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ABSTRACT

The Maximum Entropy Method (MEM) is a nonlinear
adaptive method of spectral analysis which is
capable of generating a higher resolution spectral
estimate from shorter data records than conventional
Fast Fourier Transform (FFT) methods. The MEM method
has proved to be useful in the calculation of natural
frequency and damping ratio estimates and their vari-
ances from ambient platform acceleration measurements.
This paper presents the results of an extension of the

data

single channel MEM to multichannel applications. A
transfer function estimate using the multichannel MEM
method of spectral analysis was used in mode shape

identification for an Amoco offshore caisson platform
located in 89 feet of water in the Gulf of Mexico.
Transfer function estimates cobtained from multichannel
spectral analysis are superior to those obtained using
autospectral methods in terms of their relative insen-
sitivity to input and output noise. Comparisen of
these relative acceleration magnitudes with the rela-
tive disptacement amplitudes obtained from a finite
element model of the caisson platform gave reasonable

agreement. Thus, this technique can be a useful tool
(in conjunction with the cross-spectral estimates of
magnitude, phase, and coherence) in mode shape iden-

tification for offshore platforms.

INTRODUCTION
As the petroleum industry moves into deeper
waters to tap new reserves of oil and gas, the cost

and size of the offshore platforms increases consider-

ably. Substantial interest has been generated in
methods of detecting structural damage by measuring
shifts in natural frequencies from undamaged condi-
tions [1,2,3]. Lack of  reproducibility in
determination of the natural frequencies of modes
higher than the fundamentals has led researchers to
conclude that detection of damage by above-waterline
measurement of acceleration response to environmental
loads 1is not feasible. One of the fundamental prob-

lems is that non-failure related sources of change are

so large as to obscure changes in natural frequency
which are caused by significant levels of damage.

have led researchers to consider
techniques, including (1)
measurement of global and local modes
and (2) forced excitation with shakers and impulse
hammers  [4]. Rather than simple measurement of
changes 1in natural frequencies; determination of mode
shapes and transfer functions are being attempted
[5,6]. The success of these various techniques will
depend in part upon the development of powerful dig-
ital signal processing tools.

These problems
alternate measurement
below-waterline

Design verification is another aspect of struc-
tural dynamics that can benefit from advances in sig-
nal processing. For the design of safe
fatigue-resistant structures 1in ever more hostile
environments, it s necessary to verify by accurate
measurement the adequacy of present design methods and
assumptions. Predicted and measured values of natural
frequencies, damping ratios, and mode shapes are but a
few of the wvalues which should be compared. Where
discrepancies occur, improvements can be made for
future designs.

The first
periodogram.
methods

spectral estimator to be used was the
The periodogram and its variations are
which operate directly on the data by Fourier
transforming to obtain the spectral estimates. In
1958 Blackman and  Tukey 71 intrcduced their
autocorrelative method which 1involves the Fourier
transform of the windowed autocorrelation function
estimate, It is a moving average (MA) or all zero
method which suffers from a severe "bias vs.
variance" tradeoff. Resolution is lost due to (1) the
finite record length of the autocorrelation function
estimate (assumed zero beyond known lag products} and
(2) the windowing operation itself. In 1965 Cooley
and Tukey sparked a revival of the Fast Fourier Trans-

form (FFT) which had been known for years but was not
practical until the advent of the high speed digital
computer. The direct methed of calculating spectral
estimates involving magnitude squaring of the trans-
form of windowed data records became popular.
Unfortunately, this method unreasonably assumes that
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the data is zero outside the selected number of lags
and repeats itself periodically.

in 1967 Burg (8] introduced the concept of the
Maximum  Entropy Method (MEM) of auto-spectral
analysis. Entropy is a measure of the average infor-
mation content contained in a signal. Maximizing
entropy therefore maximizes the information transmit-
ted in a signatl. MEM is one of the family of
nonlinear, data-adaptive methods of spectral analysis
which are capable of generating a higher resolution
spectral estimate from shorter data records than con-
ventional Fast Fourier Transform (FFT) methods. This
ability to use shorter data records can be an impor-
tant  consideration where (1) stationarity, (2)
logistics of data collection, and/or (3) computer
processing time and cost are a problem. Because MEM
is data-adaptive, it does not suffer from the severe
"bias vs. variance" tradeoff due to finite record
length reguirements of conventional methods. When
calculating spectral estimates at one frequency, it is
able to adjust itself to be least disturbed by power
at neighboring frequencies.

