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INTRODUCTION

The research described in this report deals with the dynamic

response prediction of offshore structures. The project had two

specific tasks: 1) the development of a new technique for the
simulation of random wave forces in c¢onjunction with finite
element computer models of offshore structures. 2} The
development of a theoretical model for the prediction of
hydrodynamic viscous damping of an offshore structure in the
presence of both waves and current. The results of both topics
are completely described in graduate student theses which have
been recently completed. The wave force simulation research is

the subject of a doctoral dissertation (1) and the damping

research was the subject of a master's thesis (2). The principal

results will be discussed here. Interested parties may request

coples of the theses themselves.
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THE SIMULATION OF WAVE FORCES

Current industry practice in the modelling of dynamic
response of offshore structures makes extensive use of fin{ite
element techniques., The wave forces are generally computed using
the Morison equation. This requires that water particle
velocities and accelerations be known over an extensie grid of
points corresponding to structural elements. The forces on each
structural component are computed and applied at the appropriate
nodes of the finite element model. To properly account for
non-linear mechanisms such as due to drag forces and the actual
position of the free structure, these computations must be done

in the time domain.

The simulation of a unique event, such as the design wave 1is
usually accomplished by prescribing a deterministic non-linear
wave or series of waves. Present practice seems quite adequate
as the duration of the event is short and not too much computer
time is required. TFor the purpose of fatigue 1life estimation,
long time histories of random waves must be generated. To obtain
reliable statistics of, for example stress at a critical nede,
requires more computer time than is generally budgeted. The
principal source of numerical inefficiency with current

technology is in the wave force computation,



By present practice the wave induced water particle
velocities and accelerations are generated by summing a Ffinite
number of sinusoidal time histories with random initial phase
angles. The amplitude of each sine wave 1s selected so that the
sum provides an approximation to a desired wave spectrum. The
more components used the better the approximation. A typical
simulation may use 256 components. An excessive amount of
computer time is required. Another disadvantage of this approach
is that because each component itself is deterministic, the sum

eventually repeats itself.

In this research a method has been developed which simulates
wave induced velocities and accelerations in a numerically
efficient non-repeating way. Furthermore, the desired wave
spectrum is approximated, not at a finite number of discrete
frequencies but by a continuous wave spectrum. This is
beneficial in the simulation of slowly varying drift férces which
depend on difference frequencies between various components of
the wave spectrum. Finite numbers of components yield drift
forces at only a finite number of frequencies, not a continuum as
realized in the real ocean. The new method provides a coatinuum

of sum and difference frequencies.

The generation of water particle velocities and

accelerations at a single point is not adequate. The water



particle kinematics must be known simultaneously over a large
grid of points correspoanding to a complete three dimensional
structure. This is a straightforward though inefficient
computation when the discrete sinusoidal components are known,
because the attenuation of water particle velocities and
accelerations with depth may be computed for each component
individually. Likewise, the phase shift due to the horizontal
propagation of the waves may be computed for each individual
component before summing the components to obtain the total

kinematics.

In the method developed in this research, the random wave
time series is generated at an origin or source point on the
surface. The basic technique is simply the passage of band
limited white noise through a digital filter. The ocutput of the
filter is a random wave time history with the desired spectral
shape. Digital filter techniques have been available for years.
It is reasonable to question why they haven't replaced the
technique of summing sinusoidal components long ago. The answer
is that because the individual components are not known, it has
not been possible to propagate the waves to other locations
separated horizontally and vertically from the source point. One
of the principal contributions of this research has been in the
development of numerical techniques which properly account for

dispersive horizontal propagation of random waves as well as the



exponential attenuation of waves with increasing depth.

In this research, a vertical velocity time history with the
desired spectral shape is generated at a point defined as the
origin located on the mean waterline. A particular type of
digital filter known as an auto-regressive moving average (ARMA)
filter 1s used. The output of the ARMA filter is processed by a
series of numerical convolutions. ZEach convolutlion accounts for
a vertical or horizontal shift to a different sgpatial location.
Acceleration at each point is obtained by a numerical
differentiation of the vertical velocity. Horizontal velocities
and acceleractions are obtalned by use of a Hilbert transform
which 1s also implemented as a numerical convolution. These
steps are shown schematically in Figure 1, and discussed

individually below.
ARMA Simulation of Vertical Wave Particle Velocity

The ARMA technique is a linear digital filter in which
weighted values of the past N realizations of the velocity are
summed with the current and past M values of the white noise
input as shown in Equation 1. The coefficients a  are the
weighting coefficients for the past values of the output velocity
V(t-nDt). The b, coefficients are the weighting values of the

past and present values of the input noise, W(t-mDt), where Dt is



the time step chosen. The an and bm are chosen sc as to give the

transfer function of the filter the shape of the desired wave

veloclty spectrum.

