 0

5.80 0.0 2.250 2849.0 1 0

6.00 0.0 2.250 2889.0 1 0

6.40 0.0 0.000 3233.0 1 0

6.50 0.0 0.000 3248.0 1 0

7.00 0.0 0.000 3368.0 1 0



*
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GAS RATE  SPECIFIED MUD  SNAPSHOT *

TIME PUMP RATE ON BOTTOM  PRESSURE 1=0LD DESIRED? %*

(MIN) (BBL/MIN)  (BBL/MIN) (PSIA) 2=NEW (1= YES) *

---------------------------------------------- *
14.00 0.0 0.000 3383.0 1 0
14.75 1.6 0.00 3383.0 1 0
15.00  1.77 0.00 3393.0 1 0
16.00  1.818 0.00 3428.0 1 0
16.65  1.897 0.00 3533.0 1 0
17.50  1.854 ©0.00 3423.0 1 0
18.30  1.814 0.00 3457.0 1 0
19.00  1.854 0.00 3548.0 1 0
19.50  1.888 0.00 3548.0 1 0
20.10  2.068 0.00 3473.0 1 0
20.65  1.888 0.00 3438.0 1 0
21.60  1.841 0.00 3423.0 1 0
22.00  1.814 0.00 3493.0 1 0
22.50  1.881 0.00 3563.0 1 0
22.70  1.910 0.00 3563.0 1 0
23.10  1.919 0.00 3473.0 1 0
23.50  1.842 0.00 3393.0 1 0
24.00  1.780 0.00 3478.0 1 0
24.60  1.848 0.00 3608.0 1 0
24.85  1.863 0.00 3618.0 1 0
25.40  1.888 0.00 3558.0 1 0
26.00  1.888 0.00 3518.0 1 0
37.00  1.888 0.0 3498.0 1 0
44.50  1.888 0.0 3473.0 1 1
52.00  1.873 0.0 3493.0 1 0
52.60  1.910 0.0 3498.0 1 0
53.30  1.941 0.0 3418.0 1 0
53.70  1.941 0.0 3388.0 1 0
54.00  1.926 0.0 3388.0 1 0
55.40  1.805 0.0 3518.0 1 1
56.00  1.879 0.0 3583.0 1 0
56.40  1.913 0.0 3523.0 1 0
56.80  1.931 0.0 3448.0 1 0
57.00  1.935 0.0 3416.0 1 0
57.40  1.925 0.0 3393.0 1 0
57.80  1.897 0.0 3398.0 1 0
58.00  1.882 0.0 3413.0 1 0
59.00  1.795 0.0 3528.0 1 0
59.50  1.795 0.0 3593.0 1 0
59.95  1.805 0.0 3593.0 1 0
62.70  1.842 0.0 3533.0 1 0
65.00  1.846 0.0 3528.0 1 0
65.60  1.873 0.0 3518.0 1 0
66.40  1.888 0.0 3468.0 1 0
66.90  1.832 0.0 3448.0 1 0
67.4 1.897 0.0 3553.0 1 0



* GAS RATE
* TIME PUMP RATE ON BOTTOM
*  (MIN) (BBL/MIN)  (BBL/MIN)
X crmcccer eccccscme cecemeeoe-