Researchers have successfully applied the MEM
method to such diverse fields as geophysics,
neurophysics, and radar imagery. Campbell [9] applied
the single channel version of MEM to the dual problem
of natural freguency and damping ratio estimation of
offshore platforms. He was able to more accurately
evaluate these two parameters as well as place 95%
confidence 1limits on these estimates. The multichan~
nel MEM method of spectral analysis is applied in this
paper to the problem of mode shape and transfer func-
tion estimation 1in the hope that both structural
monitoring and design verification technologies may
benefit.

MULTICHANNEL MAXIMUM ENTROPY METHOD OF SPECTRAL ANALY-
515

In order to assist understanding of the multi-
channel MEM algorithm, a brief review of the single
channel MEM mode]l as a prediction error (PE) filter
will be presented. An error series, e(n), is defined
as the difference between the desired or true signal,
d(n), and the actual or predicted signal, y(n). The
desired value 1is chosen as the input signal advanced
one time wunit ahead. The actual signal represents
past values of the input signal. These past or previ-
ous values of the time series are used to predict the
next value (hence the prediction error terminology).
According to Teast squares theory, a mean square error
or error power (ie. variance for zero mean process),
P(L), 1is defined as the expected value of the square
of the error signal. The energy contained in this
error power must be minimized in such a way that the
input signral is whitened (or the output becomes uncor-
related) as the filter erder is increased [10]. The
Normal or Wiener-levinson equations are obtained as a
result of this minimization and are given by

[R] {A} = {P} ........................... (1)
where:
[R] = (L+1)x{L+1) matrix of autocorrelation

1

coefficients, 0 to 1 lags

{A} = (L+1)x1 column vector of prediction error
filter coefficients

{P} = (L+1)x1 column vector of prediction errors

The L+1 Normal equations are then solved by the
Levinson-Burbin recursion to obtain the PE filter
coefficients, A. This algorithm takes advantage of
the special Toeplitz symmetry of the Normal equations
whereby all diagonal values in the correlation matrix
are the same. The MEM spectral estimate, Sx, defineg
between the Nyquist frequency, fny, is then given by

sx(f) = MO sw(f)  -frysfsfny  ...(2)
20%(L) a
= £
|1 - T AmM exp(-jznfm¢g|2
m=1

where gZ(lL) or Sw(f)/Z2aA is the prediction error or
white noise variance and the denominator is the magni-
tude squared of the Fourier transform of the PE filter
coefficients. The A is the time increment in seconds
between sampled data points. Note that the one in the
denomipator is actually the A(0Q) PE filter coefficient
term.

Thus, the single channel MEM filter can be writ-
ten in a form that structural dynamicists are
familiar. That is, the MEM spectral estimate, Sx(f),
(ie. output spectrum) is the product of the prediction
error spectrum, Sw(f), (die. input spectrum) and the
magnitude of the transfer function of the PE filter
squared, A(f). The MEM spectral estimate is obtained
by (1) calculating the PE filter coefficients out to
the desired filter order of length L, (2) calculating
the PE due to a white noise signal at filter order L,
(3) taking the magnitude squared of the Fourier trans-
form of the PE coefficients, and (4) performing the
operations indicated in Eq. 2.

For the multichannel MEM algorithm, the development is
analogous to the single channel case. The expected
mean-square values of forward and backward errors of
length M (M < L} are minimized for the optimum filter.
As a result, the Normal equations for the pxp (p=2 for
two-channel case) forward filter coefficients, CF,
(analogous to the PE filter coefficients of the single
channel case} are given by

[RF] {CF(M,m)} = {V} .................. (3)

where:
[RF]= forward R-matrix, Toeplitz,
T square block submatrices
{V = forward power matrix, [P(M)} G O0...0]
m- = coefficient number

The R4 element or 2x2 submatrix of the RF matrix for a
lag of 4 for the two-channel case is

{R4} = [R11(4)
R21(4)
where the diagonals are the autocorrelations and the

off-diagonals are the cross-correlations between chan-
nels 1 and 2.