N M
V(t) = ] a_ v(t-mDt) + ] b _W(t-mDr)
n=1 ° m=0

The coefficients, a_ and bm are difficulr

specified wave spectrum. Once known, however,

to obtain for each

they need not be

computed again, whenever that spectral shape 1s desired. 1In this

research, the ARMA coefficients representing a
Bretschneider spectra have been found. Figure
target Bretschneilder spectrum and the transfer
corresponding ARMA filter. The two curves are

indistinguishable. A task which remains to be

family of
2 1s a plot of the
function of the

nearly

done 1s a solution

for the ARMA coefficients for other popular wave spectra such as

the JONSWAP.

Vertical Attenuation of Wave Xinematics

From the mean free surface, deepwater waves are attenuated

exponentially at a rate which is determined by wave number. 1In

the frequency domaln the transfer function is as given in

Equation 2.



C(f,z) = e-(ZWf)zz/g

where
f = wave frequency in Hz
g = acceleration of gravity
2 = distance measured positive downward from the mean free
surface.
K = (2ﬂf)3g , the wave number

This transfer function introduces no phase shift. The Fourier

transform of G(f,z) is known and is given in Equation 3.

2
s(t,z) = Jg/amz e (2t /42)

This is the impulse response function corresponding to G(f,z).
When sampled at a finite number of points this function may be
implemented in a discrete form as given in Equation 4, and used

in a numerical convolution to obtain the properly attenuated wave

velocity at any depth Z.



2 2 2
_4/gbt” gDt k
gd(?,th) 441?2 exp 4z ) 4

The convolution sum is as shown in Equation 5.

V(t,z) = V(t,0) * g(t,z)

V(z,nDt) = 7§ V(0,(n-k)Dt)g, (kDt,z) 5
k

To demonstrate the accuracy of this convolution a time series
representing the vertical wveloecity on the mean free surface was
generated using a sum of 50 sinusoidal components. A sample time
history is shown in Figure 3. Using the convolution, the
corresponding time history 20 meters down was computed and
compared to the result obtained by summing the individually
attenuated sinusoidal components. The result is shown in Figure

4. The two time histories are Indistinguishable.
Horizontal Wave Propagation

The horizontal propagation of a random wave train must
properly account for dispersion; that is the fact that waves of
different frequency travel at different speeds. The transfer
function which accounts for this must introduce no wave

attenuation with distance travelled, but must account for phase
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shift. The proper frequency domain expression of this transfer

function is given in Equation 6.

(2T|'f)2 x . sign(f)
H(f,x) = e 3 g 6

where sign(f) means the sign of f.

The inverse Fourier transform of this expression is not known
analytically and must be obtained for each case numerically. If
Béx,kDt) is the result of the discrete inverse Fourier transform
then the horizontal propagation with dispersion may be given as
the following convolution.

N
V(nDt,x,z) = ) V((n-k)Dt,0,z)h(x,kDt) 7

k=-N
Figure 5 is an example of h(x,kDt) for a horizontal propagation
of 100m. Figure 6 is a comparison of the numerically exact
propagation of 50 sinusoidal components with the numerical
convolution. The horizontal distance 1is 100m which 1is
approximately 15 wavelengths of the shortest wave 1In the
summation. The convolution is designed s0 as to not allow the

phase error at the shortest wave to exceed T/4.
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Hilbert Transform and Differentiation

Once the vertical velocity at a remote point (x,z) is known,
it 1g still necessary to obtain the horizontal water particle
velocity and the vertical and horizontal components of
acceleration. The horizontal velocity is obtained by a 90° phase
shift from the vertical. This is done by use of the Hilbert
transform in the time domain by means of yet another numerical
convolution. Both components of acceleration are then obtained

by a simple central difference differentiation carried out in the

time domain,

Numerical Efficiency

Comparisons of the new methods described here with the sum
of sinusoids have been conducted for two cases. TIn the first
case a 10 row by 10 column grid of one hundred (x,z) points is
considered. 1In the second a 100 by 100 grid of 10,000 points is
evaluated. TFor each use the number of arithmetical calculations,
the number of necessary memory storage locations, and the number

of memory input-output transfers are estimated.