67.6 1.888 0.0

67.8 1.857 0.0

68.00  1.857 0.0

68.5 1.857 0.0

69.4 1.857 0.0

69.9 1.882 0.0

) 70.5 1.847 0.0

71.0 1.826 0.0

71.2 1.851 0.0

71.6 1.894 0.0

72.1 1.835 0.0

72.3 1.814 0.0

72.7 1.804 0.0 -

72.8 1.814 0.0

73.3 1.872 0.0

73.6 1.903 0.0

74.1 1.913 0.0

74.3 1.914 0.0

: 74.8 1.857 0.0

623 75.1 1.872 0.0

75.5 1.897 0.0

75.7 1.909 0.0

75.9 1.873 0.0

76.2 1.847 0.0

76.8 1.919 0.0

77.0 1.938 0.0

77.15  1.938 0.0

77.6 1.786 0.0

78.4 1.848 0.0

79.3 1.891 0.0

80.0 1.910 0.0

81.3 1.919 0.0

82.5 1.882 0.0

85.4 1.866 0.0

86.5 1.860 0.0

90.8 1.854 0.0

91.0 0.464 0.0

91.2 0.390 0.0

91.3 0.0 0.0

91.6 0.0 0.0

91.8 0.0 0.0

92.0 0.0 0.0

94.00 0.0 0.0
K ewmmmmn ccomccccme emaemmm—---

212

SPECIFIED MUD SNAPSHOT *
PRESSURE 1=0LD DESIRED? *
(PSIA) 2=NEW (1= YES) *
- *

ot ol ateetonte et oatonts
FHRIXAFRRLNIRRARRFFADLRSANNS END OF DATA bttt ddo b A e A e A ook
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e e e e e e e e et c e e cm e cme e ceecc e e e e e e oo o *
RUN 2 N2 GAS KICK IN W.B. MUD; OFFSH GEOM. LSU 9.15PPG 11 BBL 0.5.1
I e et T S %
* DRILL STRING GEOMETRY (TOP TO BOTTOM) *
* *
* ENTER NO OF SECTIONS ( UP TO A MAXIMUM OF 10 ): *
Heoaw *
1
Kewow *
* COMPLETE TABLE BELOW FOR EACH SECTION OF PIPE HAVING A DIFFERENT ID: *
* (START AT TOP OF DRILL STRING AND USE A MAXIMUM OF 10 SECTIONS) %
* *
* INJ STRING OD DRILL STRING ID LENGTH *
* (INCHES) (INCHES) (FEET) *
K ceccccmmmcmcecrae | eemccccccccmes cmmem - *
1.315 2.441 6000.0
H cecmmcccaceeccctcs | mmcasmmcccmwsmr emccmaea *
* . *
* NO OF CHOKE LINES CHOKE LINE DIAMETER  VERTICAL LENGTH *
* (INTEGER NUMBER) (INCHES) (FT) *
H cenccmcmcrecrccrnes | cmmmecccccrcaccmemee eemcccmccmemeeea *
2 1.995 3000.0
F cmceccrmammccctcce | mcmcmmmcecccccccmess memeccceemcmm——— *
*
* ANNULAR GEOMETRY (TOP TO BOTTOM) .
*
* ENTER NUMBER OF SECTIONS HAVING DIFFERENT SIZE: *
K cema . *
1
..... *
' *
COMPLETE THE TABLE BELOW STARTING AT TOP OF ANNULUS AND USING A *
MAXIMUM OF 10 SECTIONS: *
*
PIPE OD CASING OR HOLE ID LENGTH *
(INCHES) © (INCHES) (FEET) - *
............................... *
2.875 6.875 3000..0
F wccemcce 1 hdmedccacacmeeee mememen *
* *
* *
* ENTER TOTAL FLOW AREA OF BIT: *
* (SQ INCHES ) -
* *
1.914
A wacmccccccmmw *
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* %
* ENTER PROPERTIES OF MUD IN WELL AT TIME OF KICK, FOLLOWED BY *
* PROPERTIES OF MUD USED TO CIRCULATE KICK FROM WELL: - *
* (VALUE ENTERED FOR WATER FRACTION MUST INCLUDE SWELLING DUE TO *
* DISSOLVED SALTS.) %
* *
*  MUD PLASTIC YIELD  WATER WATER 0IL *
* DENSITY VISCOSITY POINT FRACTION DENSITY - FRACTION *
* (PPG) (CP)  (#/SQFT) (PPG) *
K cccmemn abccmmcce ccccerie cocmememe emcceee acmee e ea *
©9.150 5.0 2.0  0.9391 8.338 0.000
9.150 5.0 2.0  0.9391 8.338  0.000
H ccccnce ccccccwme cememecs scrmcneee cameree cacceseoo *
* *
* ENTER MUD TEMPERATURE PROFILE: *
* %
* SURFACE GEOTHERMAL #*
*  TEMPERATURE GRADIENT *
* (DEG F) (DEG F/100 FT) *
K eccmdcmcccre | ececececaese= %
83 1.300
X eccmccmecces | cccecmmeeco—- *
* *
FhikhdhbhAhhhibiids COMPOSITION OF KICK FLUIDS #osasiiidiidsdtiitiiiss
x *
* ENTER VOLUME FRACTION AND SALINITY OF FORMATION WATER IN KICK: *
* R *
* VOLUME WATER *
* FRACTION SALINITY *
* OF BRINE (PPM EQ NACL) *
K  emcccmcccces ceecceccen= *
0.000 0.0