R12(4ﬂ
R22(4)

The single-sided multichannel MEM spectral estimate
matrix is a function of the Fourier transform of the
forward filter coefficient matrix and is given by

G(f) = 2a[CF1/237 P(M)  [CFY (1/2)] .. (5)
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where 7z = exp(-j2mfa). Since the forward power, P,
satisfies the condition that it is greater than zero,
the filter coefficient matrices are nonsipgular and

invertible. tquation 5 reduces to £q. 2 for the sin-
gle chanpel case if matrices are replaced by vectors
and vectors by scalars. The inverse matrix operations
become divisions and the product of the filter coeffi-
cients with their complex conjugates gives the
magnitude squared as before.

The forward filter coefficient matrix, CF, is
calculated wusing a correlation extension method based
on the Rissanen recursion. It involves the triangular
decomposition of the R-matrix into a diagonal form
from which psuedo-forward filter coefficients are cal-
culated. A savings in computer storage is realized.
The interested reader is referred to the papers by
Strand [11] and Rissanen [12] for more details on this
methed.

MULTICHANNEL SPECTRAL ESTIMATION

The primary emphasis of this paper is in the
application of multichanne]l spectral estimates to mode
shape identification. In mode shape analysis, the
resonant frequencies of the platform are first identi-
fied and then the order and shape of the normal modes
can be determined. The more transducers
(accelerometers) used, the easier the task of identi-
fying the modes, especially the higher modes.

Normally, multichannel spectral analysis esti-
mates itnclude only autospectra and cross-spectral mag-
nitude, phase, and coherence estimates. The transfer
function estimate can be used to give relative dis-
placements between accelerometer locations. Since, as
we shall see, the cross-spectral transfer function
estimate tends to be an unbiased estimate in compar-
ison to autospectral estimates; it is a particularly
useful quantity in mode shape identification.

The autospectral density and the cross-spectral
magnitude estimates reveal peaks which may be due to
either normal modes of the platform, machine noise, or
excitation peaks. They are used to locate natural
frequencies and half-power damping ratio estimates.
The  autospectra are real and non-negative. The
one-sided cross-spectrum is given by

Gxy(f) =

|Gxy(F)| exp(-3j@xy(f))  Dsf<co..(6)

where the magnitude and the phase are defined as

b

|Gxy ()| SQRT [Cxy?(f) + Quy?(f)] 0xf<co..(7)

Oxy(f) = ARCTAN [Qxy(f) / Cxy(f)] O0sf<oo..(8)
The magnitude is real-valued and even and the phase is
a real-valued and odd function of frequency f. Coupl-
ing between modes can cause the phase values to be
other than zero or 180 degrees. The coincident or
co-spectra density function, Cxy(f), is a real-valued
even function of frequency f. The quadrature spectral

density function, Qxy(f), is a real-valued odd func-
tion and is shifted 90 degrees from the co-spectra
estimate.

The coherence squared (or coherence, if the
square root is taken) is a normalized cross-spectrum
defined by

Gxy2(f) / [Gxx(f) * Gyy(f)]

Yay(f) =

It is a measure of the fraction or portion of one sig-
nal which is due to the other. [t satisfies the ine-
quality 0 <¥Zxy(f) < 1. When it has a value of zero,
the two channels are said to be incoherent or uncorre-
lated at the particular frequency. When the coherence
is zero for all frequencies, the two channels are sta-
tistically independent. When the coherence equatls
unity at a particular frequency, the two channels are
fully coherent, correlated, or dependent. Extraneous
noise in the measurement will cause the coherence val-
ue to be less than unity. The predicted modal
deflections will be underpredicted if the coherence is
much less than unity.