The new methods are compared to the sum of sinusoids for the
case of 256 components. The results are presented in Table 1 in

terms of the ratio of the number required for the sinusoidal
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method compared to the new method.

TABLE 1

RATIO OF REQUIREMENTS FOR SUM OF SINUSOIDS

COMPARED TO NUMERICAL CONVOLUTION

Grid Spacing
10 x 10 100 x 100
Arithmetical
Calculations 24 31
Memory Storage 33 1484
Locations
Input/Qutput
Transfers 256 256

Depending on the item considered the convolution method is
10 to 1000 times more efficient. No actual run time comparisons
have been made and no effort has as yet been made to optimize the

numerical methods used in the convolution approach. The savings
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are potentially so significant that further development of the

technique are fully justified,.

Future Research

These methods may be improved and extended in several ways.
First ARMA coefficients necessary for modelling most of the
popular wave spectra should be evaluated. Second, optimization
of some of the convolution algorithms should be undertaken. The
techniques should be extended to account for shaliow water
effects and the modelling of directionally spread random seas.
Methods for modelling wave forces up to the Instantaneous
position of the free surface should be investigated. A simple
application of a stretched linear model has been tried and

appears to work.

The new methods can be used to evaluate the wave kinematics
on a structure using measured wave data as an input. In actual
field tests the waves must be measured at a distance from the
structure. For the first time these techniques give us the
ablility to calculate the wave kinematics at the structure using
the remote measurement as an input. For the prediction of
response of floating structures such as TLP's, it will be
necessary to develep methods for evaluating hydrodynamic pressure

as well as velocities and accelerations,.
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Hydrodynamic Viscous Damping in Waves and Current

In previous research sponsored by the USGS it was shown that
the damping of a vibration mode of an offshore structure was
dependent on seastate. In that research the technique of
Gausslian closure was used to solve the non-linear equations of
motion for a structure excited by waves. The non-linearity
resulted from the drag force term of the Morison wave force
equation. The results of that research showed that the damping
of, for example, the fundamental bending mode of an offshore
platform depended on the root mean square relative water particle
velocity by the structure. In other words, the energy lost to
the generation of turbulence in the water, depended on seastate.
The higher the seastate the higher the damping. The results of
the research were confirmed in a model test. Those results were
valid only for the case of no current. Unfortunately, for many
of the newer design concepts the influence of current must be
taken into consideration. The long period surge and sway motions
of guyed towers, TLP's and semi-submersibles have the effect of
an apparent quasi-steady current when one is concerned with the
response at higher frequencies, such as the first bending mode of
a guyed tower, In addition, high seas are always associated with

surface currents.
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In this research, the method of stochastic linearization was
applied to the estimation of viscous hydrodynamic damping in
waves and current. The theoretical results are demonstrated here
in example calculations of the damping of the first bending mode
of a single pile structure and for the first bending mode of a

guyed tower.

Figure 7 is a drawing of an existing Gulf of Mexico
structure. The mode shape of the first bending mode is
indicated. Figure 8 is a plot of the predicted viscous
hydrodynamic damping ratio Ev for the first bending mode as a

function of significant wave height H1/3 and current speed, V.

Figure 9 is a diagram of a guyed tower, with drawinés of
both the sway and first bending modes. The natural periods in
these modes are 31 seconds in sway and 4.5 seconds in first mode
bending. Figure 10 is a plot of the predicted viscous
hydrodynamic damping for the first bending mode as a function of
current and significant wave height. Current is a much stronger

factor than wave height.

In the thesis by Ghosh (2), several other ianteresting
results are also presented. These include the effect of the sway
motion of the guyed tower on the damping of the bending modes.

Also included are predictions of dynamic respone as a function of



seastate,

and current profile.
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