KX ecoamcmmcccces  cecmeccceme- *
* *
* ENTER MOLE FRACTION FOR EACH COMPONENT OF NON-WATER PORTION OF KICK: *
*( THE MOLE- FRACTIONS ENTERED BELOW SHOULD SUM TO 1.000 ) *

*
* (1 c2 c3 N-C4 I-C4  C5+ €02 H2S N2
Kemmmme momecce mdccecc comemmre memccce coemeee ceecece meeeeee coeoeea *

0. 0 0 0 0 0 0. 0 1.0000
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Fkdkkkdkkkdddhkidkixds  NUMERICAL MODEL PARAMETERS #dvridbiridihdfidddsds

* * k% b ¥

$ o ok ok %

: *
ENTER NUMERICAL MODEL PARAMETERS CONTROLLING ACCURACY,. RUN-TIME, *
AND PRINTER PAPER CONSUMPTION BY COMPLETING TABLE BELOW: *
*
NUMBER OF CELLS (50 TO 500) *
........................ *
300
# | eeecceeaececcccecccccceaa *
* _ *
* ENTER: 1 TO PRINTOUT THE DESCRIBED PARAMETER; O OTHERWISE *
* *
* PRESSURE OIL WATER GAS SOLIDS *
*  emceee ammce 0 ememe mmsee cceea *
1 0 0 0 0
*  cecece ecsce ceeee emmee cemaa *
* *
FhFAFAASRAASESA%Y  WELL CONTROL OPERATING CONDITIONS #iidiriddrkhdiddiss
* : *
* SPECIFY THE WELL CONTROL OPERATING CONDITIONS BY COMPLETING THE *
* TABLES BELOW: *
* *
* ENTER LOCATION OF SPECIFIED PRESSURE (1= PUMP, 2=BH, 3= CHOKE ) %
* *
* LOCATION *
* oo *
2
* ccceecea %
* *
* ENTER NUMBER OF TIME PERIODS NEEDED (MAXIMUM OF 140): *
K occcmew %*
80
* omean- *
COMPLETE THE TABLE BELOW FOR THE SPECIFIED NUMBER OF TIME PERIODS: *
*
GAS RATE SPECIFIED MUD SNAPSHOT *
TIME PUMP RATE ON BOTTOM PRESSURE "1=0LD DESIRED? *
(MIN) (BBL/MIN) (BBL/MIN) (PSIA) 2=NEW (1= YES) *
#  cecemee mmccccces  meeeemees eeeeeccees emece ccceee *

AUV WWLWWWWNEO
o)

o
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GAS RATE SPECIFIED MUD SNAPSHOT *