For an idea}, causal, stable, linear physical
system; the measured output or response, y{(t)}, is
related to the measured input or excitatien, x(t), by
the convolution or superposition integral.

t
y(t) =_[ h(7) x(t - 7) d7
0

where h{ T ) is the unit impulse response. The corre-
sponding frequency domain expression in terms of the

transfer function or frequency response function,
H(f), is
Y(f) = H{fY X(F) ... .. (11)

The singlte-sided auto
the transfer function are

and cross-spectra in terms of

Gyy(F) [ Gxx( )

Gxy(f) H(F) Gxx{f)

L]

Consider a system with input, m(t), and output,
n(t), noise terms related to the true input, u(t), and
true output, v(t), signals by

x(t) = () +m{t) ... (14)
y(t) = w{t)y +n{t) ... ... (15)
Thus, x(t) and y(t) are the measured values of input

and output respectively. The noise terms are assumed
to be uncorrelated with the true signals and with each
other if the cross-spectral terms are zero. After
some manipulations, the transfer function estimates
for the autospectral, Ha{f), and the cross-spectral,
Hc{f), derivations are found to be

2 2
[Ha = W i gomew | (16)
1 + Gmm/Guu
’Hcl - S TR (17)
1 + Gmm/Guu
where H is the true transfer function. Thus, regard-

less of the amount of input noise; if output noise is

present, the autospectral derivation for the transfer
function estimate will always give a biased estimate
of the true transfer function. The cross-spectral

derivation, however, will give an unbiased estimate of
the true value when the input noise satisfies the ine-
quality
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Gmm << Guu

regardless of the amount of output noise, Gnn. There-

fore, the cross-spectral method of calculating the
transfer function estimate is always superior to the
estimate calculated using the autospectra whenever

independent noise is present [13].

The transfer function estimate is defined as

Hxy(f) = Gxy(f) / Gxx(f) 0=<f<0o ...... (19)

= Hr(f) - j Hi(f)
where Gxx(f) is considered to be the input signal
whether or not it actually is an excitation. Analo-
gous to the cross-spectral estimate, the transfer
function is composed of (1) a compeonent, Hr(f), which

is a real-valued even function of frequency f; and (2)
a component, Hi(Ff), which is a real-valued odd func-

tion. It can be defined in terms of a magnitude (je.
gain), Hxy(f) , and phase, ¢hxy(f). These must satis-
fy
Hxy(f) = Jxy(f) exp(-jdxy(f))  Oxf<oo..(20)
where:
|Hxy(f)| = 'lny(fﬂ 7/ Gxx(f) Dzf<oo. . ... (21)
Gxy(f) = ARCTAN [Hi(f) / Mr(f)] ....... (22)
= fOxy(f)
Thus, the phase, xy(f), of the transfer function

estimate is identical to the phase of the

cross-spectral estimate @xy(f).

PERFORMANCE OF MULTICHANNEL MEM MODE SHAPE ESTIMATOR
ON OFFSHORE CAISSON PLATFORM

In order to ascertain the multichannel MEM algo-
rithm's ability to generate realistic "mode shapes" of
a structure, a comparison of retative acceleration
magnitudes obtained using MEM transfer function esti-
mates was made with relative displacement amplitudes
obtained from a finite element model. An offshore
caisson production platform tocated in 89 feet of
water in the Gulf Of Mexico operated by Amoco was used
for this comparison. It consists of a single, verti-
cal cylindrical caisson which varies in diameter from
7 ft at the mudline to 4 ft at the MLW. Figure 1 is a
three-dimensional view of the structure. It is 265 ft
overall; extending 100 ft below the mudline, 89 ft
through the water column, and 76 ft above the surface.
It supports three decks and a boat landing. The heli-
copter deck 1is 76 ft above the water, the production
deck is 57 ft and the wellhead deck is 40 ft. Addi-
tional details on this platform are contained in a
companion paper by Cook [14]. This platform is an
ideal structure for estimating cross-spectral esti-
mates because of (1) its symmetry, (2) iack of
interference from neighboring legs, and (3) absence of
drilling activity and large unaccountable deck Toads.

The instrumentation for this series of tests con-
sisted of four accelerometers and a Tandberg 4-channel
analog (FM) tape recorder. The accelerometers were
Endeveo QA 116-16 force balance type, They can meas-
ure up to + 1 g, resolve down to 10°° g's, and have a
sensitivity of 1 volt per g. The Tandberg Model 100
tape recorder uses standard 1/4 inch tape and records

simultaneously on four channels. The amplifier gain
was selected to give an accelerometer output of 100
valts per g. Data was recorded at 1-7/8 ips.

In order to measure the flexural mode shapes of
the platform, four accelerometers oriented in a
northerly direction were placed in the same vertical
plane running through the platform centerline. An
anemometer was used to measure a wind speed and direc-
tion of 20 knots from ENE. Visual observation
ascertained a sea state of 5 to B ft.

A sampling rate of 6.4 Hz (0.16 sec interval) was
used in the data reduction. A total of 80 minutes
(4800 sec, 30720 data points) of data was analysed.
Of this amount, 29696 data points (58 segments of 512

points each) were used in calculating the cerrelation
function estimates to tag lengths of 512 points or 80
seconds. A preview of the analog data indicated that

noe over-ranges occurred. The lag length of 512 lags
was chosen as an appropriate tradeoff between resol-
ution and variance. An "overlap and save" technique
was used to calculate the correlation function esti-
mates.

In order to compare the multichannel MEM method
of spectral analysis to conventional correlative meth-
ods, a comparison with the Blackman-Tukey method (BTM)
was made. A parameter study on the effects of differ-
ent window shapes (ie. Boxcar, Bartlett, Hanning, and
Parzen} and durations (ie. 128, 256, and 512 lags) on
the BTM method indicated that only the Hanning window
with a Tag length of at least 256 tags is capable of
giving satisfactory "bias vs. variance" tradeoff with-
out severe sidelobe Teakage. Akaike's Final
Prediction Error (FPE) mode) order criterion [6,11]
indicated an optimum value of 80 lags for the MEM
method. Thus, & window duration (for the BTM) or a
model order (for the MEM) of 80 was selected. Compar-
isans of the multichannel cross-spectral magnitude,
phase, and coherence squared estimates were made. For
the sake of brevity, only the cross-spectral magnitude
estimates are presented here. Figures 2 and 3 are
for the BTM and MEM methods respectively. The effect
of sidelobe leakage on the BTM magnitude estimate is
cleariy seen in Figure 2.

The multichannel MEM method gives an improved
estimate over the conventional Blackman-Tukey spectra)
analysis method. One of the reasons why the BTM meth-
od gave such good comparative results (especially at
targe lags} 1is due to the large amount of data proc-
essed. The real time and cost saving of the MEM
method s in its ability to calculate spectra) esti-
mates wsing only small amounts of data with low mode)l
orders or filter lengths. From the parameter study,
we know that the BTM method would have given better
results for a window duration of 256 lags or greater;
but this would have required correspondingly more com-
puter time and cost. Also, the stationarity problem,
due te wvarying environmental conditions, is partic-
ularly mportant here.

The helicopter and wellhead deck accelerometers
are presented as an example of the mode shape iden-
tification process using the multichannel MEM transfer
function estimates. Figures 3 - & show the
cross-spectral estimates of magnitude, phase, and
coherence squared respectively. To prevent rapid
crossovers between * 180 degrees, the absolute value
of the  phase estimate has been plotted. The
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i'cross-spectral magnitude plot shows the relative ener-
E'gy content among the first three flexural modes.

Oniy

: lthe fundamental flexural mode contains any significant

it lamount of energy.

.|boat

The first three flexural modes have
been estimated to be lTocated at 0.32, 1.20, and 3.06
Hz respectively. Only the first two modes are posi-
tively identified, however, because of the low coher-
ence estimates for the third mode.

The peaks or spikes on the cross-spectral esti-

: Imate plots labeled TRN are due to tape recorder noise.

Based on the pbhase and coherence estimates, these
peaks do not represent true energy content of the
response spectra. A test to verify this hypothesis

was conducted whereby one channel of the tape recorder
was grounded and an empty data record was recorded.
This data was digitized and processed using the same
cross-spectral analysis procedure, Based on the
results of this test, the noise peaks located at 1.68
and 2.66 Hz are definitely attributable to tape
recorder noise, probably caused by transport flutter.
In addition, other noise peaks at 1.34, 2.01, and 2.20
Hz were also identified.

Transfer function estimates were calculated with
the helicopter deck as a psuedo-input to give relative
acceleration magnitudes (ie. relative accelercmeter
location displacements if doubly integrated) between
the helicopter (H), production (P), wellhead (W), and
tanding (B) decks for mode shape identification.
Figure 6 1is a representative sample of the transfer

function estimate between the helicopter deck and the
wellhead deck. A summary of the cross-spectral esti-
mates of the first three flexural modes for each of

three combinations of accelerometer locations is given
below.