TIME PUMP RATE ON BOTTOM PRESSURE 1=0LD DESIRED? *

(MIN) (BBL/MIN) (BBL/MIN) (PSIA) 2=NEW (1= YES) *

.............................................. *
7.00 0.0 1.5106 3205.0 1 0
7.60 0.0 1.5106 3455.0 1 0
7.70 0.0 0.0 3495.0 1 0
8.00 0.0 0.0 3435.0 1 0
13.70 0.0 0.0 3435.0 A | 0
14.10 1.764 6.0 3435.0 1 0
15.10 1.764 0.0 3465.0 1 0
15.60 1.888 0.0 3575.0 1 0
16.40 1.826 0.0 3405.0 1 0
17.30 1.906 0.0 3545.0 1 0
18.30 1.888 0.0 3415.0 1 0
19.50 1.907 0.0 3505.0 1 0
20.90 1.857 0.0 3395.0 1 0
22.40 1.857 0.00 3545.0 1 0
23.80 1.857 0.00 3365.0 1 0
24.80 1.876 0.00 3525.0 1 0
25.50 1.919 0.00 3475.0 1 o
25.80 1.870 0.00 3390.0 1 0
27.40 1.869 0.00 3705.0 1 0
28.70 1.931 0.00 3615.0 1 0
29.40 1.894 0.00 3480.0 1 0
31.10 1.888 0.00 3565.0 1 0
31.40 1.925 6.00 3615.0 1 0
32.0 1.919 0.0 3465.0 1 0
33.00 1.910 0.0 3465.0 1 0
34.20 1.897 0.0 3500.0 1 0
35.90 1.897 0.0 3460.0 1 0
37.00 1.888 0.0 3515.0 1 0
39.40 1.826 0.0 3480.0 1 0
40.40 1.857 0.0 3665.0 1 0
41.10 1.894 0.0 3525.0 1 0
42.00 1.894 0.0 3480.0 1 0
43.30 1.894 0.0 3520.0 1 0
44.70 1.876 0.0 3475.0 1 0
45.30 1.%09 0.0 3530.0 1 0
46.00 1.888 0.0 3465.0 1 0
46.90 1.919 0.0 3530.0 1 0
47.60 1.910 0.0 3455.0 1 0
49.20 1.925 0.0 3515.0 1 0
50.20 1.934 0.0 3365.0 1 0
52.00 1.857 0.0 3575.0 1 0
52.40 1.910 0.0 3565.0 1 0
53.40 1.928 0.0 3405.0 1 0
54.90 1.872 0.0 3575.0 1 0
56.80 1.941 0.0 3415.0 1 0
57.60 1.928 0.0 3415.0 1 0
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* GAS RATE SPECIFIED MUD SNAPSHOT *
* TIME PUMP RATE ON BOTTOM PRESSURE 1=0LD DESIRED? *
* (MIN) (BBL/MIN)  (BBL/MIN) - (PSIA) 2=NEW (1= YES) *
E  ccrmine  cmccanccs mdrreaces  ccecccccee  eceme emmeew *

59.00 1.910 0.0 3465.0 1 0

61.8 1.875 0.0 3465.0 1 0

63.3 1.857 0.0 3605.0 1 0

64.0 1.875 0.0 3565.0 1 0

64.6 1.913 0.0 3540.0 1 0

65.8 1.913 0.0 3465.0 1 0

67.6 1.888 0.0 3530.0 1 0

69.4 1.894 0.0 3505.0 1 0

70.8 1.910 0.0 3525.0 1 0

71.9 1.873 0.0 3450.0 1 0

72.7 1.925 0.0 3550.0 1 0

73.3 1.873 0.0 3460.0 1 0

73.9 1.894 0.0 3555.0 1 0

75.2 1.903 0.0 3465.0 1 0

76.2 1.943 0.0 3525.0 1 0

77.3 1.956 0.0 3390.0 1 0

78.0 1.928 0.0 3410.0 1 0

78.8 1.913 0.0 3485.0 1 0

85.2 1.913 0.0 3480.0 1 0

85.6 0.0 0.0 3480.0 1 0

85.9 0.0 0.0 3480.0 1 0

86.4 0.0 0.0 3435.0 1 0

87.4 0.0 0.0 3435.0 1 0
* - - - - - n - emmemmmmreEe 00 emmme O emeae-- x
* *
FEFERRALISSTRIS IS bdkdkdddt END OF DATA  Fokddeddddbdhdhhidihddhhhhidihiiiiihiss
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Son of Mr. and Mrs. Manuel Casariego, Vicente Casariego G. was
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In the Fall of 198l, began working towards Ph.D. degree in
Petroleumn Engineering at Louisiana State University.

Master of Science in Petroleurn Engineering, Louisiana State
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Research work was on the determination of the velocity of large gas
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Work was focussed in the following areas:
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a circulation fluid in workover operations in low pressure wells, in
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experimental equipment to generate foam.
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application as circulating fluids in both well workover operations and
drilling operations; laboratory evaluation of completion and workover
fluids.
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