Phase Coherence Transfer
Accelerometers (Deg) Squared Function
First Flexure = 0.32 Hz
H and P 0 1.00 0.85
H and W 0 1.00 0.70
H and B 0 1.00 0.40
Second Flexure = 1.20 Hz
H and P 0 1.00 0.57
H and W 12 0.70 0.07
H and B 180 0.95 0.65
Third Flexure = 3.06 Hz
H and P 15 0.00 0.15
H and W 180 0.05 0.15
H and B 180 0.00 0.10
A two-dimensional mode 1 incorporating
geometrical, mass, and stiffness properties of the

caisson platform as well as soil conditions was used
to perform a finite element analysis using the comput-
er program ADINA. The model, consisting of two degree
of freedom (DOF) beam and truss elements
(translational and rotational}, had enough DOF to get
the first three mode shapes. Additional discussion of
the modeling of the caisson and the soil properties is
presented by Cook [14].

A comparison of the first three estimated
flexural mode natural frequencies with those calcu-
lated wusing the finite element (FE) model is shown
below.

Description Mode 1, Hz Mode 2, Hz Mode 3, Hz
FE Mode) 0.33 1.06 3.12
MEM Method 0.32 1.20 3.06

Hong [15] calculated a value of 0.30 Hz for the funda-
mental flexural mode. A comparison of the first two
relative mode shapes is given in Figure 7. Thus, the
natural frequencies and mode shapes estimated using
the MEM multichannel spectral analysis technique com-
pares favorably with other reported values,

CONCLUSIONS

A multichannel MEM method of spectral analysis

has been developed based on the triangular decompos-
ition of the correlation matrix using an algorithm
developed by Rissanen. It is far superior to
cross-spectral estimates obtained using a

Blackman-Tukey code with a Hanning window.

A transfer function estimate using the MEM multi-
channel method of spectral analysis was used in mode
shape identification of an offshore cajsson platform
located in 89 ft of water. These transfer function
estimates, using accelerometers as psuedo-inputs, give
relative acceleration amplitudes (which if doubly
integrated, would be relative displacement amplitudes}
between two accelerometers. Comparison of these reta-
tive acceleration magnitudes with the relative
displacement amplitudes obtained from a finite element
model of the caisson platform gave reasonable agree-
ment. The third flexural mode values were not
positively identified, however, because of low coher-
ence values. Thus, this technique can be a useful
too) {in conjunction with the cross-spectral estimates
of magnitude, phase, and coherence) in mode shape
identification of offshore platforms.

NOMENCLATURE

A prediction error filter coefficients

CF = forward filter coefficient

Cxy, Qxy = coincident and quadrature spectral density
estimates

e(n) = error or residual between desired and
actual signals d(n) and y{(n)

f,fs,fny = cyclical, sampling, and Nyquist
frequencies

G = muttichannel MEM spectral estimate matrix

Gxx,Gyy = autospectral estimate for channel x and y

Guu,Gvv = autospectral estimate for true input
and output u and v

Gmm,Gnn = autospectral estimate for input and
output noise m and n

Gxy = cross-spectral magnitude or gain

H{f) = true frequency response

h(T) = impulse response function

Ha ,Hc = transfer function estimate using auto and
cross-spectral derivations

Hxy = transfer function estimate from cross-
spectral derivation

Hr , Hi = real and imaginary components of transfer

function estimate
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L,m = desired number and current number of }ags
p = number of time series channels
P = prediction error, error power, or forward
power matrix
R, RF = autocorrelation matrix, multichannel
forward correlation matrix

Sx{f) = two-sided MEM autospectral estimate
Sw(f) = white noise variance or prediction error
v = forward power matrix
XY = Fourier transforms of input and cutput
Y23y(f) = coherence squared for channels x and y
Fa = sampling interval, seconds
a%(m) = yarjance or prediction error of order m
fxy(f) = cross-spectral phase estimate
dxy(f) = cross-spectral transfer function phase est.
t, 7 = time variable and time delay
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Fig. 1 — Offshore caisson platform
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Fig. 2 — BTM magnitude cross-spectrum with Hanning
Window
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Fig. 3 — MEM magnitude cross-spectral estimates
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